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ABSTRACT

For typical sequence prediction problems such as language generation, maximum
likelihood estimation (MLE) has commonly been adopted as it encourages the
predicted sequence most consistent with the ground-truth sequence to have the
highest probability of occurring. However, MLE focuses on once-to-all match-
ing between the predicted sequence and gold-standard, consequently treating all
incorrect predictions as being equally incorrect. We refer to this drawback as neg-
ative diversity ignorance in this paper. Treating all incorrect predictions as equal
unfairly downplays the nuance of these sequences’ detailed token-wise structure.
To counteract this, we augment the MLE loss by introducing an extra Kullback–
Leibler divergence term derived by comparing a data-dependent Gaussian prior
and the detailed training prediction. The proposed data-dependent Gaussian prior
objective (D2GPo) is defined over a prior topological order of tokens and is poles
apart from the data-independent Gaussian prior (L2 regularization) commonly
adopted in smoothing the training of MLE. Experimental results show that the
proposed method makes effective use of a more detailed prior in the data and has
improved performance in typical language generation tasks, including supervised
and unsupervised machine translation, text summarization, storytelling, and image
captioning.

1 INTRODUCTION

Language understanding is the crown jewel of artificial intelligence. As the well-known dictum by
Richard Feynman states, “what I cannot create, I do not understand.” Language generation there-
fore reflects the level of development of language understanding. Language generation models have
seen remarkable advances in recent years, especially with the rapid development of deep neural net-
works (DNNs). There are several models typically used in language generation, namely sequence-
to-sequence (seq2seq) models (Kalchbrenner & Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015; Vaswani et al., 2017), generative adversarial networks (GANs)
(Goodfellow et al., 2014), variational autoencoders (Kingma & Welling, 2013), and auto-regressive
networks (Larochelle & Murray, 2011; Van Oord et al., 2016). Language generation is usually
modeled as a sequence prediction task, which adopts maximum likelihood estimation (MLE) as the
standard training criterion (i.e., objective). MLE has had much success owing to its intuitiveness
and flexibility. However, sequence prediction has encountered the following series of problems due
to MLE.
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• Exposure bias: The model is not exposed to the full range of errors during training.
• Loss mismatch: During training, we maximize the log-likelihood, whereas, during infer-

ence, the model is evaluated by a different metric such as BLEU or ROUGE.
• Generation diversity: The generations are dull, generic (Sordoni et al., 2015; Serban et al.,

2016; Li et al., 2016a), repetitive, and short-sighted (Li et al., 2016b).
• Negative diversity ignorance: MLE fails to assign proper scores to different incorrect model

outputs, which means that all incorrect outputs are treated equally during training.

A variety of work has alleviated the above MLE training shortcomings apart from negative diversity
ignorance. Negative diversity ignorance is a result of unfairly downplaying the nuance of sequences’
detailed token-wise structure. When the MLE objective compares its predicted and ground-truth
sequences, it takes a once-for-all matching strategy; the predicted sequence is given a binary label,
either correct or incorrect. However, these incorrect training predictions may be quite diverse and
letting the model be aware of which incorrect predictions are more incorrect or less incorrect than
others may more effectively guide model training. For instance, an armchair might be mistaken
with a deckchair, but it should usually not be mistaken for a mushroom.

To alleviate the issue of the negative diversity ignorance, we add an extra Gaussian prior objec-
tive to augment the current MLE training with an extra Kullback–Leibler divergence loss term.
The extra loss is computed by comparing two probability distributions, the first of which is from
the detailed model training prediction and the second of which is from a ground-truth token-wise
distribution and is defined as a kind of data-dependent Gaussian prior distribution. The proposed
data-dependent Gaussian prior objective (D2GPo) is then injected into the final loss through a KL
divergence term. The D2GPo is poles apart from the commonly adopted data-independent Gaussian
prior (L2 regularization) for the purpose of smoothing the training of MLE, which is also directly
added into the MLE loss. Experimental results show that the proposed method makes effectively
use of a more detailed prior in the data and improves the performance of typical language generation
tasks, including supervised and unsupervised machine translation, text summarization, storytelling,
and image captioning.

2 RELATED WORK

Natural language generation (NLG) has long been considered the most challenging natural language
processing (NLP) task (Murty & Kabadi, 1987). NLG techniques have been widely adopted as a crit-
ical module in various tasks, including control-free sentence or poem generation (Zhang & Lapata,
2014) and input-conditioned language generation, such as machine translation, image captioning,
text summarization, storytelling (Vaswani et al., 2017; Lample et al., 2018; Karpathy & Fei-Fei,
2015; Fan et al., 2018), and sentiment/tense-controlled sentence generation (Hu et al., 2017). In this
work, we focus on input-conditioned language generation tasks, though our proposed method can
also be applied to other language generation fields.

Input-conditioned language generation tasks are challenging because there is an information imbal-
ance between the input and output in these tasks, especially for cases with non-text input (Shapiro,
1992). Reiter & Dale (2000) discussed different ways of building complicated knowledge-based
systems for NLG. In recent years, neural networks (NNs), especially DNNs, have shown promising
results in many NLP tasks. Bengio et al. (2003) first proposed the NN language model (NNLM) to
exploit the advantages of NNs for language generation tasks. In an NNLM, the n-gram paradigm is
extended by the generalization ability of NNs.

