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ABSTRACT

Graph representation learning serves as the core of many important prediction
tasks, ranging from product recommendation in online marketing to fraud detec-
tion in financial domain. Real-life graphs are usually large with complex local
neighborhood, where each node is described by a rich set of features and easily
connects to dozens or even hundreds of neighbors. Most existing graph learning
techniques rely on neighborhood aggregation, however, the complexity on real-
life graphs is usually high, posing non-trivial overfitting risk during model train-
ing. In this paper, we present Neural Sparsification (NeuralSparse), a supervised
graph sparsification technique that mitigates the overfitting risk by reducing the
complexity of input graphs. Our method takes both structural and non-structural
information as input, utilizes deep neural networks to parameterize the sparsi-
fication process, and optimizes the parameters by feedback signals from down-
stream tasks. Under the NeuralSparse framework, supervised graph sparsification
could seamlessly connect with existing graph neural networks for more robust
performance on testing data. Experimental results on both benchmark and private
datasets show that, NeuralSparse can effectively improve testing accuracy and
bring up to 7.4% improvement when working with existing graph neural networks
on node classification tasks.

1 INTRODUCTION

Representation learning has been in the center of many machine learning tasks on graphs, such
as name disambiguation in citation networks (Zhang et al., 2018c), spam detection in social net-
works (Akoglu et al., 2015), recommendations in online marketing (Ying et al., 2018a), and many
others (Hamilton et al., 2017; Li et al., 2018). As a class of models that can simultaneously uti-
lize non-structural (e.g., node and edge features) and structural information in graphs, Graph Neural
Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Li et al., 2016) construct effective
representations for downstream tasks by iteratively aggregating neighborhood information (Kipf &
Welling, 2017; Hamilton et al., 2017). Such methods have demonstrated state-of-the-art perfor-
mance in classification and prediction tasks on graph data (Veličković et al., 2018; Chen et al., 2018;
Xu et al., 2019; Veličković et al., 2019).

Meanwhile, graphs from real-life applications are usually large with complex local neighborhood,
where each node has rich features and dozens or even hundreds of neighbors. As shown in Figure
1(a), this subgraph from Transaction dataset (detailed in Section 5.1) consists of 38 nodes (i.e.,
promising organizations and other organizations) with average node degree 15 and node feature
dimension 120. The GNNs are expected to grasp useful patterns from neighboring nodes; however,
as representative patterns are diluted by overwhelming information in local neighborhood, graph
learning algorithms could be misled by neighborhood aggregation. Such complexity in input graphs
poses non-trivial overfitting risk to existing GNN based learning techniques.

While it is straightforward yet expensive (sometimes even impractical) to address this overfitting
problem by increasing the number of labeled samples, we investigate a cheaper alternative of re-
ducing input graph complexity by graph sparsification in this work. Graph sparsification (Liu et al.,
2018; Zhang & Patone, 2017) aims to find smaller subgraphs from input large graphs that best pre-
serve desired properties. Existing sparsification methods could lead to suboptimal performance for
downstream prediction tasks: (1) these methods are unsupervised such that the resulting sparsified
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Figure 1: A subgraph of 38 organizations from Transaction dataset: (a) The original subgraph sam-
pled from the Transaction dataset, where nodes and edges represent organizations and their trans-
actions, respectively; (b) The sparsified subgraph by NeuralSparse; (c) Testing AUC on identifying
promising organizations.

graphs may not favor downstream tasks; and (2) they only consider structural information for sparsi-
fication decision, while non-structural information in graphs, such as node/edge features, could have
non-trivial impact to the quality of sparsification. Recently, there have been GNN models attempt-
ing to sample subgraphs from predefined distributions (Leskovec & Faloutsos, 2006; Adhikari et al.,
2018; Hamilton et al., 2017; Chen et al., 2018). As the predefined distributions could be irrelevant
to subsequent tasks, the sparsified graphs may miss important information for downstream tasks,
leading to suboptimal prediction performance.

