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ABSTRACT

Formulating the reinforcement learning (RL) problem in the framework of prob-
abilistic inference not only offers a new perspective about RL, but also yields
practical algorithms that are more robust and easier to train. While this connec-
tion between RL and probabilistic inference has been extensively studied in the
single-agent setting, it has not yet been fully understood in the multi-agent setup.
In this paper, we pose the problem of multi-agent reinforcement learning as the
problem of performing inference in a particular graphical model. We model the
environment, as seen by each of the agents, using separate but related Markov de-
cision processes. We derive a practical off-policy maximum-entropy actor-critic
algorithm that we call Multi-agent Soft Actor-Critic (MA-SAC) for performing ap-
proximate inference in the proposed model using variational inference. MA-SAC
can be employed in both cooperative and competitive settings. Through exper-
iments, we demonstrate that MA-SAC outperforms a strong baseline on several
multi-agent scenarios. While MA-SAC is one resultant multi-agent RL algorithm
that can be derived from the proposed probabilistic framework, our work provides
a unified view of maximum-entropy algorithms in the multi-agent setting.

1 INTRODUCTION

The traditional reinforcement learning (RL) paradigm, that formalizes learning based on trial and
error, has primarily been developed for scenarios where a single trainable agent is learning in an
environment. In this setup, although the agent changes its behavior as learning progresses, the
environment dynamics themselves do not change. Thus, the environment appears to be stationary
from the point of view of the learning agent. However, in a setting where several agents are learning
in the same environment simultaneously (multi-agent setting), this is not true as a change in one
agent’s behavior manifests itself as a change in environment dynamics from the point of view of
other agents (Busoniu et al., 2008). It has been established that stability issues can arise if each
agent is independently trained using standard single-agent RL methods (Tan, 1993).

While, in theory, it is possible to treat a collection of multiple agents as a single centralized meta-
agent to be trained, in practice, this approach becomes infeasible as the action space of the central-
ized meta-agent grows exponentially with the number of agents. Moreover, executing the resultant
centralized policy is not always possible due to various reasons like geographic separation between
agents, communication overhead and so on (Foerster et al., 2018b). Even if these issues are taken
care of, when the agents are competitive, designing a reward function for the centralized meta-agent
is very challenging and thus, in general, such a setup cannot be used with competitive agents.

There are numerous practical scenarios that require several intelligent agents to function together
(either cooperatively or competitively). Consider, for instance, a soccer game between two teams:
agents within a team must cooperate while being competitive with the opponents. Considering
that traditional single-agent RL methods cannot satisfactorily handle problems from the multi-agent
domain, completely new RL algorithms that explicitly acknowledge and exploit the presence of
other intelligent agents in the environment are required.

In this paper, we pose the multi-agent reinforcement learning problem as the problem of performing
probabilistic inference in a particular graphical model. While such a formulation is well known
in the single-agent RL setting (Levine, 2018), its extension to the multi-agent setup is non-trivial
especially in the general case where the agents may be cooperative and/or competitive. We model
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the environment as seen by each of the agents using separate but related Markov Decision Processes
(MDPs). Each agent then tries to maximize the expected return it gets from the environment under
its own MDP (Section 4).

Using our framework, we derive an off-policy maximum entropy actor-critic algorithm that general-
izes the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018a) to a multi-agent setup. We refer
to this algorithm as Multi-agent Soft Actor-Critic (MA-SAC). Like SAC, it is a maximum entropy
algorithm, i.e., the learned policies try to maximize the rewards while at the same time maximizing
entropy of the stochastic actor. Such algorithms are known to be more stable and easier to train
(Haarnoja et al., 2018a).

MA-SAC follows the centralized training, decentralized execution paradigm. As we demonstrate
in Section 4, each agent learns its own policy while being actively aware of the presence of other
agents. The learned policy of any given agent only utilizes its local observation at test time. Thus,
MA-SAC avoids the pitfalls of both independent training of agents (being unaware of other agents
leads to non-stationarity and hence instability) and training a centralized agent (centralized policies
are hard to execute) as described above.