Given the ground truth sequence s = 〈w1, w2, ..., wt−1〉, the NNLM adopts the equation

pt ≈ p(wt|wt−n, wt−n+1, ..., wt−1). (1)

Mikolov et al. (2010) developed a more general implementation for a language model (called the
recurrent NN language model (RNNLM) by integrating a Markov property using a recurrent NN
(RNN) to address the NNLMs’ theoretical inability to capture long-term dependencies:

pt ≈ p(wt|RNN(w1, w2, ..., wt−1)). (2)

The RNNLM is an effective solution because it is designed to capture long-term dependencies. Be-
cause of the vanishing gradient problem in RNNs, however, the long-term dependency processing
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capability is limited. In contrast to an RNN, the Transformer (Vaswani et al., 2017) provides a new
self-attention mechanism for handling long-term dependencies in text, resulting in robust perfor-
mance across diverse tasks. Radford et al. (2018) proposed a Transformer language model called
GPT, which uses a left-to-right architecture, where each token pays attention to previous tokens in
the self-attention layers of the Transformer. Devlin et al. (2019) introduced a new pre-training ob-
jective: the masked language model (MLM), which enables the representation to fuse the left and
right contexts and allows us to pre-train a deep bidirectional Transformer called BERT.

The generators of the most current language generation model use the RNNLM or Transformer
language model structure. However, as pointed out by Bengio et al. (2015), fitting the distribu-
tion of observation data does not mean that satisfactory text will be generated, because the model
is not exposed to the full range of errors during training. This is called the exposure bias prob-
lem. Reinforcement learning, GANs (Goodfellow et al., 2014; Yu et al., 2017), and end-to-end
re-parameterization techniques (Kusner & Hernández-Lobato, 2016) have been proposed to solve
this problem. The exposure bias is no longer an issue in reinforcement learning models because the
training sequences are generated by the model itself.

Using MLE for the training objective leads to the problem of loss mismatch. Ranzato et al. (2015)
incorporated the evaluation metric into the training of sequence-to-sequence (seq2seq) models and
proposed the mixed incremental cross-entropy reinforce (MIXER) training strategy, which is similar
to the idea of minimum risk training (Smith & Eisner, 2006; Li & Eisner, 2009; Ayana et al., 2016;
Shen et al., 2016). MIXER uses decoder hidden states to predict the bias term and hence reduce
the variance, while minimum risk training renormalizes the predicted probabilities. Zhang & Zhao
(2018) introduced a new training criterion based on the Hellinger distance for the seq2seq model
and empirically compared the models of two optimization categories: minimum divergence and
maximum margin.

For the generation diversity problem, Serban et al. (2017) applied a latent variable hierarchical
encoder–decoder dialog model to introduce utterance-level variations and facilitate longer responses.
Zhao et al. (2017) presented a novel framework based on conditional variational autoencoders that
improves generation diversity by sampling a latent variable z and optionally adding linguistic fea-
tures to constrain the style further.

There is an increasing interest in incorporating problem field knowledge in machine learning ap-
proaches (Taskar et al., 2004; Ganchev et al., 2010; Hu et al., 2016). One common way is to de-
sign specialized network architectures or features for specific knowledge (e.g., Liang et al. (2017;
2018)). In contrast, for structured probabilistic models, posterior regularization and related frame-
works (Ganchev et al., 2010; Liang et al., 2009; Bellare et al., 2009) provide a general means to
impose knowledge constraints during model estimation. Hu et al. (2018) established a mathematical
correspondence between posterior regularization and reinforcement learning and, using this corre-
spondence, expanded posterior regularization to learn knowledge constraints as the extrinsic reward
in reinforcement learning. Our approach can be seen as incorporating a priori knowledge of the
language field into language generation learning.

Additionally, Welleck et al. (2019) proposed a new objective, unlikelihood training, which forces
unlikely generations to be assigned lower probability by the model. The difference is that (Welleck
et al., 2019) focuses on low-frequency words while our model focuses on negative tokens. It is
claimed that the likelihood objective itself is at fault, resulting in a model that assigns too much
probability to sequences containing repetition and frequent words, unlike those from the human
training distribution. From this point of view, there is a point in common with our motivation, which
is to make the model prediction consistent with human training distribution to some extent.

3 BACKGROUND

Consider a conditional probability model for sequence predictions y ∼ pθ(x) with parameters θ.
The target sequence y can be conditioned on any type of source x (e.g., a phrase, sentence, or
passage of human language or even an image), which is omitted for simplicity of notation. For the
sequence y = 〈y1, y2, ..., yl〉, the probability pθ(y|x) is

pθ(y|x) = pθ(y1|x)pθ(y2|x, y1)...pθ(yl|x, y1:l−1). (3)
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Commonly, sequence prediction models are trained using MLE (also known as teacher forcing)
(Williams & Zipser, 1989). MLE minimizes the negative log-likelihood of pθ(y|x):

LMLE(θ) = − log pθ(y|x) = −
l∑
i=1

log pθ(yi|x,y<i). (4)

Optimizing the MLE objective LMLE(θ) is straightforward and meets the principle of empirical risk
minimization while focusing on only minimizing losses of the correct target on the training data set.

However, there may be noise in the training data, and forcibly learning the distribution of a training
set does not enable the obtained model to reach good generalization. Additionally, for sequence
prediction, models trained subject to MLE cursorily evaluate all predictions as either correct or
incorrect and ignore the similarity between the correct and “less incorrect” predictions. Incorrect
predictions might range from nearly perfect (i.e., one token is mistaken with a synonym) to com-
pletely wrong, having nothing in common with the gold sequence. However, MLE training treats
all incorrect training predictions equally, which implies that MLE fails to accurately assign scores
to diverse (especially negative) model predictions.