Present work. We propose Neural Sparsification (NeuralSparse), a general framework that simulta-
neously learns graph sparsification and graph representation by feedback signals from downstream
tasks. The NeuralSparse consists of two major components: sparsification network and GNN. For
the sparsification network, we utilize a deep neural network to parameterize the sparsification pro-
cess: how to select edges from one-hop neighborhood given a fixed budget. In the training phase,
the network learns to optimize a sparsification strategy that favors downstream tasks. In the testing
phase, the network sparsifies input graphs following the learned strategy, instead of sampling sub-
graphs from a predefined distribution. Unlike conventional sparsification techniques, our technique
takes both structural and non-structural information as input and optimizes the sparsification strategy
by feedback from downstream tasks, instead of using (possibly irrelevant) heuristics. For the GNN
component, the NeuralSparse feeds the sparsified graphs to a GNN and learns a graph representation
for subsequent prediction tasks.

Under the framework of NeuralSparse, we are able to leverage the standard stochastic gradient
descent and backpropagation techniques to simultaneously optimize graph sparsification and repre-
sentation. As shown in Figure 1(b), the graph sparsified by the NeuralSparse has lower complexity
with average node degree around 5. As a result (illustrated in Figure 1(c)), the testing classification
accuracy on the sparsified graph is improved by 15%, compared with its counterpart in the orig-
inal input graph, while conventional techniques could not offer competitive sparsification for the
classification task.

Experimental results on both public and private datasets show that the NeuralSparse is able to con-
sistently provide improved performance for existing GNNs on node classification tasks, bringing up
to 7% improvement.

2 RELATED WORK

Our work is related to two lines of research: graph sparsification and graph representation learning.

Graph sparsification. The goal of graph sparsification is to find small subgraphs from input large
graphs that best preserve desired properties. Existing techniques are mainly unsupervised and deal
with simple graphs without node/edge features for preserving predefined graph metrics (Hübler
et al., 2008), information propagation traces (Mathioudakis et al., 2011), graph spectrum (Calan-
driello et al., 2018; Chakeri et al., 2016; Adhikari et al., 2018), node degree distribution (Eden et al.,
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Figure 2: The overview of NeuralSparse

2018; Voudigari et al., 2016), node distance distribution (Leskovec & Faloutsos, 2006), or clustering
coefficient (Maiya & Berger-Wolf, 2010). Importance based edge sampling has also been studied in
a scenario where we could predefine edge importance (Zhao, 2015; Chen et al., 2018).

Unlike existing methods that mainly work with simple graphs without node/edge features in an
unsupervised manner, our method takes node/edge features as parts of input and optimizes graph
sparsification by supervision signals from errors made in downstream tasks.

Graph representation learning. Graph neural networks (GNNs) are the most popular techniques
that enable vector representation learning for large graphs with complex node/edge features. All
existing GNNs share a common spirit: extracting local structural features by neighborhood aggre-
gation. Scarselli et al. (2009) explore how to extract multi-hop features by iterative neighborhood
aggregation. Inspired by the success of convolutional neural networks, multiple studies (Defferrard
et al., 2016; Bruna et al., 2014) investigate how to learn convolutional filters in the graph spectral
domain under transductive settings (Zhang et al., 2018b; Zhuang & Ma, 2018). To enable inductive
learning, convolutional filters in the graph domain are proposed (Simonovsky & Komodakis, 2017;
Niepert et al., 2016; Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2018), and a few stud-
ies (Hamilton et al., 2017; Lee et al., 2018) explore how to differentiate neighborhood filtering by
sequential models. In addition, multiple recent works (Ying et al., 2018b; Xu et al., 2019; Abu-El-
Haija et al., 2019) investigate the expressive power of GNNs. Recently, (Franceschi et al., 2019)
study how to sample high-quality subgraphs from a space of all possible graphs of a complete graph
so that the sampled graphs enhance the prediction power in downstream learning tasks. In particular,
the proposed method only focus on transductive tasks.

Our work contributes from a unique angle: by reducing the noise from input graphs, our technique
can further boost testing performance of existing GNNs.

3 PROPOSED METHOD: NEURALSPARSE

In this section, we introduce the core idea of our method. We start with the notations that are
frequently used in this paper. We then describe the theoretical justification behind NeuralSparse and
our architecture to tackle the supervised node classification problem.

Notations. In this paper, we represent an input graph of n nodes as G = (V,E,A): (1) V ∈ Rn×dn
includes node features with dimensionality dn; (2) E ∈ Rn×n is a binary matrix where E(u, v) = 1
if there is an edge between node u and node v; (3) A ∈ Rn×n×de encodes input edge features of
dimensionality de. In addition, we use Y to denote the prediction target in downstream tasks (e.g.,
Y ∈ Rn×dl if we are dealing with a node classification problem with dl classes).