By setting a tunable temperature parameter (Section 4.3) to zero, MA-SAC yields an algorithm
that is very similar to the Multi-agent Deep Deterministic Policy Gradients algorithm (MADDPG)
(Lowe et al., 2017) apart from a minor change in updating the actor. The utility of this modification
is clearly reflected in our derivation of the inference procedure. When the temperature parameter
is non-zero, agents trained using MA-SAC outperform agents trained using MADDPG on multiple
cooperative and competitive tasks as we demonstrate in Section 5.3.

Our main contributions are: (i) we present a probabilistic view of the multi-agent reinforcement
learning problem where each agent models the environment using a separate but related MDP; (ii)
we derive an off-policy maximum entropy actor-critic algorithm (MA-SAC) by performing struc-
tured variational inference in the proposed model; (iii) we empirically demonstrate that MA-SAC
performs well in practice and highlight different ways in which our framework can utilize ideas
from other existing approaches in multi-agent RL; and (iv) although we only present an actor-critic
algorithm in this paper, our framework allows derivation of maximum-entropy variants of other
reinforcement learning algorithms in the multi-agent setting.

2 RELATED WORK

In recent years, RL has made significant progress in complicated domains such as game playing
(Mnih et al., 2015; Silver et al., 2016) and robotics (Levine et al., 2016) to name a few. Inspired by
these successes, researchers have tried independently training all agents in a multi-agent setup using
single-agent RL algorithms as in the case of independent Q-learning (Tan, 1993) and independent
deep Q-learning (Tampuu et al., 2017). However, as discussed in Section 1, such an approach does
not perform well in practice. Recently, Foerster et al. (2018a) have proposed a modification to
independent Q-learning in an attempt to stabilize the training process.

To deal with non-stationarity, agents need additional information to explain the changes in their
environment. Existing approaches exploit either (i) multi-agent communication or (ii) centralized
training of decentralized policies to provide the required additional information to agents. In com-
munication based approaches (Sukhbaatar et al., 2016; Foerster et al., 2016; Lazaridou et al., 2017;
Cao et al., 2018), agents use an emergent language to jointly execute a task. Such approaches require
communication between agents even after the training is over. This needs additional computational
resources and communication infrastructure which limits the applicability of these methods.

The centralized training and decentralized execution paradigm can be thought of as learning with the
help of a coach that coordinates activities while training. Once the training process is over, agents
can independently take decisions based on their local observations (Gupta et al., 2017). These ap-
proaches learn centralized critic(s) for all agents along with decentalized policies. While some ap-
proaches only support cooperative agents (Sunehag et al., 2018; Foerster et al., 2018b; Rashid et al.,
2018; de Witt et al., 2018) others support competitive agents as well (He et al., 2016; Lowe et al.,
2017; Iqbal & Sha, 2019). MA-SAC follows the centralized training and decentralized execution
paradigm and it supports both cooperative and competitive agents.
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MA-SAC is a maximum-entropy based algorithm. In the single-agent RL literature, maximum-
entropy variant of many standard RL algorithms have been proposed like soft-Q-learning (Haarnoja
et al., 2017) and soft-actor-critic (Haarnoja et al., 2018a). These algorithms are derived by casting
the problem of learning optimal behavior as an inference problem in an appropriate graphical model
(Levine, 2018). This not only provides a different perspective on the control problem, it leads to
algorithms that are more stable and easier to train (Haarnoja et al., 2018a). A multi-agent variant of
soft-Q-learning exists (Wei et al., 2018), but it is only applicable in cooperative environments. Note
that MA-SAC is just one of the algorithms that can be derived using our proposed framework. As
in the case of single-agent reinforcement learning, in the multi-agent setup as well, one can derive
maximum entropy variants of other algorithms based on our proposed probabilistic model.