4 D2GPO: DATA-DEPENDENT GAUSSIAN PRIOR OBJECTIVE

To capture the diversity of negative training predictions, we augment the MLE objective of the
model with an additional objective O that more accurately models such a negative diversity. With-
out loss of generality, supposing ỹ is the prediction candidate, we introduce a general evaluation
function f(ỹ,y) ∈ R independent of the model prediction, such that with a golden target token y∗,
a higher f(ỹ, y∗) value indicates a better pθ(ỹ|x) for a target candidate ỹ ∈ V (where V is the target
candidate set). Note that f(ỹ,y) can also involve other factors such as latent variables and extra
supervisions.

There are two main methods of learning f(ỹ,y) in the model. If pθ is a GAN-like implicit generative
model or an explicit distribution that can be efficiently reparametrized (e.g., Gaussian) (Kingma
& Welling, 2013), then one effective method is maximizing Epθ [f(ỹ,y)]. The other method is
computing the gradient ∇θEpθ [f(ỹ,y)] using the log-derivative trick that can suffer from high
variance but is often used for the large set of non-parameterizable explicit distributions.

Corresponding to the probability distribution of model predictions pθ(·), we define a prior distribu-
tion q(y) (for each target yi, it has its own unique distribution of qi = q(yi)) which is extracted and
derived from the ground-truth data (e.g., language text in language generation tasks). To guide the
probability distribution of model predictions pθ(·) to match the prior probability distributions q(·),
we adopt Kullback–Leibler divergence. Considering also the learning of the evaluation function
f(ỹ,y), the loss for objective O is calculated as

LO(θ, q) = KL(q(y)‖pθ(y|x))− αEq [f(ỹ,y)] , (5)

where α is a weight for the evaluation function learning term. We derive the prior distribution
q(y) from the ground-truth data (which is independent of model parameters θ), and therefore
Eq [f(ỹ,y)]=0. Hence, Eq. (5) becomes

LO(θ, q) = KL(q(y)‖pθ(y|x)), (6)

in which KL divergence can be expanded as

KL(q‖pθ) = Ep(log(
q

p
)) =

∑
i

qi ∗ log(qi)−
∑
i

qi ∗ log(pi). (7)

The final objective for learning the model is written as

minθ LMLE(θ) + λLO(θ, q), (8)

where λ is the balancing hyperparameter. Because optimizing the original model objective LMLE(θ)
is straightforward, in the following, we omit the discussion of LMLE(θ) and focus on the proposed
LO(θ, q).
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The prior probability distribution q(y∗) on y∗ can be obtained from the evaluation function f(·, ·)
with a softmax operation. To expose the mass of the distribution over the classes, Hinton et al. (2015)
introduced a softmax temperature mechanism; therefore, the relationship between q and f(ỹ,y) is

q(y∗) =
exp(f(ỹ, y∗)/T )∑
j exp(f(ỹj , y

∗)/T )
, (9)

where T is a temperature parameter. When T → 0, the distribution becomes a Kronecker distri-
bution (and is equivalent to a one-hot target vector); when T → +∞, the distribution becomes a
uniform distribution. The softmax operation always turns an evaluation function f(·, ·) into a form
of probability distribution no matter the form of the original f(·, ·); thus, we only focus on f(·, ·).
To find a good evaluation function, we have to mine token-wise diversity for all y∗. Considering
all token types ỹj in a vocabulary, with respect to each y∗, there exists a prior topological order
ORDER(y∗) among all the known tokens, in which y∗ is always ranked top priority. f(ỹj , y∗) can
then be defined as a monotonic function over the corresponding topological order so that it has a
maximal value only when the input is y∗ itself. Note that defining f(·, ·) in this way leads to the
resulting q also being monotonic over the corresponding topological order. Considering that q is a
priori, it is fixed throughout the learning process.

The remaining questions are about how to find a meaningful evaluation function f(·, ·) for the dis-
tribution q. In language generation tasks, we may conveniently take word embedding as the token
representation, and let the embedding distance determine such an order ORDER(y∗) for each y∗. In
this work, we adopt the cosine similarity of pre-trained embeddings to sort the token (word/subword)
order.

Discussion For the evaluation function f(·, ·) of q, we adopt the Gaussian probability density
function, though later we also present experimental results for other types of functions in an ab-
lation study. As the adopted Gaussian prior used in the training objective is derived from a data-
dependent token-wise distribution, we call it the data-dependent Gaussian prior objective (D2GPo).
This objective is a big departure from the Gaussian prior commonly adopted for smoothing in MLE
training (which we the data-independent Gaussian prior). The following briefly explains why we
chose the Gaussian probability density function and how our D2GPo mathematically differs from
the data-independent Gaussian prior.

The central limit theorem indicates that suitably standardized sums of independent random variables
have an approximately normal distribution. Thus, any random variable that arises as the sum of a
sufficiently large number of small random components can be modeled accurately using a normal
distribution. Embedding has a linear additive property (e.g., king - man + woman ≈ queen). The
additive property of embedding can be explained by inspecting the training objective (Mikolov et al.,
2013). Each dimension of an embedding represents a potential feature of the token. Considering
each potential feature as an independent random variable, the sum follows a Gaussian distribution
centered on the correct vocabulary unit y∗ according to the linear additive property. We can therefore
use a Gaussian distribution for the embedding-distance-determined order to effectively model the
distribution q(y∗). An overview of the concepts underlying D2GPo is illustrated in Appendix A.1.

