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ABSTRACT

We seek to learn a representation on a large annotated data source that generalizes
to a target domain using limited new supervision. Many prior approaches to this
problem have focused on learning “disentangled” representations so that as indi-
vidual factors vary in a new domain, only a portion of the representation need be
updated. In this work, we seek the generalization power of disentangled represen-
tations, but relax the requirement of explicit latent disentanglement and instead
encourage linearity of individual factors of variation by requiring them to be ma-
nipulable by learned linear transformations. We dub these transformations latent
canonicalizers, as they aim to modify the value of a factor to a pre-determined
(but arbitrary) canonical value (e.g., recoloring the image foreground to black).
Assuming a source domain with access to meta-labels specifying the factors of
variation within an image, we demonstrate experimentally that our method helps
reduce the number of observations needed to generalize to a similar target domain
when compared to a number of supervised baselines.

1 INTRODUCTION

Most state-of-the-art visual recognition models rely on supervised learning using a large set of man-
ually annotated data (Krizhevsky et al., 2012; He et al., 2015; He et al., 2017; Redmon & Farhadi,
2018). As recognition task complexity increases, so does the number of potential real world vari-
ations in visual appearance and hence the size of the example set needed for sufficient test time
generalization. Unfortunately, large labeled data sets are expensive to acquire (Deng et al., 2009;
Zhou et al., 2017), and may even be infeasible for applications with evolving data distributions.

Often a large portion of the variance within a collection of data is due to task-agnostic factors of
variation. For example, the appearance of a street scene will change substantially based on the time
of day, weather pattern, and number of traffic lanes, regardless of whether cars or pedestrians are
present. Ideally, the ability to recognize cars and pedestrians would not require labeled examples
of street scenes for all combinations of times of day, weather conditions, and geographic locations.
Rather it should be sufficient to observe examples from each factor independently and generalize to
unseen combinations. However, often the in-domain labeled data available may not even linearly
cover all factors of variation. This calls for methods that encourage such sample efficiency by
focusing on the individual complexities of the factors of variation, as opposed to their product.

Prior approaches to learning representations which isolate factors of variation in the data have
typically regularized the representation itself, with the aim of learning “disentangled” representa-
tions (Kulkarni et al., 2015; Chen et al., 2016; Higgins et al., 2017a;b; Burgess et al., 2018; Kim
& Mnih, 2018). Alternatively, one might regularize the way the representation can be manipulated
rather than the representational structure itself. Here, we take such an approach by introducing la-
tent canonicalization, in which we constrain the representation such that individual factors can be
clamped to an arbitrary, but fixed value (“canonicalized”) by a simple linear transformation of the
representation. These canonicalizers can be applied independently or composed together to canoni-
calize multiple factors.

We assume access to a large collection of source domain data with meta-labels specifying the factors
of variation within an image. This may be available from meta-data, attribute labels, or from hyper-
parameters used for generation of simulated imagery. Latent canonicalizers are optimized by a pixel
loss over pairs of ground-truth canonicalized examples and reconstructions of images with various
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factors of variation whose representation has been passed through the relevant latent canonicalizers.
By requiring the ability for manipulation of the latent space according to factors of variation, latent
canonicalization encourages our representation to linearize such factors.

We evaluate our approach on its ability to learn general representations after observing only a subset
of all potential combinations of factors of variation. We first consider the simple dSprites dataset,
introduced to study disentangled representations (Matthey et al., 2017) and show qualitatively that
we can effectively canonicalize individual factors of variation. We next consider the more realistic,
though still tractable, task of digit recognition on street view house numbers (SVHN) (Netzer et al.,
2011) with few labeled examples. Using a digit simulator, we train our representation with latent
canonicalization along multiple axes of variation such as font type, background color, etc. and then
use the factored representation to enable more efficient few-shot training of digit recognition in the
real data. Our method substantially increased performance over standard supervised learning and
fine-tuning for equivalent amounts of data, achieving digit recognition performance that was only at-
tainable with 5× as much SVHN labeled training data for the best-performing baseline method. Our
experiments offer promising evidence that encoding structure into the latent representation guided
by known factors of variation within data can enable more data efficient learning solutions.