Most relevant to our work is the multi-agent variant of DDPG (Lillicrap et al., 2016) algorithm
(called MADDPG) that has been proposed in Lowe et al. (2017). MADDPG is based on an actor-
critic framework where each agent has its own centralized critic. In Section 4.3, we show that we
recover an algorithm that is very similar to MADDPG by setting a tunable temperature parameter
used in MA-SAC to zero. In Section 5, we show that MA-SAC outperforms MADDPG on several
tasks.

If one ignores the attention mechanism proposed in Iqbal & Sha (2019), the resultant algorithm
is equivalent to MA-SAC. While the main contribution in Iqbal & Sha (2019) is an improvement
in scalability of MADDPG using an attention based mechanism in the critic, it is mostly heuristic
based and a principled derivation of the algorithm is missing. On the other hand, we provide a
unified probabilistic framework for multi-agent RL and use it to derive MA-SAC.

3 NOTATION AND PRELIMINARIES

A Markov Decision Process (MDP), specified by the tuple (S,A, p, r, γ), models an environment
with a single trainable agent (Sutton & Barto, 2018). Here, S is the set of states, A is the set of
actions, p : S × A → ∆(S) specifies environment dynamics, r : S × A → R is the reward
function and γ ∈ [0, 1] is the discount factor. We use ∆(S) to denote the set of all probability
distributions over set S. A Markov Game (MG) generalizes MDPs to support multiple agents in the
environment and is specified by the tuple (S, {Ai}ni=1, p, {ri}ni=1, γ) (Littman, 1994). Here, n is the
number of agents in the environment. Symbols S and γ have the same meaning as before. Ai and
ri : S × A1 × · · · × An → R respectively denote the action space and reward function of agent i.
The transition probability function, p : S×A1×· · ·×An → ∆(S), now considers the actions taken
by all agents. The same holds for the reward functions r1, r2, . . . , rn. In practical cases, it is also
common to assume that each agent can only observe a part of the environment. Let Oi denote the
observation space of agent i, then, a function fi : S→ Oi computes the observation of agent i from
the environment state S.

Note that both MDP and MG simply specify the evolution of environment in response to the behavior
of agent(s), and as such, they do not encode any notion of optimal behavior. An agent formulates
its own notion of optimality which it strives to achieve by modulating its policy π : S → ∆(A)
where, as before, ∆(A) is the set of all probability distributions over the set of actions A. If there
are multiple agents, we use πi : S → ∆(Ai) to denote the policy followed by agent i. When the
environment is partially observable, the policy of an agent can only take its local observation as
input and hence πi : Oi → ∆(Ai).

In single-agent RL, the agent often solves the following optimization problem (either exactly or
approximately) to learn optimal behavior:

J(π) = max
π

Eπ
[ T∑

t=0

r(s(t),a(t))
]
. (1)

The agent acts in the environment only for a finite number of time steps T (a finite horizon problem).
The state and action at time t are given by s(t) ∈ S and a(t) ∈ A respectively. The agent uses its
stationary policy to choose an action a(t) ∼ π(·|s(t)) at each time step. In MARL setting, different
agents may have different reward functions. Moreover, because agents act simultaneously in the
same environment, the optimal behavior of an agent now depends on the behavior of other agents.
The notion of a best response policy of an agent becomes important in this setup. Each agent wants
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to maximize its own expected sum of rewards but has to do so in the context of the policies being
followed by other agents.

4 THE PROPOSED MODEL

4.1 MDP FOR EACH AGENT

We use probabilistic graphical models to formalize the idea of a best response strategy. Note that
from the perspective of each agent, all the other agents are part of the environment. Thus, we
model the world, as seen by each of the agents, as a separate MDP. The MDP for ith agent is
depicted in Figure 1. For now, let us ignore the variables o(t)

i and all arrows connected to them for
t = 1, 2, . . . , T . We will use these variables while deriving MA-SAC in the next two sections. For
agent j 6= i, let a(t)j ∼ πj(· | s(t)) where πj is the policy being followed by agent j. As these
policies are part of the environment from the perspective of agent i, they have been encoded into
the graphical model in Figure 1. In this MDP, the probability of transitioning from state s(t) to state
s(t+1) is given by:

p(s(t+1) | s(t),a(t)i ) =

∫
a
(t)
−i

p(s(t+1) | s(t),a(t)i ,a
(t)
−i)
∏
j 6=i

πj(a
(t)
j | s

(t)) da
(t)
−i . (2)

