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Abstract

Synthetic CT image generation from MRI scan is necessary to create radiotherapy plans
without the need of co-registered MRI and CT scans. The chosen baseline adversarial
model with cycle consistency permits unpaired image-to-image translation. Perceptual
loss function term and coordinate convolutional layer were added to improve the quality
of translated images. The proposed architecture was tested on paired MRI-CT dataset,
where the synthetic CTs were compared to corresponding original CT images. The MAE
between the synthetic CT images and the real CT scans is 61 HU computed inside of the
true CTs body shape.

Keywords: Machine Learning, Deep Learning, Radiology, Computed Tomography, Mag-
netic Resonance Imaging.

1. Introduction

Radiotherapy (RT) requires a personalised preparation of the treatment plan and, especially,
a pre-treatment assessment of the radiation dose. The method is based on two examinations:
magnetic resonance imaging (MRI) and computed tomography (CT). The MRI helps to
locate the tumour and to outline its shape due to superior soft tissue contrast (Karlsson
et al., 2009). The CT scan helps to obtain an attenuation map of a body part from which the
radiation plan is derived. Following the MRI and CT procedures, their relative alignment,
and dose calculation, the patient then undergoes the RT (Coy and Kennelly, 1980; Khuntia
et al., 2006). However, an additional bias appears due to shifting errors between body
alignments in MRI and CT devices. In the modern approach of synthetic CT generation,
a patient has to participate only in an MRI procedure, with the advantage of having an
error-free registration between the CT and the MRI volumes (Jonsson et al., 2010).

This paper focuses on the unpaired GAN-based approach to the MRI-to-CT image
translation. Our contributions include the upgrade of cycle consistent model with an addi-
tional loss function term: the perceptual loss function term that enables a comparison of
the high-level image representations obtained with the VGG-16 pre-trained model (John-
son et al., 2016). We also include a coordinate convolutional layer (Liu et al., 2018), which
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helps to localise spatially convolutional properties (Hofmann et al., 2008). The proposed
architecture was trained on the brain data with a set of almost overlapping MRI and CT
scans. We present meaningful results of synthetic CT image generation.

2. Methods

The DualGAN architecture (Yi et al., 2017) consists of two image generators, which form
a cycle, and two discriminators, see Figure 1. The first generator GMRI→CT is trained
to translate MRI images to CT images; the second generator GCT→MRI translates images
from CT to MRI domain. The cycle allows comparing the reconstructed image and original
to evaluate the quality of generators without the need in paired data.
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Figure 1: DualGAN architecture.

The perceptual loss function (VGG) builds on the idea of a feature matching, where
high-level representations of two images are compared by mean squared error. Although
extracted features by pre-trained VGG-16 are not optimised for tomographic images, their
use is still relevant because the features extracted in an identical way for both compared
images.

The coordinate convolutional layer (CC) allows taking into account the spatial
information of the images by concatenating two additional x and y coordinates slices with
the tensor representation of the image. The coordinate convolutional layer in application
to the MRI-to-CT translation helps to distinguish black pixels of MRI image, which could
represent either a bone or air.

3. Experiments

Three medical datasets were obtained to train and test the considered methods of unpaired
MRI to CT translation. Each set was divided into a train and test parts in a 7:3 ratio. The
volumes were normalised and preprocessed.

The CPTAC Phase 3 dataset includes the MRI T1-weighted images of 7 patients. Each
3D volume of a patient contains 22 − 24 slices in the axial anatomical plane comprised
between the lower nose and the top of the head region (CPTAC, 2018; Clark et al., 2013).

The head-and-neck cancer dataset consists of CT scans of 61 patients. 3D volumes
include 61 - 94 slices from the shoulders, neck and lower part of a head up to the eyes
(Vallières et al., 2017; Vallières et al., 2017).

The private dataset contained CT images, masks and paired MRI T1-weighted images
of 10 patients. The volumes consist of 66−137 slices in the axial plane, which are comprised
between the teeth and the top of the head region. Train part was used in an unpaired way.
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All models were trained separately on CPTAC with Head-and-neck cancer datasets
together and the private dataset. The qualitative results and quantitative evaluation of the
performance were obtained on the test part of the private dataset.

In this work, four different architectures were considered and compared: DualGAN,
DualGAN with the coordinate convolutional layer (DualGAN, CC), DualGAN with the
perceptual loss function term (DualGAN, VGG) and DualGAN with perceptual loss func-
tion term and coordinate convolutional layer (DualGAN, VGG, CC). All of them work with
three-channel images allowing the application of VGG network.

Performance evaluation was calculated using one channel image representations. The
quantitative results of different translation configurations can be seen in Table 1, while
qualitative results are presented in Figure 2, which shows by column the real MRI slices,
the synthetic CT images, the real paired CT slices and the difference between synthetic and
original CTs.

Table 1: Performance comparison of different MRI to CT translation configurations.

Configuration MAE, HU ↓ PSNR, dB ↑ SSIM ↑
DualGAN 62.95± 1.17 16.82± 0.83 0.79± 0.02
DualGAN, CC 63.27± 2.00 16.96± 0.71 0.78± 0.03
DualGAN, VGG 66.52± 3.74 16.74± 1.08 0.78± 0.03
DualGAN, VGG, CC 60.83± 2.20 17.21± 1.00 0.80± 0.03

Original MRI Synthetic CT Original CT Diff between 
sCT and CT

0.8
0.6
0.4
0.2

Figure 2: Tanslation made by DualGAN with perceptual loss function term and coordinate
convolutional layer.

4. Conclusions

The presented model achieves MAE of 61 HU and SSIM of 0.8, which compares favourably
to scientific literature (Wolterink et al., 2017). The translation architecture transforms the
initial image retaining the structural information. While the DualGAN with the percep-
tual loss function term and the DualGAN with the coordinate convolutional layer are not
themselves superior to the DualGAN model, their triad combination showed meaningful
improvement. Besides, our model works with the unpaired images, and the visual exami-
nation confirmed that the use of the perceptual loss term and the coordinate convolutional
layer enhances the appearance of the resulting images. The error of translation increases
with the complexity of the inner structures, for instance, in the nose and teeth regions.
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