2 RELATED WORK

2.1 DISENTANGLING

A number of studies have sought to learn low-dimensional representations of the world, with many
aiming to learn “disentangled” representations. In disentangled representations, single latent units
independently represent semantically-meaningful factors of variation in the world and can lead to
better performance on some tasks (van Steenkiste et al., 2019). This problem has been most com-
monly studied in an unsupervised setting, often by regularizing latent representations to stay close
to an isotropic Gaussian (Higgins et al., 2017a;b; Burgess et al., 2018; Kim & Mnih, 2018). Other
popular unsupervised approaches include maximizing the mutual information between the latents
and the observations (Chen et al., 2016) and adversarial approaches (Donahue et al., 2016; Radford
et al., 2015). When supervision on the sources of variation is available, it is possible to use this in a
weak way (Kulkarni et al., 2015).

Many of these works have explicitly endeavored to learn semantically meaningful representations
which are both linearly independent and axis-aligned, such that individual latents correspond to
individual factors of variation in the world. However, recent work has questioned the importance
of axis-aligned representations, showing that many of these methods rely on implicit supervision
and finding little correspondence between this strict definition of disentanglement and learning of
downstream tasks (Rolinek et al., 2018; Locatello et al., 2019). Further, while axis-alignment is
useful for human interpretability, for the purposes of decodability, any arbitrary rotation of these
latents would be equally decodable so long as factors are linearly independent (Locatello et al.,
2019). In this work, we use explicit supervision in a simulated setting to encourage linear, but not
necessarily axis-aligned representations.

2.2 SIM2REAL

The setting of near-unlimited simulated data with ground truth labels and scarce real data occurs
often in computer vision and robotics. However, the domain gap between simulated and real data
reduces generalization capacity. Many approaches have been proposed to overcome this difficulty
which are broadly referred to as sim2real approaches. A simple approach to closing the sim2real
gap is to train networks with combinations of real and synthetic data (Varol et al., 2017).

Transfer Learning and Few-shot Learning: Alternatively, synthetic data can be used for pre-
training followed by fine-tuning on real data (Richter et al., 2016)—a form of transfer learning.
Often, the reason one uses simulated data is that there is a shortage of labeled real data. In this
situation, one may make use of few-shot learning techniques which seek to prevent over-fitting
to the few examples by using a metric loss between data tripets (Koch et al., 2015), comparing
similarity between individual examples (Vinyals et al., 2016) or between a prototypical example per
category and each instance (Snell et al., 2017). A separate class of techniques use meta-learning
to design a learning solution which is most amenable to learning from few examples (Finn et al.,
2017). However, these approaches may be sensitive to the ratio of synthetic and real data.
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Domain adaptation: With access to a large set of unlabeled real examples, domain adaptation
techniques can be used to close the sim2real gap. One class of techniques focuses on matching
domains at the feature level (Ganin & Lempitsky, 2015; Long et al., 2015; Tzeng et al., 2017),
aiming to learn domain-invariant features than can make models more transferrable (Zou et al., 2018;
Li et al., 2018a). In fact, image-to-image translation focuses on the appearance gap by bridging the
appearance gap in the image domain instead of feature space (Shrivastava et al., 2017; Liu et al.,
2017). Domain adaptation can also be used to learn content gap in addition to appearance gap (Kar
et al., 2019). Additional structural constraints, such as cycle consistency, can further refine this
image domain translation (Zhu et al., 2017; Hoffman et al., 2018; Mueller et al., 2018). Finally,
image stylization methods can also be adapted for style transfer and sim2real adaptation (Li et al.,
2018b).

Domain randomization: (DR) offers a surprising alternative (Tobin et al., 2017; Prakash et al.,
2018) by exploiting control of the synthetic data generation pipeline to randomize sources of vari-
ation. Random variations will likely be ignored by networks and thus result in invariance to those
variations. A particularly interesting instantiation of DR was suggested in Sundermeyer et al. (2018)
for pose estimation. Pose is an example of a factor of variation which could be ambiguous due to
occlusions and symmetries. Instead of explicitly regressing for the pose angle, the authors pro-
pose an implicit latent representation. This is achieved by an augmented-autoencoder, a form of
denoising-autoencoder that addresses all nuisance factors of variation as noise. This idea can be
seen as a particular case of our method where all factors are being canonicalized at once instead
of learning to canonicalize each individually. Another interesting example is the quotient space
approach of (Mehr et al., 2018) removes pose information for a 3D shape representation by max-
pooling encoder features over a sampling of object rotations. It, however, does not consider how
to perform canonicalization as a linear transformation in latent space, nor how to compose different
canonicalizers.