Here, a(t)−i represents the actions taken by all agents except agent i at time t. The first term inside in-
tegral in equation 2 is the transition function of underlying Markov game. The term on left hand side
is the transition function of MDP for agent i. As other agents learn along with agent i, their policy
πj changes and hence, from the perspective of agent i, the environment dynamics are non-stationary.
Thus, one cannot satisfactorily use standard single-agent RL algorithms to train each agent indepen-
dently. In Fig 1, we have enclosed the actions of all agents j 6= i and the environment state s(t) in
a box to indicate that all these variables are part of the environment from the perspective of agent i.

Figure 1: Augmented graphical model of MDP for agent i.
Symbol o(t)

i denotes the optimality variable for agent i at
time t.

In addition to observing the current
state s(t), if agent i is also allowed
to observe the actions taken by all
other agents a

(t)
j , then the state tran-

sition dynamics can be specified by
using a stationary transition function
(the first term inside the integral in
equation 2). This motivates central-
ized training of agents, where they
are allowed to use this additional in-
formation so that the environment ap-
pears stationary to them, hence aid-
ing in the learning process. Al-
though the agents learn in a central-
ized fashion, we will see in the next
two sections that the learned policies
are completely decentralized, thereby
avoiding any communication over-
head during the execution of policies.

4.2 FINDING OPTIMAL POLICIES

As discussed earlier, MDPs them-
selves do not encode a notion of opti-
mality. Hence, in Figure 1 we have
augmented the graphical model of
MDP for agent i with additional optimality variables o(t)i , t = 1, 2, . . . , T . Binary random vari-
ables o(t)

i indicate the optimality of action taken by agent i at time t. Following (Levine, 2018), we
assume that ri(s(t),a(t)) ≤ 0 (this can be assumed without loss of generality for bounded reward
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functions) and model the optimality variables as:

p(o(t)i = 1 | s(t),a(t)) = exp
(
ri(s

(t),a(t))
)
. (3)

Here a(t) = [a
(t)
1 ,a

(t)
2 , . . . ,a

(t)
n ] represents the joint action that has been taken by all agents. One

way to find the optimal policy is by setting π
(t)
i (a

(t)
i | s(t),a

(t)
−i) = p(a

(t)
i | s(t),a

(t)
−i, o

(t:T )
i = 1)

(Levine, 2018). Note that it is enough to condition on ot
′

i for t
′

= t, t + 1, . . . , T as the action at
time t is independent of ot

′

i for t
′
< t given s(t) and a

(t)
−i. This policy is not stationary. Further,

it relies on actions taken by other agents a
(t)
−i and hence is neither decentralized, nor practical to

execute if all agents use a similar policy simultaneously. It is also known that such a policy is risk
seeking in the sense that it always assumes the best case scenario and may choose to execute actions
that will most likely lead to a bad outcome but may yield high reward infrequently due to unlikely
state transitions (Levine, 2018). In real world, one has no control over environment dynamics and
hence such risk seeking policies are undesirable.

To solve these issues, we use structured variational inference. We want to approximate the posterior
distribution over trajectories τ = {s(t),a(t)}Tt=0 conditioned on all optimality variables for agent i
being one. However, we want the posterior to stay faithful to the environment dynamics to avoid risk
seeking behavior. As the environment dynamics are fixed, optimal policies can be easily recovered
from this posterior because of the structure of the approximating distribution (given in equation 4).
We approximate the posterior over τ using the following distribution:

qθi({s(t),a(t)}Tt=0) = p(s(0))
( T∏

t=0

n∏
j=1

πj(a
(t)
j | s

(t))
)( T−1∏

t=0

p(s(t+1) | s(t),a(t))
)
. (4)

We assume that the policy of agent j, i.e., πj , is parameterized by θj ∈ Rd. To avoid notational
clutter we suppress θj and write πj(a

(t)
j | s(t)), instead of πj(a

(t)
j | s(t);θj).