The D2GPo in this paper is different from the data-independent Gaussian prior in machine learning
optimization theory. We hypothesize and experimentally verify that the embedding feature extracted
from the data obeys the Gaussian distribution. The distribution from the prior knowledge of language
data is used as a soft target to guide the model language generation process using knowledge distilla-
tion. The Gaussian prior in the machine learning optimization theory assumes that each component
in the parameter θ is subject to a zero-mean Gaussian prior distribution, which is equivalent to L2
regularization. In general, our Gaussian prior objective is to act on the guiding target probability,
while the Gaussian prior in machine learning is applied to the selection of model parameters.

5 EXPERIMENTS AND RESULTS

This section describes the experimental evaluation of D2GPo on a variety of typical language gen-
eration tasks: neural machine translation (NMT), text summarization, storytelling, and image cap-
tioning. The hyperparameters in D2GPo and effect analysis are given in Appendix A.7.
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5.1 EMBEDDING PRE-TRAINING

Our proposed D2GPo approach for experimental tasks requires either word embeddings or byte-
pair-encoding (BPE) (Sennrich et al., 2016b) subword embeddings. We generated the pretrained
embeddings using fastText (Bojanowski et al., 2017) with an embedding dimension of 512, a con-
text window of size 5, and 10 negative samples. For NMT, fastText was applied to the concatenation
of source and target language monolingual corpora, resulting in cross-lingual BPE subword embed-
ding. For text summarization, we generated BPE subword embedding only on the English monolin-
gual corpora, while for the storytelling and image captioning, we obtained the word embedding also
on the English monolingual corpora.

5.2 SUPERVISED NMT

We evaluated the model on several widely used translation tasks: WMT14 English-to-German (EN–
DE), English-to-French (EN–FR), and WMT16 English-to-Romanian (EN–RO)1 tasks, which all
have standard large-scale corpora for NMT evaluation. Owing to space limits, the data details are
provided in Appendix A.3. The sentences were encoded using sub-word types based on BPE, which
has a shared vocabulary of 40,000 sub-word units for all three tasks. We chose the Transformer
NMT (Vaswani et al., 2017) model as our baseline. For the hyperparameters of the Transformer
(base/big) models, we followed the settings used by Vaswani et al. (2017). The BLEU (Papineni
et al., 2002) score with multi-bleu.pl was calculated during the evaluation.

System EN–DE EN–FR EN–RO EN–RO + STD

Vaswani et al. (2017) (base) 27.30 38.10 - -
Vaswani et al. (2017) (big) 28.40 41.00 - -

Transformer (base) 27.35 38.44 33.22 36.68
+ D2GPo 27.93++ 39.23++ 34.00+ 37.11+

Transformer (big) 28.51 41.05 33.45 37.55
+ D2GPo 29.10+ 41.77++ 34.13+ 37.92+

Table 1: Comparison with baseline and existing systems on supervised translation tasks. Here,
“++/+” after the BLEU score indicates that the proposed method was significantly better than the
corresponding baseline Transformer (base or big) at significance levels p <0.01/0.05. “STD” repre-
sents synthetic training data from (Sennrich et al., 2016b).

In Table 1, we report the performance of our full model, the baseline, and existing systems. Our
baseline model obtains results similar to those of Vaswani et al. (2017), the existing strong model
used for these tasks. The results indicate that our method performed better than the strong baselines
for all language pairs. Our model is not only an improvement on the translation model of large-scale
training sets but also performs better for small-scale training sets. Refer to Appendix A.8 and A.9
for analysis of the low-resource scenario and generation diversity.

5.3 UNSUPERVISED NMT

For unsupervised machine translation, we also used the three language pairs EN–DE, EN–FR, and
EN–RO as our evaluation targets. Note that the evaluation performed on EN–DE uses newstest2016
instead of newstest2014 to ensure the results are comparable with the results of other works; this is
unlike supervised machine translation. We used the masked sequence to sequence the pre-training
(MASS) model (Song et al., 2019) as our baseline. Following the practice of Song et al. (2019), we
pretrained our model with a masked sequence-to-sequence pre-training (MASS) objective (without
D2GPo) on EN, FR, DE, and RO monolingual data samples from WMT 2007–2018 News Crawl
datasets that respectively cover 190M, 60M, 270M, and 10M sentences. We then fine-tuned the
models on the same monolingual data using the back-translation cross-entropy loss (Lample et al.,
2018) and our D2GPo loss. For the training dataset, we filtered out sentences longer than 175 words
in length and jointly learned 60K BPE sub-word units for each language pair.

1The results for EN–RO are evaluated on the dataset with diacritics removed in the reference text.
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Method EN–FR FR–EN EN–DE DE–EN EN–RO RO–EN

Artetxe et al. (2017) 15.13 15.56 6.89 10.16 - -
Lample et al. (2017) 15.05 14.31 9.75 13.33 - -
Yang et al. (2018) 16.97 15.58 10.86 14.62 - -
Lample et al. (2018) 25.14 24.18 17.16 21.00 21.18 19.44
XLM (Lample & Conneau, 2019) 33.40 33.30 27.00 34.30 33.30 31.80

MASS (Song et al., 2019) 37.50 34.90 28.30 35.20 35.20 33.10
MASS + D2GPo 37.92 34.94 28.42 35.62 36.31 33.41

Table 2: BLEU score comparisons between MASS and previous methods of unsupervised NMT.