3 APPROACH

Our goal is to learn representations which capture the generative structure of a dataset by indepen-
dently representing the underlying factors of variation present in the data. While many previous
works have approached this problem by regularizing the representation itself (Kulkarni et al., 2015;
Chen et al., 2016; Higgins et al., 2017a;b; Burgess et al., 2018; Kim & Mnih, 2018), here we take a
different approach: rather than directly encourage the representation to be disentangled, we instead
encourage the representation to be structured such that individual factors of variation can be manipu-
lated by a simple linear transformation. In other words, we constrain the way that the representation
can be manipulated rather than the structure of the representation itself.

3.1 LATENT CANONICALIZATION

In our approach, we augment a standard convolutional denoising autoencoder (AE) with latent
canonicalizers. A standard AE learns an encoder, Enc, which takes as input a given image, x, and
produces a corresponding latent vector, z. At the same time, the latent vector is used as input to
a decoder, Dec, which produces an output image, x̂. Both the encoder and decoder are learned
according to the following objective, Lae, which minimizes the difference between the original input
image and the reconstructed output image:

z = Enc(x; θe) ; x̂ = Dec(z; θd) ; (1)

Lae(θe, θd;x) = min
θe,θd
‖x− x̂‖22. (2)

To encourage noise-robustness, we augment the potential input images following previous work on
denoising autoencoders (Vincent et al., 2008; 2010), noising each raw input image, x, by adding
Gaussian noise, blur, and random crops and rotations, leading to our noised input image, x̃.

In this work, we additionally constrain the structure of the learned latent space using a set of latent
canonicalization losses. We define a latent canonicalizer as a learned linear transformation, C, which
operates on the latent representation, z, in order to transform a given factor of variation (e.g., color
or scale) from its original value to an arbitrary, but fixed, canonical value. So that individual factors
can be manipulated separately, we learn unique canonicalization matrices, Cj , for each factor of
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Figure 1: Schematic representation of latent canonicalization: Colored paths correspond to different com-
ponents of the loss (cyan: classification, green: bypass, red: canonicalization). Four possible canonicalizations
(two individual and two pairs) are shown along with example simulated SVHN images and reconstructions.

variation, j ∈ [1,K], present in the dataset. In order to constrain the latent representation according
to canonicalization along one factor, j, our method yields the following basic form:

z(j)
canon = Enc(x̃; θe) · Cj ; x̂(j)canon = Dec(zcanon; θd) (3)

To supervise the learning of latent canonicalizers, we compare the images generated by canoni-
calized latents, x̂canon, to ground truth images with the appropriate factors of variation set to their
canonical values, xcanon. Canonicalizers can also be composed together to canonicalize multiple
factors (e.g., z(j,k)

canon = z · Cj · Ck). During training, each image is passed through a random subset
of both individual and pairs of canonicalizers. Given Q canonicalization paths for a given image, x,
the corresponding canonicalization loss for that single image (red in Figure 1) is written as:

Lcanon =
1

Q

Q∑
q

‖x̂(q)canon − x(q)canon‖22 (4)

Since many outputs are canonicalized, it is possible that the decoder will simply learn to only gen-
erate the canonical value of a given factor of variation. To prevent this form of input-independent
memorization, we also include a “bypass” loss which is equivalent to the standard denoising auto-
encoder formulation (green in Figure 1) defined in Equation (2), thus forcing information about each
factor to be captured in the latent vector, z.

Finally, we ensure that our representation not only allows for linear manipulation along factors of
variation, but does so while capturing the information necessary to train a classifier to solve our end
task. To this end, we add a supervised cross-entropy loss, LCE, which optimizes our end task using
available labeled data (cyan in Figure 1):

LCE = y log ŷ (5)

Combining equations 2, 4, and 5 with loss-scaling factors (α and β) gives us our final per-example
loss formulation:

L = y log ŷ + α‖x̂− x‖22 + β
1

Q

Q∑
q

‖x̂(q)canon − x(q)canon‖22 (6)

In practice, two canonicalizers are chosen at random for each input batch, Ch and Cj , and the cor-
responding latent representation z is passed through {Ch, Cj , ChCj , CjCh} generating four unique
canonicalized latents: {z(h)

canon, z
(j)
canon, z

(h,j)
canon , z

(j,h)
canon}. A diagram of the method is shown in Figure

1, illustrating each canonicalization path, the bypass path, and the classification model. All descrip-
tion thus far has focused on the single image loss for simplicity of presentation. The full model
averages the per image loss over mini-batch before making gradient updates.
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Latent canonicalizer constraints: Our approach relies upon constraining the way a representa-
tion can be manipulated. As a result, the specific choice of constraints should have a significant
impact on the representations which are ultimately learned. Here, we limit ourselves to only two
constraints: the transformations must be linear and canonicalizers must be composable, at least in
pairs. If we were to allow non-linear canonicalizers, there would be little incentive for the encoder to
learn an easily manipulable embedding. This would only be exacerbated as the non-linear canonical-
izer is made more powerful by e.g., additional depth. By requiring canonicalizers to be composable,
we encourage independence as each canonicalizer must be able to be applied without damaging any
other. We explore some other potential constraints in Section 4.2.4.