There are two important features of this approximate posterior: (i) it uses the same model of en-
vironment dynamics as the underlying Markov game, and (ii) it assumes that agents take actions
independently of each other. Because of (i), the learned policies would not be risk seeking and,
because of (ii), they can be executed in a decentralized fashion. Also, note that while considering
the MDP for agent i given in Figure 1, θi is the only parameter that can be adapted to bring the
approximate posterior close to the true posterior. The parameters of all other policies are assumed
to be constant.

Following the usual variational inference procedure (Blei et al., 2017), we write the expression for
ELBO using the joint distribution p(τ , {o(t)i = 1}Tt=0) and the approximate posterior distribution
given in equation 4:

ELBOi(θi) = Eτ∼qθi
[

log p(τ , {o(t)i = 1}Tt=0)− log qθi(τ )
]

= Eτ∼qθi
[ T∑
t=0

log p(a
(t)
i ) +

T∑
t=0

ri(s
(t),a(t))−

T∑
t=0

logπi(a
(t)
i | s

(t))]

= Eτ∼qθi
[ T∑
t=0

ri(s
(t),a(t))−

T∑
t=0

logπi(a
(t)
i | s

(t))] + const. (5)

We assume that the prior distribution over actions is uniform, hence log p(a
(t)
i ) term has been ab-

sorbed in the constant in equation 5. Next, we derive MA-SAC that maximizes ELBOi for all agents
in an actor-critic framework.

4.3 MULTI-AGENT SOFT ACTOR-CRITIC

Although one can directly optimize ELBOi over θi for all agents i using the REINFORCE gradient
estimation trick (Williams, 1992), training agents in this way is hard due to high variance in the
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gradient estimates. Thus, we cast the problem in an actor-critic framework. Define the function
Qi(s

(t),a(t)) as:

Qi(s
(t),a(t)) = ri(s

(t),a(t)) + Es(t+1)∼p

[
Ea(t+1)∼π

[
ri(s

(t+1),a(t+1))−

logπi(a
(t+1)
i | s(t+1)) + Es(t+2)∼p

[
Ea(t+2)∼π

[
. . .
]]]

. . .
]
. (6)

Here, p is the transition function of Markov game and, with slight overloading of notation, we
have assumed that π is a product distribution where each of the individual factors are given by πj ,
j = 1, 2, . . . , n. One can recursively write Qi(s

(t),a(t)) as:

Qi(s
(t),a(t)) = ri(s

(t),a(t)) + Es(t+1)∼p

[
Ea(t+1)∼π

[
Qi(s

(t+1),a(t+1))− logπi(a
(t+1)
i | s(t+1))

]]
.

(7)

If the logπi term were not there in equation 7, Qi(s
(t),a(t)) could have been interpreted as mea-

suring the expected reward-to-go for agent i when all agents start in state s(t), take action a(t) and
thereafter follow the joint policy π. This aligns with the commonly used notion of Q function in
RL. Note that we have a separate Q function for each agent i. Qi uses actions of all agents at time t,
i.e., a(t) as input, as opposed to just using the action of agent i because the actions of all agents are
needed to sample the next state s(t+1) from p.

The logπi term can be seen as an augmentation of the agent’s reward function that increases the
value of received rewards when the agent follows a policy with high entropy. We parameterize the
function Qi using φi ∈ RdQ . Using equation 7, φi can be optimized by minimizing the following
error:

EQi(φi) =E(s(t),a(t))∼D

[(
Qi(s

(t),a(t))− Q̄i(s
(t),a(t))

)2]
, (8)

where, D is the replay buffer. We use equation 7 to compute Qi(s
(t),a(t)) using one-step looka-

head. Q̄i(s
(t),a(t)) refers to the value of Qi under the current parameters φi. The lookahead term

Qi(s
(t+1),a(t+1)) appearing in equation 7 is also computed using the current value of parameters

φi. Both Q̄i(s
(t),a(t)) and Qi(s

(t+1),a(t+1)) are treated as constants while optimizing equation 8
over φi. In practice, all expectations are approximately evaluated by taking samples from the cor-
responding distributions. While we sample a fixed size batch of examples from D, only one sample
from p and π is used to approximate equation 7. Also, note that we need a centralized training setup
because computation of EQi requires the ability to sample from policies of all agents.