As shown in Table 2, D2GPo consistently outperformed MASS (the state-of-the-art baseline) on
all unsupervised translation pairs. Meanwhile, the MASS and XLMsystems leverage large-scale
monolingual pre-training, and the decoder (generator, language model) can still be improved by our
D2GPo loss in the fine-tuning phase. This demonstrates the efficiency of the proposed method.

5.4 TEXT SUMMARIZATION

Text summarization is a typical language generation task that creates a short and fluent summary
of the given long-text document. Song et al. (2019) fine-tuned the MASS pretrained model on the
text summarization task and achieved state-of-the-art results. We chose this model as our baseline,
maintained consistent pre-training, and used D2GPo loss for enhancements in the fine-tuning phase.
We used the Annotated Gigaword corpus as the benchmark, as detailed in Appendix A.4. In the
evaluation, ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004) are reported.

Model ROUGE-1 ROUGE-2 ROUGE-L

Supervised RNN-based seq2seq 35.50 15.54 32.45
Nallapati et al. (2016) 34.97 17.17 32.70

Semi-supervised
MLM pre-training (Song et al., 2019) 37.75 18.45 34.85
DAE pre-training (Song et al., 2019) 35.97 17.17 33.14
MASS pre-training (Song et al., 2019) 38.73 19.71 35.96
MASS + D2GPo 39.23 20.11 36.48

Table 3: Performance on the text summarization task

Our results for text summarization are listed in Table 3. We compared our +D2GPo with our baseline
MASS, which is the current state-of-the-art model; +D2GPo consistently outperformed the baseline
on all evaluation metrics. The models with a semi-supervised setting yielded a large-margin im-
provement relative to the model without any pre-training, which demonstrates that the supervised
pre-training is effective in the text summarization task.

5.5 STORYTELLING

Storytelling is at the frontier of current language generation technologies; i.e., stories must maintain
a consistent theme throughout and require long-distance dependency modeling. Additionally, stories
require creativity and a high-level plot with planning ahead rather than word-by-word generation
(Wiseman et al., 2017).

We used the hierarchical story generation model (Fan et al., 2018) (which is introduced in Appendix
A.5) as our baseline to test the improvements of D2GPo for the storytelling task. To guarantee the
single-variable principle, we added only the D2GPo loss to the story generation model. The prompt
generation model is consistent with Fan et al. (2018).

For automatic evaluation, we measured the model perplexity on validation and test sets. Table 4
shows results obtained using D2GPo. It is seen that with the addition of D2GPo, the Conv seq2seq
+ self-attention model substantially improved the likelihood of human-generated stories and even
outperformed the ensemble or fusion models without increasing the number of parameters. Per-
plexity was further reduced with the addition of the fusion mechanism. These results suggest that
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Model Params Valid Perplexity Test Perplexity

GCNN LM 123.4 M 54.50 54.79
GCNN + self-attention LM 126.4 M 51.84 51.18
LSTM seq2seq 110.3 M 46.83 46.79
Conv seq2seq 113.0 M 45.27 45.54
Conv seq2seq + self-attention 134.7 M 37.37 37.94

Ensemble: Conv seq2seq + self-attention 270.3 M 36.63 36.93
Fusion: Conv seq2seq + self-attention 255.4 M 36.08 36.56

Conv seq2seq + self-attention + D2GPo 134.7 M 35.56 35.74
Fusion: Conv seq2seq + self-attention + D2GPo 255.4 M 33.82 33.90

Table 4: Perplexity on WRITINGPROMPTS.

D2GPo improves the quality of language generation greatly, especially in settings where there are
fewer restrictions on story generation tasks.

5.6 IMAGE CAPTIONING

Image captioning is a task that combines image understanding and language generation. It continues
to inspire considerable research at the boundary of computer vision and natural language processing.
We elected to experiment with image captioning to verify the performance of D2GPo on a language
generation model having diverse types of input.

In our experiments, we evaluated our model on an ablated baseline (top-down, as detailed in Ap-
pendix A.6) (Anderson et al., 2018) against prior work on the MSCOCO 2014 caption dataset (Lin
et al., 2014), which has became the standard benchmark for image captioning. For validation of
model hyperparameters and offline testing, we used Karpathy splits (Karpathy & Fei-Fei, 2015),
which have been used extensively in prior work. SPICE (Anderson et al., 2016), CIDEr (Vedantam
et al., 2015), METEOR (Denkowski & Lavie, 2014), ROUGE-L, and BLEU were used to evaluate
the caption quality.

BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

Att2in (Rennie et al., 2017) - 31.3 26.0 54.3 101.3 -
Att2all (Rennie et al., 2017) - 30.0 25.9 53.4 99.4 -

Baseline: Top-down 74.5 33.4 26.1 54.4 105.4 19.2
Baseline + D2GPo 75.2 33.6 26.3 55.1 106.6 19.7

Baseline + SCST 77.8 34.4 26.6 56.1 114.3 19.9
Baseline + SCST + D2GPo 78.0 34.7 26.8 56.3 116.8 20.2

Table 5: Image caption performance on the MSCOCO Karpathy test split.