Theoretical justification. From the perspective of statistical learning, the key of a defined prediction
task is to learn P (Y | G), where Y is the prediction target andG is an input graph. Instead of directly
working with original graphs, we would like to leverage sparsified subgraphs to mitigate overfitting
risks. In other words, we are interested in the following variant,

P (Y | G) ≈
∑
g∈SG

P (Y | g)P (g | G), (1)

where g is a sparsified subgraph, and SG is a class of sparsified subgraphs of G.
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In general, because of the combinatorial complexity in graphs, it is intractable to enumerate all
possible g as well as estimate the exact values of P (Y | g) and P (g | G). Therefore, we approximate
the distributions by tractable functions,∑

g∈SG

P (Y | g)P (g | G) ≈
∑
g∈SG

Qθ(Y | g)Qφ(g | G) (2)

where Qθ and Qφ are approximation functions for P (Y | g) and P (g | G) parameterized by θ and
φ, respectively.

Moreover, to make the above graph sparsification process differentiable, we employ reparameteri-
zation tricks (Jang et al., 2017) to make Qφ(g | G) directly generate differentiable samples, such
that ∑

g∈SG

Qθ(Y | g)Qφ(g | G) ∝
∑

g′∼Qφ(g|G)

Qθ(Y | g′) (3)

where g′ ∼ Qφ(g | G) means g′ is a random sample drawn from Qφ(g | G).

To this end, the key is how to find appropriate approximation functions Qφ(g | G) and Qθ(Y | g).

Architecture. In this paper, we propose Neural Sparsification (NeuralSparse) to implement the
theoretical framework discussed in Equation 3. As shown in Figure 2, NeuralSparse consists of two
major components: sparsification network and GNNs.

• The sparsification network is a multi-layer neural network that implements Qφ(g | G): Taking G
as input, it generates a random sparsified subgraph of G drawn from a learned distribution.

• GNNs implement Qθ(Y | g) that takes a sparsified subgraph as input, extracts node representa-
tions, and makes predictions for downstream tasks.

Algorithm 1 Training algorithm for NeuralSparse
Input: graph G = (V,E,A), integer l, and training labels Y .

1: while stop criterion is not met do
2: Generate sparsified subgraphs {g1, g2, · · · , gl} by sparsification network (Section 4);
3: Produce prediction {Ŷ1, Ŷ2, · · · , Ŷl} by feeding {g1, g2, · · · , gl} into GNNs;
4: Calculate loss function J ;
5: Update φ and θ by descending J
6: end while

As the sparsified subgraph samples are differentiable, the two components can be jointly trained us-
ing gradient descent based backpropagation techniques from a supervised loss function, as illustrated
in Algorithm 1. While the GNNs have been widely investigated in recent works (Kipf & Welling,
2017; Hamilton et al., 2017; Veličković et al., 2018), we focus on the practical implementation for
sparsification network in the remaining of this paper.

4 SPARSIFICATION NETWORK

Following the theory discussed above, the goal of sparsification network is to generate sparsified
subgraphs for input graphs, serving as the approximation function Qφ(g | G). Therefore, we need
to answer the following three questions in sparsification network. i). What is SG in Equation 1,
the class of subgraphs we focus on? ii). How to sample sparsified subgraphs? iii). How to make
sparsified subgraph sampling process differentiable for the end-to-end training? In the following,
we address the questions one by one.

k-neighbor subgraphs. We focus on k-neighbor subgraphs for SG (Sadhanala et al., 2016): Given
an input graph, a k-neighbor subgraph shares the same set of nodes with the input graph, and each
node in the subgraph can select no more than k edges from its one-hop neighborhood. Although
the concept of sparsification network is not limited to a specific class of subgraphs, we choose k-
neighbor subgraphs for the following reasons.
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• We are able to adjust the estimation on the amount of task-relevant graph data by tuning the
hyper-parameter k. Intuitively, when k is an under-estimate, the amount of task-relevant graph
data accessed by GNNs could be inadequate, leading to inferior performance. When k is an over-
estimate, the downstream GNNs may overfit the introduced noise or irrelevant graph data, resulting
in sub-optimal performance. It could be difficult to set a golden hyper-parameter that works all
time, but one has the freedom to choose the k that is the best fit for a specific task.
• k-neighbor subgraphs are friendly to parallel computation. As each node selects its edges in-

dependently from its neighborhood, we can utilize tensor operations in existing deep learning
frameworks, such as tensorflow (Abadi et al., 2016), to speed up the sparsification process.