This Qi estimate can now be used to find θi that maximizes ELBO in equation 5. To optimize
the policy of agent i for choosing the correct action at time t, we have to maximize the term in
nested expectation in equation 5 where action a

(t)
i is sampled. Thus, the objective (to be minimized)

becomes:
Eπi

(θi) = −Es(t)∼D

[
Ea(t)∼π

[
Qi(s

(t),a(t))− logπi(a
(t)
i | s

(t))
]]
. (9)

We approximate the above expectation using samples. Gradients can either be computed using RE-
INFORCE (Williams, 1992) or, if the policy permits, a reparameterization can be used to get lower
variance gradient estimates. Algorithm 1 summarizes MA-SAC. In MADDPG, during optimization
of equation 9, only actions of agent i are sampled rather than sampling actions of all agents.

In practice, a temperature parameter αi ∈ R+ is multiplied to the logπi term in equation 7 and equa-
tion 9 to assign relative importance to entropy and reward maximization (Haarnoja et al., 2018a).
Although there are methods for automatically selecting an approriate value of αi (Haarnoja et al.,
2018b), in all our experiments we treat it as a user specified hyperparameter.

Another important quantity that must be incorporated in equation 7 is the discount factor γ. One
way to think about discounting in the probabilistic framework is by considering the possibility that
an agent can die with probability 1 − γ at each time step and enter an absorbing state in which all
subsequent rewards will be 0. The transition probability of going to a non-absorbing state now gets
multiplied by γ and hence γ should be multiplied to the expectation term in equation 7 to incorporate
discounted rewards. We do this in all our experiments.

6



Under review as a conference paper at ICLR 2020

We parameterize agent policies and Q functions using neural networks. To improve learning sta-
bility, we also use target policy and Q function networks. Additionally, each of our Q function
network consists of a pair of twin sub-networks and the minimum of the value produced by these
sub-networks in a pair is taken as the output Q value (Fujimoto et al., 2018).

5 EXPERIMENTS

5.1 ENVIRONMENTS

Algorithm 1 Multi-agent Soft-Actor-Critic

Initialize parameters {θi, θ̄i,φi, φ̄i}ni=1
for each iteration do

for each environment step do
a
(t)
i ∼ πi(a

(t)
i | s(t)), for i = 1, 2, . . . , n

s(t+1) ∼ p(s(t+1) | s(t),a(t))
D ← D ∪ {(s(t), {a(t)i , ri(s

(t),a(t))}ni=1, s
(t+1))}

end for
for each gradient step do
θi ← θi − λπ∇θiEπi

, i = 1, 2, . . . , n
φi ← φi − λQ∇φi

EQi
, i = 1, 2, . . . , n

θ̄i ← τθi − (1− τ)θ̄i, i = 1, 2, . . . , n
φ̄i ← τφi − (1− τ)φ̄i, i = 1, 2, . . . , n

end for
end for

We use the multi-agent environments
proposed in Lowe et al. (2017) to per-
form our experiments. These envi-
ronments are built on the grounded
communication framework that was
proposed in Mordatch & Abbeel
(2018). Each environment has a cer-
tain number of agents and landmarks.
At each step, each agent observes a
part of the global environment state
and chooses an action from its dis-
crete action space. In certain environ-
ments, the agents also have the abil-
ity to communicate with each other.
In such cases, in addition to choosing a physical action, the agents also choose a communication
action. The resultant communication message generated by an agent (represented as a one-hot en-
coded vector) is then broadcasted to all other agents where it becomes part of their observation in
the next time step. Upon taking an action, each agent receives a reward from the environment which
may potentially be distinct for different agents. Thus, based on the reward structure, the agents
can be cooperative or competitive. We briefly describe the environments that we have used in our
experiments here. For more details see Lowe et al. (2017).