Table 5 summarizes the performance of our full model and the ResNet Top-down baseline in compar-
ison with the existing strong Self-critical Sequence Training (SCST) (Rennie et al., 2017) approach
on the test portion of the Karpathy splits. To ensure a fair comparison, results are only reported
for models trained with standard cross-entropy loss (i.e., MLE). All results are reported for a single
model with no fine tuning of the input ResNet model. Our ResNet baseline performs slightly better
than the SCST models. After incorporating our proposed D2GPo loss, our model improves further
across all metrics.

6 EVALUATION FUNCTION

According to the analysis in Section 4, for the embedding, we used the Gaussian probability density
function as our evaluation function f(·); however, to evaluate the effectiveness of different evalua-
tion functions, we changed the function and tested the performance changes on the supervised NMT

8
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EN-DE task. We used the same experiment settings as described in Section 5.2 and compared the
BLEU score changes on the test set, as listed in Table 6.

Evaluation Function BLEU 4
Baseline 27.35

Gaussian 27.93 0.58 ↑
Random 26.34 1.01 ↓

Linear 27.45 0.10 ↑
Cosine 27.62 0.27 ↑

Table 6: Ablation study on our proposed D2GPo with different evaluation functions on the super-
vised NMT WMT14 EN-DE task, with the Transformer-base model.

The table shows that the performance of Gaussian density, linear, and cosine functions increased
while the performance of the random function decreased. This shows that the distance information
obtained from embedding can effectively guide the generation process. Among these functions,
the Gaussian density function had the greatest improvement, which agrees with our analysis of the
embedding features obeying the Gaussian distribution. We postulate that because the linear and
cosine functions are rough approximations of the Gaussian density function, they perform similarly
to the Gaussian density function.

7 CONCLUSION

This work proposed a data-dependent Gaussian prior objective (D2GPo) for language generation
tasks with the hope of alleviating the difficulty of negative diversity ignorance. D2GPo imposes
the prior from (linguistic) data over the sequence prediction models. D2GPo outperformed strong
baselines in experiments on classic language generation tasks (i.e., neural machine translation, text
summarization, storytelling, and image captioning tasks).
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Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete elements with
the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051, 2016.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv preprint
arXiv:1901.07291, 2019.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised
machine translation using monolingual corpora only. arXiv preprint arXiv:1711.00043, 2017.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.
Phrase-based & neural unsupervised machine translation. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 5039–5049, Brussels, Bel-
gium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1549. URL https://www.aclweb.org/anthology/D18-1549.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 29–37,
2011.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 110–119, San Diego, California, June 2016a. Association for Computational
Linguistics. doi: 10.18653/v1/N16-1014. URL https://www.aclweb.org/anthology/
N16-1014.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep
reinforcement learning for dialogue generation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pp. 1192–1202, Austin, Texas, Novem-
ber 2016b. Association for Computational Linguistics. doi: 10.18653/v1/D16-1127. URL
https://www.aclweb.org/anthology/D16-1127.

Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applications to
minimum-risk training on translation forests. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pp. 40–51, Singapore, August 2009. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/D09-1005.

Percy Liang, Michael I Jordan, and Dan Klein. Learning from measurements in exponential families.
In Proceedings of the 26th annual international conference on machine learning, pp. 641–648.
ACM, 2009.

Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P Xing. Recurrent topic-transition
gan for visual paragraph generation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 3362–3371, 2017.

Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, and Eric P Xing. Symbolic graph reasoning
meets convolutions. In Advances in Neural Information Processing Systems, pp. 1853–1863,
2018.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/W04-1013.

11

https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D18-1549
https://www.aclweb.org/anthology/N16-1014
https://www.aclweb.org/anthology/N16-1014
https://www.aclweb.org/anthology/D16-1127
https://www.aclweb.org/anthology/D09-1005
https://www.aclweb.org/anthology/W04-1013


Published as a conference paper at ICLR 2020

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1412–1421, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1166. URL https://www.aclweb.
org/anthology/D15-1166.
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A APPENDIX

A.1 CONCEPTS UNDERLYING D2GPO
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Figure 1: Overview of the concepts underlying D2GPo taking the example of the sentence The little
boy sits on the armchair.

A.2 TOPOLOGICAL ORDER

Specifically, for target y∗, we calculate the embedding cosine similarity as the distance dist(ỹj , y∗)
of y∗ and all other token types in the vocabulary ỹj , which are used to give the distance:

dist(ỹj , y
∗) = cosine similarity(emb(ỹj), emb(y

∗)). (10)
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Sorting by distance from small to large to obtain the topological order of token types yields

ORDER(y∗) = INDEX(sort([dist(ỹ1, y∗), dist(ỹ2, y∗), ..., dist(ỹN , y∗)])). (11)

where N is the vocabulary size and INDEX(·) is used to obtain the new sequential index according
to the distance sort. We define ORDER(y∗)j as the j-th value in ORDER(y∗). Therefore, the
evaluation function f(ỹj , y∗) is converted to a function defined on ORDER(y∗):

f(ỹj , y
∗) = f(ORDER(y∗)j). (12)

For example, suppose the vocabulary has 5 tokens (i.e. N=5), for the golden target y∗ to be predicted,
there is a relationship: dist(ỹ2, y∗) < dist(ỹ3, y

∗) < dist(ỹ1, y
∗) < dist(ỹ5, y

∗) < dist(ỹ4, y
∗),

the ORDER(y∗) is [3, 1, 2, 5, 4].

A.3 SUPERVISED NMT DATA

For the EN–DE translation task, 4.43M bilingual sentence pairs from the WMT’14 dataset, which
includes the Common Crawl, News Commentary, and Europarl v7 datasets, were used as training
data. The newstest2013 and newstest2014 datasets were used as the dev set and test set, respectively.