3.2 SIM2REAL EVALUATION

A main motivation of latent canonicalization is to leverage structure gleaned from a large source
of data with rich annotations to better adapt to downstream tasks. A natural such setting for per-
formance evaluation is sim-to-real. Specifically, we make use of the Street View House Numbers
(SVHN) dataset as our real domain. To simulate SVHN, we built a SVHN simulator in which we
have full control over many factors of variation such as font, colors and geometric transformations
(a detailed description of the simulator is given in Section 4.2.1).

We first pre-train on the synthetic data with latent canonicalization. Following this step, we freeze
the canonicalizers and investigate whether the learned representations can be leveraged as the input
to a linear classifier for few-shot learning on real examples, labeled only with the class of interest
(e.g., no meta-labels for additional factors of variation). During this stage, the encoder is also refined.
Majority vote: Because latent canonicalization manipulates the latent representation, we can use
canonicalization as a form of “latent augmentation.” In this setting, we can aggregate the predictions
of the digit classifier across many canonicalization paths, each of which confers a single “vote.”
Critically, such an approach requires the ability to cleanly manipulate the learned representation,
and is therefore only possible for our proposed method. For a more detailed exploration of the
impact of majority vote, see Section 4.2.4.

3.3 BASELINES

We compare our proposed latent canonicalization with several baselines. To ensure the most fair
comparison possible, we aimed to fix as many hyperparameters as possible: we use the same back-
bone architecture in all our network modules (a detailed description of our network is given in
Section 3.1); the same number of epochs at the pre-training stage (learning from synthetic data);
and a carefully chosen number of epochs at the refinement stage to fit well the method overfitting
rate. For all latent canonicalization experiments we trained three models on the simulated data and
then performed five refinements of each pre-trained model, for a total of fifteen replicates. Results
are reported as mean ± standard deviation. For all baseline models, 15 independent replicates were
trained.

Our simplest baseline, which is meant as a lower bound, is simply a classifier trained only on the low-
shot real data. Next is a classifier trained on synthetic data and then refined on low-shot real data. The
vanilla-AE is an autoencoder pre-trained on synthetic data, after which a linear classifier is trained
on low-shot real data, allowing the encoder to be refined. The strongest baseline is an autoencoder
augmented with a digit classifier at both pre-training (on simulated data) and at refinement. The loss
weighting was chosen via a hyper-parameter search individually for each model.

4 EXPERIMENTS

4.1 LATENT CANONICALIZATION OF DSPRITES

Key to our method is the use of latent canonicalizers, which are learned linear transformations
optimized to eliminate individual factors of variation. As a first test of the effectiveness of latent
canonicalization, we evaluated our framework using the toy data set, dSprites (Matthey et al., 2017),
which was designed for the exploration and evaluation of disentanglement methods. Specifically,
dSprites is a dataset of images of white shapes on a black background generated by five independent
factors of variation (shape, scale, rotation, and x- and y-positions). Training our model (Figure 1) on
dSprites, we demonstrate the effect of applying different individual canonicalizers to various values
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Figure 2: Canonicalization of dsprites images: Input dsprites images (left), reconstructions of inputs with
one factor canonicalized (middle), and rotation, scale, and x-position canonicalized (right). Each row demon-
strates how images change as a single factor of variation is altered.

of the input factors (Figure 2 left and middle). We therefore also applied a set of three canonicalizers
(scale, rotation, and x-position) sequentially as shown in Figure 2, right. Encouragingly, we found
that not only did individual canonicalizers effectively canonicalize their factor of interest, multiple
canonicalizers can be applied in sequence. Furthermore, although models were trained with only
pairs of canonicalizers, triplets of canonicalizers also performed well (Figure 2, right).