Sampling k-neighbor subgraphs. Given k and an input graph G = (V,E,A), we obtain a k-
neighbor subgraph by repeatedly sampling edges for each node in the original graph. Without loss
of generality, we sketch this sampling process by focusing on a specific node u in graph G. Let Nu
be the set of one-hop neighbors of node u.

1. v ∼ fφ(V (u), V (Nu),A(u)), where fφ(·) is a function that generates a one-hop neighbor v from
the learned distribution based on node u’s attributes, node attributes of u’s neighbors V (Nu), and
their edge attributes A(u). In particular, the learned distribution is encoded by parameters φ.

2. Edge E(u, v) is selected for node u.
3. The above two steps are repeated k times.

Note that the above process performs sampling without replacement. Given a node u, each of its
adjacent edges is selected at most once. Moreover, the sampling function fφ(·) is shared among
nodes; therefore, the number of parameters φ is independent of the input graph size.

Making samples differentiable. While conventional methods are able to generate discrete sam-
ples (Sadhanala et al., 2016), these samples are not differentiable such that it is difficult to utilize
them to optimize sample generation. To make samples differentiable, we propose a Gumbel-Softmax
based multi-layer neural network to implement the sampling function fφ(·) discussed in above.

To make the discussion self-contained, we briefly discuss the idea of Gumbel-Softmax. Gumbel-
Softmax is a reparameterization trick used to generate differentiable discrete samples (Jang et al.,
2017; Maddison et al., 2017). Under appropriate hyper-parameter settings, Gumbel-Softmax is able
to generate continuous vectors that are as “sharp” as one-hot vectors widely used to encode discrete
data.

Without loss of generality, we focus on a specific node u in a graph G = (V,E,A). Let Nu be the
set of one-hop neighbors of node u. We implement fφ(·) as follows.

1. ∀v ∈ Nu,
zu,v = MLPφ(V (u), V (v),A(u, v)), (4)

where MLPφ is a multi-layer neural network with parameters φ.
2. ∀v ∈ Nu, we employ a softmax function to compute the probability to sample the edge,

πu,v =
exp(zu,v)∑

w∈Nu exp(zu,w)
(5)

3. Using Gumbel-Softmax, we generate differentiable samples

xu,v =
exp((log(πu,v) + εv)/τ)∑

w∈Nu exp((log(πu,w) + εw)/τ)
(6)

where xu,v is a scalar, εv = − log(− log(s)) with s randomly drawn from Uniform(0, 1), and
τ is a hyper-parameter called temperature which controls the interpolation between discrete
distribution and continuous categorical densities.

Note that when we sample k edges, the computation for zu,v and πu,v only needs to be performed
once. For the hyper-parameter τ , we discuss how to tune it as follows.

Discussion on temperature tuning. The behavior of Gumbel-Softmax is governed by a hyper-
parameter τ called temperature. In general, when τ is small, the Gumbel-Softmax distribution
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resembles the discrete distribution, which induces strong sparsity; however, small τ also introduces
high variance gradient that blocks effective backpropagation. A high value of τ cannot produce
expected sparsification effect. Following the practice in (Jang et al., 2017), we adopt the strategy by
starting the training with a high temperature and anneal to a small value with a guided schedule.

Sparsification algorithm and its complexity. As shown in Algorithm 2, given hyper-parameter
k, the sparsification network visits each node’s one-hop neighbors k times. Let m be the total
number of edges in the graph. The complexity of sampling subgraphs by the sparsification network
is O(km). When k is small in practice, the overall complexity is O(m).

Algorithm 2 Sampling subgraphs by sparsification network
Input: graph G = (V,E,A) and integer k.

1: Edge set H = ∅
2: for u ∈ V do
3: for v ∈ Nu do
4: zu,v ← MLPφ(V (u), V (v),A(u, v))
5: end for
6: for v ∈ Nu do
7: πu,v ← exp(zu,v)/

∑
w∈Nu exp(zu,w)

8: end for
9: for j = 1, · · · , k do

10: for v ∈ Nu do
11: xu,v ← exp((log(πu,v) + εv)/τ)/

∑
w∈Nu exp((log(πu,w) + εw)/τ)

12: end for
13: Add the edge represented by vector [xu,v] into H
14: end for
15: end for