For the EN–FR translation task, 36M bilingual sentence pairs from the WMT’14 dataset were used
as training data. The newstest2012 and newstest2013 datasets were combined for validation and
newstest2014 was used as the test set, following the configuration of Gehring et al. (2017).

For the EN–RO task, we tested two settings; i.e., Europarl v7, which uses only the officially provided
parallel corpus, and SETIMES2, which yields 600,000 sentence pairs for a low-resource supervised
machine translation study. Alternatively, following the work of Sennrich et al. (2016a), we used
synthetic training data (STD) of Sennrich et al. (2016a), which provides 2.8M sentence pairs for
training. We used newsdev2016 as the dev set and newstest2016 as the test set. Our reported results
on EN-RO are evaluated on a reference for which diacritics are removed from letters.

A.4 TEXT SUMMARIZATION DATA

The Annotated Gigaword corpus (Napoles et al., 2012) was used as a benchmark (Rush et al., 2015).
This data set is derived from news articles and comprises pairs of main sentences in the article
(longer) and headline (shorter). The article and headline were respectively used as the source input
sentence and reference. The data include approximately 3.8M training samples, 400,000 validation
samples, and 2000 test samples.

A.5 HIERARCHICAL STORY GENERATION MODEL

The hierarchical story generation model (Fan et al., 2018) was proposed for the situation in which a
sentence called a prompt that describes the topic of the upcoming story generation is first generated,
and then conditions on the prompt are applied when generating the story. Specifically, Fan et al.
(2018) used a self-attention gated convolutional language model (GCNN) (Dauphin et al., 2017) as
the sequence-to-sequence prompt generation model with top-k random sampling. For prompt-to-
story generation, they collected a dataset from Reddit’s WRITINGPROMPTS forum in which each
prompt has multiple story responses. With the dataset, they trained a story generation model that
benefitted from a novel form of model fusion that improved the relevance of the story to the prompt
and added a new gated multi-scale self-attention mechanism to model the long-range context.

A.6 TOP-DOWN IMAGE CAPTION MODEL

The top-down image captioning model uses a ResNet (He et al., 2016) convolutional neural net
pretrained on ImageNet (Deng et al., 2009) to encode each image. Similar to previous work (Rennie
et al., 2017), the cited study encoded the full-sized input image with the final convolutional layer of
Resnet-101 and used bilinear interpolation to resize the output to a fixed-size spatial representation
of 10×10. This is equivalent to the maximum number of spatial regions used in our full model.
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A.7 HYPERPARAMETERS IN D2GPO

During training with our D2GPo, the value of the standard deviation of the KL diversity item λ was
set to 0.1, and the softmax temperature was T = 2.0 in all experiments.

To study the effects of hyperparameters (i.e., the standard deviation λ and softmax temperature T
in D2GPo) on the experimental results, we carried out experiments on WMT14 EN-DE with the
Transformer-base model as the baseline 2 and set λ as [0, 0.1, 0.2, 0.5, 1.0], T as [1.0, 2.0, 5.0, 10.0].
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Figure 3: Performances on WMT14 EN-DE
with different λ values.
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Figure 4: Performances on WMT14 EN-DE
with different T values.

The experimental results reveal that λ affects the model training process. We believe that the reason
is that a small value of λ results in the model being unable to make full use of the prior knowledge
(distribution), while a larger value of λ will make the model more uncertain because of the higher
probability of there being incorrect or even opposite words whose fastText embeddings are similar.

In addition, experimental results show that a small value of T can improve the model to some extent,
whereas a large value of T will seriously decrease the performance of the model. Theoretically,
when T approaches infinity, the distribution q becomes uniform, and there is no prior knowledge
with which to guide the model. A loss penalty is applied to any model prediction, and an excessively
high value of T is thus harmful to training.

A.8 D2GPO UNDER A LOW-RESOURCE SETTING

Priors are generally more helpful in low-data regimes. We sampled 10,000, 100,000, and 600,000
paired sentences from the bilingual training data of WMT16 EN-RO to explore the performance
of D2GPo in different low-resource scenarios. We used the same BPE code and learned fastText
embeddings in all WMT16 EN-RO training data.

Method 10K 100K 600K

Baseline 1.01 17.80 33.22
+ D2GPo 4.33 20.48 34.00

Table 7: Comparison of our baseline and our D2GPo method under different training data scales in
terms of BLEU on the WMT16 EN-RO test set.

As shown in Table 7, D2GPo outperforms the baseline model, demonstrating the effectiveness of
our method in low-resource scenarios. At the same time, the results show that the performance im-
provement provided by D2GPo increases with fewer training data. This shows that prior knowledge
can substantially improve the performance of the model when training data are scarce. A possible
reason is that the training data are insufficient to train a robust model. In this case, the injection of

2Owing to limited experimental resources and time, we only consider the situation that λ and T change
separately; i.e., T remains unchanged at 2.0 when λ changes while λ remains unchanged at 0.1 when T
changes.
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prior knowledge can help train the parameters of the model and substantially improve the translation
performance. However, with an increase in the number of training data, the model itself can be
optimized well, and the improvement gained by introducing prior knowledge is not as substantial as
before.