4.2 LATENT CANONICALIZATION OF SVHN

To evaluate the impact of latent canonicalization in a more realistic, though still controllable setting,
we turned to the well-known Street View House Numbers (SVHN) dataset (Netzer et al., 2011). In
Section 4.2.1, we discuss our approach to designing a simulator for SVHN, which we use in Section
4.2.2 to pre-train our models and measure the impact of latent canonicalization on sim2real trans-
fer, finding that latent canonicalization substantially improved performance relative to our strongest
baseline. In Section 4.2.3, we investigate the structure of the learned representations to measure
the representational impact of latent canonicalization. Finally, in Section 4.2.4, we discuss potential
directions for improvement which, unfortunately, either harmed or left unchanged sim2real perfor-
mance relative to our best-performing models.

4.2.1 SIMULATING SVHN

To support our proposed training procedure, we require a comprehensive dataset with detailed meta-
data regarding ground-truth factors of variation. While this is possible for a natural dataset, such
data can also be generated for visually realistic, but fairly simplistic datasets such as SVHN. To this
end, we built a procedural image generator that simulates the SVHN dataset by rendering images
with digits on a constant-colored background (see examples in Figure A1). Apart from the digit
class variation, we also simulate additional factors of variation: font color, background color, font
size, font type, rotation, shear, fill color for newly created pixels, scale, number of digit instances,
translation, Gaussian noise, and blur. A detailed description of the simulator is provided in Section
C. Among these factors we chose the first six as our supervised factors of variation, noise and blur
as a joint noise model, and the rest as additional factors which enrich the variety of the data without
supervised canonicalization. Some of the resulting images can be seen in Figure 31. To enable
reproducability across comparisons, and to minimize unaccounted for variability in the data, we
generated a fixed training set with 75,000 images along with targets for all possible canonicalization
paths. We emphasize that this training set represents a small fraction (∼ 0.2%) of the total number of
possible combinations of factors. We used such a small fraction of the total space to demonstrate that
latent canonicalization is feasible even if the factor space is only sparsely sampled. The simulator
along with the generated train set will be made publicly available.

4.2.2 SIM2REAL SVHN TRANSFER USING LATENT CANONICALIZATION

We want to learn representations which enable models to generalize to novel data with consistent
underlying structure. Moreover, the effectiveness of disentangling for acquisition of downstream
tasks has recently been called into question (Locatello et al., 2019). We therefore evaluate the quality
of our learned representations by measuring their ability to adapt to real examples. Specifically, we

1see Appendix C for further simulator details
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Model 10 shot 20 shot 50 shot 100 shot 1000 shot

Classifier trained on real only 20.86± 2.03 36.08± 2.49 72.75± 1.99 82.24± 0.78 92.84 ± 0.39

Classifier trained on synth 76.50± 2.06 80.07± 1.09 83.95± 0.79 85.65± 1.17 89.82± 0.60

Vanilla AE 15.39± 6.12 21.55± 9.16 41.98± 16.62 51.18± 19.80 58.51± 19.68

AE + Classifier 79.61± 1.18 81.63± 1.00 84.66± 0.76 85.86± 0.82 88.80± 0.62

Ours 82.55± 0.86 84.83± 0.76 87.82± 0.57 89.40 ± 0.48 91.21± 0.24

Ours + majority vote 83.41 ± 1.23 85.41 ± 0.88 88.17 ± 0.53 89.58 ± 0.57 91.34± 0.34

Table 1: sim2real transfer results Model performance on the SVHN test set using low-shot labeled real
examples for method and baselines. Table entries represent mean ± std.

consider a few-shot setting in which we allow models pre-trained on simulated data access to a small
refinement set of a few annotated examples per class. We ran this experiment with per-class set sizes
of 10, 20, 50, 100 and 1000. To measure sim2real transfer, we train a fresh linear classifier on the
representation learned by the encoder pre-canonicalization, z , while allowing the encoder to be
refined as well. We report accuracy on the unseen SVHN test set. As a measure of the pre-trained
model, we include examples of reconstructions generated by canonicalized latents in Figure 3.

Figure 3: Example targets and reconstructions of
canonicalized simulated SVHN images.

When small train-sets are used, re-
sults may vary substantially depend-
ing on the selected set. To account for
this, we (a) use the same train set for
all methods, and (b) ran each exper-
iment 15 times: 3 different networks
were trained on simulated data with
different random seeds and 5 repli-
cate refinements were performed per
pre-trained network.