Cooperative navigation: There are n agents and n landmarks in this environment. All agents
get the same reward. This reward is calculated based on the distance of closest agent from each
landmark. Additionally, agents occupy physical space and are penalized for colliding with each
other. The optimal solution for agents is to spread out and cover all the landmarks simultaneously
such that each landmark has an agent ideally overlapping with its position. Since everyone gets the
same reward, this task requires cooperation among all agents. We use n = 3 in our experiments
with this environment.

Cooperative communication: There are 3 landmarks, each colored differently. An agent (called
listener) is rewarded based on its distance from the target landmark of a chosen color, however, it
is unaware of this choice of color. A different immobile agent (called speaker) knows the color of
target landmark. The speaker can only take communication actions and the listener can only take
physical actions. The speaker receives the same reward as the listener and hence it must coopera-
tively communicate with the listener to transmit information about the color of target landmark.

Predator-prey: This environment mimics the classic predator-prey game where k slower cooper-
ating agents chase a faster adversary. All cooperating agents get a positive reward each time any
of them collides with an adversary while the adversary gets a negative reward. This is a mixed
cooperative-competitive environment where the k cooperating agents compete with the adversary.
We use k = 3.

Physical deception: There is one adversary and two cooperating agents in the environment. The
environment also has two landmarks one of which is the target landmark. While the cooperating
agents know which one is the target landmark, the adversary does not have this information. All
agents want to reach the target landmark. The cooperating agents are rewarded based on minimum
distance between target landmark and any of the cooperative agents. They are penalized based on
distance between adversary and target landmark. Adversary gets rewarded for being close to the
target landmark. The cooperative agents must go to both the landmarks so that the adversary is
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unable to identify the target landmark based on the behavior of cooperative agents. This is again a
mixed cooperative-competitive setting.

5.2 HYPERPARAMETERS AND OTHER IMPLEMENTATION DETAILS

We parameterize the Q functions Q1, Q2, . . . , Qn and agent policies π1,π2, . . . ,πn using fully
connected neural networks. All networks have two hidden layers having 128 units each. The hid-
den layers use ReLU activation function. We use Adam optimizer (Kingma & Ba, 2015) with
learning rate 0.01. Following Lowe et al. (2017), we use Gumbel-Softmax (Jang et al., 2017) to
approximate discrete sampling of actions in the policy networks (inverse temperature parameter of
Gumbel-Softmax distribution was fixed to 1). We also use target policy and Q networks. Target
network parameters are exponentially moving averages of the corresponding policy or Q network
parameters. We update the target networks with each gradient step. For all experiments, we set
τ = 0.01 (in Algorithm 1) to compute the exponential average. For all environments, we train for
15000 episodes, each of length 25. One gradient step is taken after every 100 environment steps. We
use a replay buffer of size 106 which is populated in a round-robin fashion. A randomly sampled
batch of 1024 examples from replay buffer is used for each gradient step. The value of αi is empir-
ically tuned separately for each environment. We use the following values: cooperative navigation:
0.02, cooperative communication: 0.005, predator-prey: 0.26 and physical deception: 0.01. These
values were found using grid search. We use the same value of αi for all cooperating agents in an
environment. The value of discount γ was set to 0.95 in all experiments.

5.3 COMPARISON WITH MADDPG

(a) Cooperative navigation (b) Cooperative communication

(c) Predator-prey (d) Physical deception

Figure 2: Comparison of MA-SAC (our approach) with MADDPG (Lowe et al., 2017). The tem-
perature values used by MA-SAC controlled agents for each environment are given in Section 5.2.
It can be seen that MA-SAC controlled agents outperform MADDPG controlled agents on majority
of the tasks.
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We chose to compare with the MADDPG algorithm (Lowe et al., 2017) for two reasons: (i) MA-
SAC is closely related to MADDPG and a comparison with MADDPG allows us to demonstrate that
the changes incorporated in MA-SAC do lead to better performance; and (ii) it was demonstrated in
Lowe et al. (2017) that MADDPG outperforms state-of-the-art single agent reinforcement learning
algorithms like DDPG (Lillicrap et al., 2016), TRPO (Schulman et al., 2015), DQN Mnih et al.
(2015) and so on and thus it is a strong baseline.