Comparison with multiple related methods. Unlike GraphSAGE (Hamilton et al., 2017), Fast-
GCN (Chen et al., 2018), and AS-GCN (Huang et al., 2018) that incorporate layer-wise node sam-
plers to reduce the complexity of GNNs, NeuralSparse samples subgraphs before applying GNNs.
As for the computation complexity, the sparsification in NeuralSparse is more friendly to paral-
lel computation than the layer-conditioned approach in AS-GCN. Compared with GAT (Veličković
et al., 2018; Zhang et al., 2018a), the NeuralSparse can produce sparser neighborhood, which ef-
fectively mitigates overfitting risks. Unlike LDS (Franceschi et al., 2019), NeuralSparse learns
inductive graph sparsification, and its graph sampling is constrained by input graph topology.

5 EXPERIMENTAL STUDY

In this section, we evaluate our proposed NeuralSparse on node classification task, including induc-
tive and transductive settings. We demonstrate that NeuralSparse achieves superior classification
performance over state-of-the-art GNN models. Moreover, we provide a case study to demonstrate
how sparsified subgraphs generated by NeuralSparse could improve classification. The supplemen-
tary material contains more detailed experimental information.

5.1 DATASETS

We employ five datasets from various domains and conduct node classification task following the
settings as described in Hamilton et al. (2017); Kipf & Welling (2017). The dataset statistics are
summarized in Table 1.

Inductive datasets. We utilize the Reddit and PPI datasets and follow the same setting in Hamilton
et al. (2017). The Reddit dataset contains post-to-post graph with word vectors as node features. The
node labels represent which community Reddit posts belong to. The protein-protein interaction (PPI)
dataset contains graphs corresponding to different human tissues. The node features are positional
gene sets, motif gene sets and immunological signatures. The nodes are multi-labeled by gene
ontology. The graph in the Transaction dataset contains real transactions between organizations in
two years, with the first year for training and the second year for validation/testing. Each node
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Table 1: Dataset statistics

Reddit PPI Transaction Cora Citeseer

Task Inductive Inductive Inductive Transductive Transductive
Nodes 232,965 56,944 95,544 2,708 3,327
Edges 11,606,919 818,716 963,468 5,429 4,732

Features 602 50 120 1,433 3,703
Classes 41 121 2 7 6

Training Nodes 152,410 44,906 47,772 140 120
Validation Nodes 23,699 6,514 9,554 500 500

Testing Nodes 55,334 5,524 38,218 1,000 1,000

represents an organization and each edge indicates a transaction between two organizations. Node
attributes are side information about the organizations such as account balance, cash reserve, etc. On
this dataset, we aim to classify organizations into two categories: promising or others for investment
in near future. The class distribution in the Transaction dataset is highly imbalanced. During the
training under inductive setting, algorithms have only access to training nodes’ attributes and edges.
In the PPI and Transaction datasets, the models have to generalize to completely unseen graphs.

Transductive datasets. We use two citation benchmark datasets with transductive experimental set-
ting in Yang et al. (2016); Kipf & Welling (2017). The citation graphs contain nodes corresponding
to documents and edges as citations. Node features are the sparse bag-of-words representations of
documents and node labels indicate the topic class of the documents. In transductive learning, the
training methods have access to all node features and edges, with a limited subset of node labels.

5.2 EXPERIMENTAL SETUP

Baseline models. We incorporate four state-of-the-art methods as the base GNN components, in-
cluding GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al.,
2018), and GIN (Xu et al., 2019). We evaluate our proposed NeuralSparse with sparsification net-
work and each of the four GNNs. Besides, we also implement variants of NeuralSparse by replacing
the sparsification network with either the spectral sparsifier (SS, Sadhanala et al., 2016) or the Rank
Degree (RD, Voudigari et al., 2016) method.

Temperature tuning. We anneal the temperature with the schedule τ = max(0.05, exp(−rp)),
where p is the training epoch and r ∈ 10{−5,−4,−3,−2,−1}. τ is updated every N steps and
N ∈ {50, 100, ..., 500}. Compared with MNIST VAE model in Jang et al. (2017), smaller hyper-
parameter τ fits NeuralSparse better in practice.

Metrics. We evaluate the performance on the transductive datasets with accuracy (Kipf & Welling,
2017). For inductive tasks on the Reddit and PPI datasets, we report micro-averaged F1 scores
(Hamilton et al., 2017). Due to the highly imbalanced classes in the Transaction dataset, models are
evaluated with AUC value (Huang & Ling, 2005). The results show the average of 10 runs.