Table 1 shows the sim2real SVHN re-
sults for our method along with four
baselines: a classifier trained solely
on low-shot real data, a classifier
trained on a large dataset of synthetic

data and refined on low-shot real data, a linear classifier trained on the bottleneck of a vanilla de-
noising autoencoder trained on synthetic data, and a linear classifier trained on an autoencoder pre-
trained with a digit classifier on synthetic data. For all settings with fewer than one thousand exam-
ples per class, we found that our model outperformed the best competing baseline by∼ 3− 4%. We
further improved our model’s performance by taking a “majority vote” approach to inference type
classification, in which we pass the representation through multiple latent canonicalizers in parallel
to generate multiple votes as discussed in Section 3.2. Consistently, we found that majority vote
boosted performance, by up to ∼ 0.9%, with the largest gains coming for the lowest-shot settings.

To contextualize the importance of this improvement, one can see that to match our reported per-
formance on 20 shot with the best baseline of an AE + Classifier, a 5 times larger train set of 100
is required. This demonstrates the potential of our proposed method in better utilizing access to
meta-labels for better adaptation to real data.

4.2.3 ANALYSIS OF REPRESENTATIONS

Linear decodability of factors of variation from representations: While latent canonicaliza-
tion encourages representations to be linearly manipulable, it does not explicitly encourage linear
decodability. However, since our canonicalizers are constrained to be linear, we conjecture that la-
tent canonicalization may also encourage linear decodability. To test this quantitatively, we trained
linear classifiers on the pre-trained, frozen encoder for each factor of variation. We ran this experi-
ment separately for each factor and compared linear decodability to our best baseline, AE+Cls. For
continuous factors of variation, we binned target values, converting the problem into a multi-class
classification task. Importantly, the number of bins differs across factors, so chance performance is
different per factor. For background color, font color, and rotation angle, the canonicalized repre-
sentation was noticeably more linear than the baseline (shown here by higher accuracy on a held-out
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Figure 5: Visualization of the linear properties of the representation learned by the canonicalizers. Each
row shows the first principal component of z(j)

canon − z for a source of variation. A clear pattern is visible for
rotation (left to right tilted), and font size (small to big). 20 normally distributed samples from a batch of 1000
are shown above. See appendix for a visualization of the principal components of the bypassed latent.

test set), whereas font type showed a smaller improvement and font size and shear showed no im-
provement in linear decodability (Figure 4). One possible explanation for the discrepancy across
factors is that font color, background color and, rotation are the most visually salient factors with the
largest range of variability. We leave a more thorough analysis of the precise features which make
factors linearly decodable to future work.
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Figure 4: Linear decodability of factors of varia-
tion. Performance of a linear decoder trained on the
frozen, pre-canonicalized representation, z for each of
the six factors of variation. Each factor was divided into
a different number of bins for multi-class classification,
such that chance is 1.6% for background and font color,
33.3% for rotation, 10% for shear, and 16.7% for font
type and size. Error bars represent mean ± std across
three pre-trained networks.

Visualizing the impact of canonicalization:
In the previous experiment, we quantified the
linear decoding performance of our represen-
tations; here, we attempt to visualize the ex-
tent to which they are linear. If these repre-
sentations were indeed linear, we would expect
them to be easily decomposable using princi-
pal component analysis (PCA), the components
of which we can visualize. However, the latent
codes from each of the canonicalizers removes
the effect of a source of variation while keep-
ing the others. We therefore compute the prin-
cipal components (PCs) of z(j)

canon − z, i.e., the
difference between a canonicalized latent and
the pre-canonicalized latent, such that PCs now
represent the removed factor of variation. In
Figure 5, we show sorted images along the first
PC, showing a clear linear sorting of rotation,
and font size. This visually demonstrates that
our approach is able to extract latents that have
strong linearity.

4.2.4 DISCUSSION OF ALTERNATIVE DESIGN DECISIONS

Latent canonicalization opens up many additional avenues for modification to potentially produce
better representations and, consequently, better sim2real performance. In the previous section, we
showed how incorporating majority vote further increased performance. Here, we discuss several
other modifications we explored, which resulted in no change or a decrease in sim2real performance.

Idempotency reconstruction loss: To encourage composability of canonicalizers, we trained
them in identical pairs with alternating orders for consistency (e.g., z · C1C2 and z · C2C1). We also
tried encouraging idempotency, such that the same canonicalizer can be repeatedly applied with-
out changing the reconstruction (e.g., z · C1C2). We found that applying this loss actually harmed
performance, reducing pre-majority vote classification accuracy by∼ 0.5% (Table A1, second row).