Figure 2 shows the comparison between rewards obtained by MADDPG controlled agents and MA-
SAC controlled agents on different environments. To obtain these plots, we executed the most recent
learned policy at the time after every 100 episodes. The rewards were averaged over 100 independent
episodes. Before testing, the policies were first converted into deterministic policies that select the
most probable action. The entire process was independently repeated 5 times with different random
seeds. The mean and standard deviation have been plotted in Figure 2.

For cooperative navigation and communication tasks, both agents were controlled by the same al-
gorithm. For predator-prey and physical deception tasks, agents that compete with each other were
controlled by different algorithms. For example, in Figure 2c, the red curve corresponds to a setting
where the three cooperative agents are controlled by MA-SAC whereas the adversary is controlled
by MADDPG. It can be seen that MA-SAC performs at least at par with MADDPG on all tasks and
outperforms it on majority of the tasks.

5.4 OTHER REMARKS

The temperature parameter αi plays an important role in determining the performance of MA-SAC.
The logπi term in equation 9 augments the Q-function based on uncertainty of policy πi in state
s(t). A very high value of αi leads to policies that maximize entropy (i.e. behave randomly) and
ignore the rewards obtained from the environment. At very low value of αi, the learned policies do
not exhibit sufficient entropy and hence are susceptible to getting trapped in a local optima. Based
on the scale of rewards obtained from the environment, the value of αi must be tuned for achieving
optimal performance. One can alternatively try to automatically tune αi using techniques presented
in (Haarnoja et al., 2018b), however, we leave these experiments for future work.

MA-SAC produces stochastic policies. Such policies are preferred during training as they are easier
to train (Haarnoja et al., 2018a). Moreover, we believe that training with/against an agent that uses
a stochastic policy would result in a more robust policy as it would have the same effect as training
with an ensemble of deterministic policies as done in (Lowe et al., 2017). Once trained, it is often
better to convert these stochastic policies to their deterministic counterparts to improve performance.
This is in the same spirit as turning off ε-greedy exploration during test time while performing Q-
learning. As noted in Section 5.3, we follow this practice in our experiments.

Scaling efficiently as the number of agents increases is a common challenge associated with cen-
tralized training. In particular, the complexity of networks modeling Qi increases with the number
of agents. A number of approaches have been proposed to parameterize the Q network in various
ways to improve scalability in certain settings (Yang et al., 2018; Rashid et al., 2018; Iqbal & Sha,
2019). For example, Yang et al. (2018) train each agent to play against the average opponent which
allows training with hundreds of agents. These alternative parameterizations of Qi can naturally be
integrated with MA-SAC. Finally, centralized training can still be done without access to policies
of other agents as long as their actions are observable. To do so, Lowe et al. (2017) propose that
each agent can train a local approximation to all opponents’ policies in a supervised manner using
their observed actions. This again can be used with MA-SAC. We leave detailed experiments in this
direction for future work.

6 CONCLUSION

In this paper we posed the multi-agent RL problem as the problem of performing probabilistic infer-
ence in a graphical model where each agent views the environment as a separate MDP. We derived an
off policy maximum entropy actor-critic algorithm based on the centralized training, decentralized
execution paradigm using our proposed model. Our experimental results show that the proposed al-
gorithm outperforms a strong baseline (MADDPG) on several cooperative and competitive tasks. As
noted in Section 5.4, various existing ideas for parameterizingQ-functions (Yang et al., 2018; Rashid
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et al., 2018; Iqbal & Sha, 2019) can be naturally integrated with MA-SAC to improve its scalability
as the number of agents increases. Our framework can also be used for deriving maximum-entropy
variants of other RL algorithms in the multi-agent setting. We leave these ideas for future work.
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