5.3 CLASSIFICATION PERFORMANCE

Table 2 summarizes classification performance of NeuralSparse and the baseline methods on all
datasets. For Reddit, PPI, Transaction, Cora and Citeseer, the hyper-parameter k is set as 30, 15, 10,
5, and 3 respectively. The hyper-parameter l is set as 1 in this experiment. Note that the result of
GAT on Reddit is missing due to the out-of-memory error.

Overall, NeuralSparse is able to help GNN techniques achieve competitive generalization perfor-
mance with sparsified graph data. We make the following observations. (1) Compared with basic
GNN models, NeuralSparse can enhance the generalization performance on node classification tasks
by utilizing the sparsified subgraphs from sparsification network, especially in the inductive setting.
Indeed, large neighborhood size in the original graphs could bring increased chance of introduc-
ing noise into the convolutional operations, leading to sub-optimal performance. (2) With differ-
ent GNN models, the NeuralSparse can consistently achieve comparable or superior performance,
which demonstrates NeuralSparse is general and can be applied to multiple classification models.
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Table 2: Node classification performance

Sparsifier Method Reddit PPI Transaction Cora Citeseer

Micro-F1 Micro-F1 AUC Accuracy Accuracy

N/A

GCN 0.922 ± 0.041 0.532 ± 0.024 0.564 ± 0.018 0.810 ± 0.027 0.694 ± 0.020
GraphSAGE 0.938 ± 0.029 0.600 ± 0.027 0.574 ± 0.029 0.825 ± 0.033 0.710 ± 0.020

GAT - 0.917 ± 0.030 0.616 ± 0.022 0.821 ± 0.043 0.721 ± 0.037
GIN 0.928 ± 0.022 0.703 ± 0.028 0.607 ± 0.031 0.816 ± 0.020 0.709 ± 0.037

GCN 0.912 ± 0.022 0.521 ± 0.024 0.562 ± 0.035 0.780 ± 0.045 0.684 ± 0.033
SS/ GraphSAGE 0.907 ± 0.018 0.576 ± 0.022 0.565 ± 0.042 0.806 ± 0.032 0.701 ± 0.027
RD* GAT - 0.889 ± 0.034 0.614 ± 0.044 0.807 ± 0.047 0.686 ± 0.034

GIN 0.901 ± 0.021 0.693 ± 0.019 0.593 ± 0.038 0.785 ± 0.041 0.706 ± 0.043

GCN 0.946 ± 0.020 0.600 ± 0.014 0.610 ± 0.022 0.821 ± 0.014 0.715 ± 0.014
Neural GraphSAGE 0.951 ± 0.015 0.626 ± 0.023 0.649 ± 0.018 0.832 ± 0.024 0.720 ± 0.013
Sparse GAT - 0.921 ± 0.015 0.671 ± 0.018 0.834 ± 0.015 0.724 ± 0.026

GIN 0.937 ± 0.027 0.744 ± 0.015 0.634 ± 0.023 0.824 ± 0.027 0.719 ± 0.015
(* Report the better performance with SS or RD)

Promising Organizations
Other Organizations

(a) Spectral Sparsifier

Promising Organizations
Other Organizations

(b) RD Sparsifier

5 10 15
Hyper-parameter k

0.62

0.64

0.66

0.68

AU
C

NeuralSparse-GAT
NeuralSparse-GraphSAGE

(c) Hyperparameter k

1 2 3 4 5
Hyper-parameter l

0.645

0.650

0.655

0.660

0.665

0.670

0.675

AU
C

NeuralSparse-GAT
NeuralSparse-GraphSAGE

(d) Hyperparameter l

Figure 3: Sparsified subgraphs and performance vs hyper-parameters

(3) In comparison with the two NeuralSparse variants SS-GraphSAGE and RD-GraphSAGE, Neu-
ralSparse outperforms because of the automatically learned graph sparsification with both structural
and non-structural information as input.