Classifier location during pre-training: In our model, the classifier is placed at the output of the
encoder prior to canonicalization, z. However, one might imagine that latent canonicalization could
serve as a form of data augmentation, such that placing the classifier after the canonicalization step,
zcanonCanon, might increase performance. In contrast, we found that placing the classifier after the
canonicalization step harmed performance, reducing pre-majority vote classification accuracy by
∼ 3% (Table A1, third row). Interestingly, however, we found that the majority vote method, which
can also be viewed as a form of data augmentation, did in fact increase performance.
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Latent consistency and idempotency loss: The impact of latent canonicalization was supervised
at the image level, by comparing the reconstruction to a target image. However, we could also use
a self-supervised loss at the latent level, by enforcing consistency (i.e., min‖z · C1C2 − z · C2C1‖2)
and idempotency (i.e., min‖z · C1C1 − z · C1‖2). To account for the scale of this latent loss, which
was much larger than the other loss components, we used a very small scale factor for the latent loss
to maximize performance (1e-7). Even with an appropriately scaled loss, however, the latent loss
either had little impact or harmed sim2real performance (Table A1, fourth row).

Alternative majority votes: We found that a simple majority vote containing the pre-
canonicalized and individually canonicalized representations (1 and 6 votes, respectively) increased
performance by ∼ 0.5%. To further augment the vote set, we also tried adding votes via idempo-
tency (6 additional votes) and pairs (30 additional votes). We found that neither of these additions
further improved performance over the simplest majority vote approach (Table A2).

5 CONCLUSION

We have introduced the notion of latent canonicalization, in which we train models to manipulate
latent representations through constrained transformations which set individual factors of variation
to fixed values (“canonicalizers”). We demonstrate that latent canonicalization encourages repre-
sentations which result in markedly better sim2real transfer on the SVHN dataset than comparable
models, even when only a small sample of the possible combination space was used for training.
Notably, latent canonicalized pre-trained models reached few-shot performance which required 5×
as much data for comparable baselines. Analyzing the representations themselves, we found that the
representation of factors of variation was linearized, as measured by decodability and linear dimen-
sionality reduction (PCA). Finally, we discuss a number of alternative constraints which did not help
performance. Here, we primarily analyzed SVHN, a realistic, but relatively simple dataset. How-
ever, the strong performance of latent canonicalization on SVHN is encouraging for larger-scale data
with more complex factors of variation. Our results suggest the promise not only of latent canoni-
calization, but, more broadly, methods which encourage representational structure by constraining
representational transformations rather than a particular structure itself.
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A ALTERNATIVE DESIGN DECISIONS – ADDITIONAL MATERIAL

Model 10 shot 20 shot 50 shot 100 shot 1K shot

Ours (no maj vote) 82.55 ± 0.86 84.83 ± 0.76 87.82 ± 0.57 89.40 ± 0.48 91.21 ± 0.24

Ours + idem 81.77± 1.23 84.08± 0.98 87.08± 0.64 88.96± 0.51 90.74± 0.35

Ours + classifier after 79.69± 1.22 81.14± 1.00 84.21± 0.74 86.42± 0.54 88.62± 0.24

Ours + latent loss 1e-7 82.74 ± 0.58 84.74 ± 0.84 87.47± 0.50 88.88± 0.33 90.58± 0.18

Table A1: Summary of model additions which did not change or harmed performance. Table entries
represent mean ± std.

Model 10 shot 20 shot 50 shot 100 shot 1K shot

Ours with maj vote 83.41± 1.23 85.41± 0.88 88.17± 0.53 89.58± 0.57 91.34± 0.34

Ours + majority vote idem 83.44± 1.21 85.44± 0.87 88.20± 0.55 89.60± 0.58 91.35± 0.36

Ours + majority vote all-pairs 83.26± 1.12 85.26± 0.80 88.14± 0.53 89.59± 0.58 91.33± 0.33

Table A2: Summary of alternative majority vote methods. Table entries represent mean ± std.

B NETWORK IMPLEMENTATION DETAILS

All the models in this paper are based on the modules: Encoder (Enc), Decoder (Dec), latent canon-
icalizers (Can) and a linear classifier (Cls). Specifically the classifier baseline is a composition of
Enc+Cls; the AE is a composition Enc+Dec. For AE+Cls we compose a linear classifier and su-
pervised for both reconstruction and classification loss. For our proposed network, we also have 6
latent canonicalizers, used both individually and in pairs.

Loss weights: We performed a hyper-parameter sweep over the classification loss weight (∈
10, 20, 50 and found 50 to be the strongest baseline. We also used 50.0 as the classification loss
for our network.