A.9 EXAMPLES OF IMAGE CAPTIONING

Top-down: a woman holding an umbrella in her hand
+ D2GPo: a woman is holding an umbrella
+ SCST: a woman holding an umbrella in a street
+ SCST+ D2GPo: a woman is holding an umbrella in the street

Top-down: a large airplane sitting on top of an airport runway
+ D2GPo: an airplane is sitting on top of an airport runway
+ SCST: a large jetliner sitting on top of an airport runway
+ SCST+ D2GPo: a large jetliner is sitting on top of an airport runway

Top-down: a woman holding a surf board in the ocean
+ D2GPo: a woman is standing on the beach with a surfboard
+ SCST: a woman holding a surfboard on the beach
+ SCST+ D2GPo: a woman is standing on the beach with a surfboard

Top-down: a traffic light with a traffic light on it
+ D2GPo: a traffic light on the side of a traffic light
+ SCST: a yellow traffic light on the side of a street
+ SCST+ D2GPo: yellow traffic lights on the side of a street

Table 8: Captions generated for the left image by the various models described in the paper. The
models trained with SCST return a more accurate and more detailed summary of the image. The
models trained with D2GPo return a more grammatically complete sentence.

A.10 ANALYSIS ON GENERATION DIVERSITY

Compared with traditional MLE training, D2GPo encourages negative diversity. To examine differ-
ences between D2GPo and MLE models, we counted high- and low-frequency words in the training
set and compared the frequencies of low-frequency words predicted by the two models and the
golden reference on the test set.

#GOLD Baseline +D2GPo

#LF 4915 3900 3998
#SUM 63086 55234 56129
#RATIO 7.79% 7.06% 7.12%

Table 9: The statics of low frequency words in the reference and generations.

The experiment was carried out on WMT14 EN-DE, the baseline model was Transformer-base, and
the statistics were calculated at the word level. We chose words with a frequency less than or equal
to 100 in the training set as low-frequency words. We used the golden reference (#GOLD), baseline
model prediction output, and +D2GPo model prediction output to count the total number of tokens
(#SUM) and the number of low-frequency words (#LF). Results are given in Table 8.

The results show that compared with the baseline, the D2GPo optimized model generates more low-
frequency words and has a higher ratio of low-frequency words. However, the number is still far
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less than the golden reference. It is thus demonstrated that D2GPo increases the diversity of model
output.

A.11 EXAMPLES OF STORYTELLING

Example Prompt: The scientists have discovered something terrible .

Generation with Conv seq2seq + Self-Attention (PPL 37.37):
The discovery of the discovery was a long and boring process . It was a small , 〈unk〉 , and a simple and
elegant solution . The scientists , scientists in charge , and the scientific community , was able to decipher
the meaning of the universe .
The theory that the universe was not a very real one , was that the universe itself was not a planet , but a
very , very real planet .
The discovery of a particular object in the universe that the universe was not . We found something that
resembled something that could not be described , but something that could not be described .
We found a way to make the object a lot more specific . We found that it was a very , very large thing , a
small , very small and very large .
It was the first thing we noticed that we found that it was a massive , large , enormous , enormous , giant ,
giant .
We found a way to make the whole thing.
We found that the entire

Generation with Conv seq2seq + Self-Attention + D2GPo (PPL 35.74):
“ I don ’t understand . Why did you tell us about it ? ” The scientist ’s assistant , Dr. harry , looked up from
his tablet and back at the scientist .
“ It ’s ... you see. ” He looked back up at Dr. harry . ” What ’s it mean ? ”
“ It means that the experiment is on the cusp of time . It ’s not the same as it looks . There ’s no explanation
. It ’s just that. . . ”
“ How is it possible that the experiment is going to fail ? ” The scientist looked ut the window and then back
at Dr. harry , who was still looking out the window , at the vast blackness of the room .
“ You think they ’ll do it ? ”
“ Well , no , we can ’t be sure , Dr. harry . They ’ll do it. ”
Dr. harry turned to the scientist in front of him . ” We can ’t risk losing our best friend in the world

Generation with Fusion of Conv seq2seq + Self-Attention (PPL 36.08):
We thought that we should be able to see our entire species . The scientists were n’t sure what we would
find . But they had to be prepared for it . They could n’t be ready .
The scientists had never seen anything like this , and yet they had n’t seen anything like this 〈unk〉 in months
. The scientists were just about to be in their own business , when they saw the results . They were n’t ready
for anything .
We thought that we should take a deep breath before we go . But it was n’t .
There was n’t any sign of any other intelligent life in the universe . It was nothing .
The scientists had no idea what was going on . They just watched , waiting for a signal .
They had no idea what it would mean .
But they could n’t see us .
The scientists just knew . They were all afraid of what they would see . They could n’t see the future .
They could n’t see the future .

Generation with Fusion of Conv seq2seq + Self-Attention + D2GPo (PPL 33.82):
“ I ’m afraid I wo n’t be able to find out why my experiment is working . ”
“Well , we ’ve been working on the project for about a month now . ”
“ It ’s been a month and a half since I last saw it . ”
“ We ’re all looking at the results . ”
“ You ’ve already been working on it for months now . You think we ’ve found that ? ”
“ I do n’t know, but we do have a lot of research to do . ”
“ But it ’s not like it was working , is it ? ”
“ We do n’t know . We ’re not looking for a breakthrough , it ’s just an experiment . ”
“ It ’s just an experiment ? People will die and the world may be destroyed . The disaster is about to happen,
we have to act.”
“ What do you mean , it ’ll not . It ’s just an experiment . ”
“ No , no , no , it is something terrible we cannot ignore .”

Table 10: Example stories generated by the baselines and our full models.
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