Network architecture: The Encoder is comprised of 3 modules, each includes 3 layers of 3x3 2D
CNN with 64 latent dimensions followed by a batch norm and leaky-ReLU (parameter=0.1). A 2x2
max-pool and 50% dropout is done after each module and finally a max-pool to get a 64 dimensional
latent vector, z.

The Decoder is comprised of 3 layers of 3x3 transposed convolutions with dimensionalities: (64, 64,
32) each followed by a batch normalization and ReLU. Finally, a last transposed convolution from
64 to 3 dimensions and a ReLU.

Training hyperparameters: The networks were implemented using the PyTorch framework
Paszke et al. (2017). Pre-training on simulated data and refinement on real data were done using
the Adam optimizer Kingma & Ba (2014) with default parameters, with learning rates of 1e− 3 and
1e − 4 respectiverly. Pretraining was done for 400 epochs and refinement was done for roughly 50
epochs. The implementation was done

The classifier and the latent canonicalizers are simply single linear layers with 64 dimensions (cor-
responding to the dimensionality of the latent, z).
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C SIMULATOR DETAILS

To support our training requirements, we built a generator for SVHN-like images. Importantly,
we do not aim to mimic the true SVHN dataset statistics. We make only very general simplistic
assumptions such as a 32x32 image size, that images contain a centralized digit, etc. We build the
simulator based on the imgaug library (Jung et al., 2019) which allows to easy control of the different
factors of variation. The specific factors used to generate the images are given in the table together
with their set of values. The first row of Table A3 shows the factors used for canonicalization.
For each of these (except for noise, blur and crop which are canonicalized together to serve as the
bypass), we generate a copy of the image with that factor set to its canonical value. The canonical
values are reported in row 3 of the table. They are chosen arbitrarily but are the same for the entire
train set. Following the 73257 real SVHN train set samples (not used in this work) we generated a
synthetic set of size 75000 total images. Some examples of generated images can be seen in Figure
A1. The set together with the simulator code will be made publicly available.

Figure A1: Examples of simulated SVHN images.

Supervised factors Rotation Font color Background color Font scale font type shear Noise , Blur , Crop
Range [−15, 15] {0, .., 255}3 {0, ..., 255}3 [1.0, 1.6] 6 types [−5, 5] N (0, 0.04) , [0, 1.5] , [0, 0.1]

Canonical value 0 (200, 200, 200) (100, 100, 100) 1.0 type 1 0 (0, 0, 0)

Unupervised factors Cval Scale Number of digits Translation
Range 0, ..255 [0.95, 1.2] 1, ..., 4 ±Poiss(1)

Table A3: Simulator factors and their range of values.

Domain gap between synthetic and real images: Having created quite a generic set of digit
images with naive assumptions, one may ask whether it is at all useful for the target domain. By
taking intermediate checkpoints during training and measuring the classification error without fine-
tuning on the real test set, we see in Figure A2 that indeed there is good correlation the train set error
and the test set accuracy.

Sampling the space of compositions: Scene complexity grows exponentially with the number
of factors. One goal of this work is to show we can get good performance even when sampling a
fraction of this space. To get a rough estimate of that percentage we can bin even just the supervised
factors to [30, 64, 64, 6, 6, 10] (following the order of table A3) discrete values. This gives a space
of≈ 44M possibilities. Noticing the coarse binning of color-space and the fact we haven’t included
the unsupervised factors, we conclude that our 75000 samples set size is at least 3 order of magnitude
smaller than the number of possible factor combinations.
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Figure A2: Train error on synthetic images vs. Test accuracy on real SVHN images.

D ANALYSIS OF REPRESENTATIONS – ADDITIONAL MATERIAL

Figure A3: Comparison between the representation learned by the canonicalizers and the bypassed
representation. Here we show an extended version of Figure 5 also visualizing the bypassed latent code
(top row). The first principal component of z does not show any obvious grouping or pattern.

15


	Introduction
	Related Work
	Disentangling
	Sim2Real

	Approach
	Latent canonicalization
	sim2real evaluation
	Baselines

	Experiments
	Latent canonicalization of dSprites
	Latent canonicalization of SVHN
	Simulating SVHN
	sim2real SVHN transfer using latent canonicalization
	Analysis of representations
	Discussion of Alternative Design Decisions


	Conclusion
	Alternative design decisions – additional material
	Network implementation details
	Simulator Details
	Analysis of representations – additional material