5.4 SENSITIVITY TO HYPER-PARAMETERS AND SPARSIFIED SUBGRAPHS

Figure 3(c) demonstrates how classification performance responds when k increases on the Trans-
action dataset. There exists an optimal k that delivers the best classification AUC score. When k is
small, NeuralSparse can only make use of little relevant structural information in feature aggrega-
tion, which leads to inferior performance. When k increases, the aggregation convolution involves
more complex neighborhood aggregation with higher chance of overfitting noise data, which nega-
tively impacts the classification performance for unseen testing data. Figure 3(d) shows how hyper-
parameter l impacts classification performance on the Transaction dataset. When l increases from 1
to 5, we observe a relatively small improvement in classification AUC score. As the parameters in
the sparsification network are shared by all edges in the graph, the estimation variance from random
sampling could already be mitigated to some extent by a number of sampled edges in a sparsified
subgraph. Thus, when we increase the number of sparsified subgraphs, the incremental gain could
be small.

In Figure 3(a, b), we present the sparsified graphs output by two baseline methods, SS and RD.
By comparing the two plots with Figure 1(b), we make the following observations. First, the Neu-
ralSparse sparsified graph tends to select edges that connect nodes of identical labels, which favors
the downstream classification task. The observed clustering effect could further boost the confidence
of decision making. Second, instead of exploring all the neighbors, we can focus on selected con-
nections/edges in sparsified graphs, which could make it easier for human experts to perform model
interpretation and result visualization.
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6 CONCLUSION

In this paper, we propose Neural Sparsification (NeuralSparse) to address the overfitting issues
brought by the complexity in real-life large graphs. NeuralSparse consists of two major compo-
nents: (1) The sparsification network sparsifies input graphs by sampling edges following a learned
distribution; (2) GNNs take sparsified subgraphs as input and extracts node representations for down-
stream tasks. The two components in NeuralSparse can be jointly trained with supervised loss, gra-
dient descent, and backpropagation techniques. The experimental study on real-life datasets show
that the NeuralSparse consistently renders more robust graph representations, and brings up to 7%
improvement in accuracy over the state-of-the-art GNN models.
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S1 DATASET DETAILS

In this section, we provide additional details about the Transaction datasets in our experiments. The
Transaction dataset contains attributed graph that records transaction history between organizations
in two years: 2014 and 2015. Each node represents an organization and each directed edge indi-
cates a transaction between two organizations. Node attributes include organization information like
account balance, cash research, etc. Under the inductive experimental setting, We use the 47,772
organization data of the year 2014 for training and remaining data are hidden from the model. The
9,554 organizations are used for validation and 38,218 for testing. Validation and testing node sets
are from year 2015 and are not connected to the nodes in the training set. Like the PPI dataset,
models need to generalize to unseen graph when testing on the Transaction dataset.

S2 EXPERIMENTAL SETTINGS

In this section, we provide more details about our implementation and experiments in favor of re-
producibility.

S2.1 HARDWARE

All experiment are run on a Linux machine with 16 Intel(R) Xeon(R) CPU (E5-2637 v4 @ 3.50GHz)
and 128GB RAM. Some models (e.g. NeuralSparse and GCN) are accelerated by 4 NVIDIA
GeForce GTX1080Ti GPU with 11GB RAM.

S2.2 IMPLEMENTATIONS OF NEURALSPARSE

We implement the proposed NeuralSparse in tensorflow framework for efficient GPU computation.
In particular, the multi-layer neural network (Equation 4) in the sparsification network is imple-
mented by two-layer feed-forward neural networks in all experiment, where the hyper-parameter k
is searched between 2 and 50 for the optimal performance. We employ cross-entropy to formulate
the loss function and apply Adam optimizer for training. The learning rate of Adam optimizer is
initially set to be α = 1.0 × 10−3. We initial the weight matrices in the proposed NeuralSparse
model with Xavier initialization.

In the following, we detail the network structures of NeuralSparse used on individual datasets. FC(a,
b, f ) means a fully-connected layer with a input neurons and b output neurons activated by function
f (none means no activation function is used). GNN(a, b, f ) means a Graph Neural Network layer
with input dimension a, output dimension b, and activation function f . We implement GNN layer
with GCN, GraphSAGE, GAT, GIN in the experiments.

Reddit The sparsification network runs with: FC(1204, 16, ReLU)-FC(16, 1, Gumbel-Softmax).
The structure of GNN is GNN(602, 128, ReLU)-GNN(128, 64, ReLU)-FC(64, 41, softmax).

PPI The sparsification network runs with: FC(100, 16, ReLU)-FC(16, 1, Gumbel-Softmax). The
structure of GNN is GNN(50, 128, ReLU)-GNN(128, 128, ReLU)-FC(128, 121, softmax).

Transaction The sparsification network runs with: FC(243, 16, ReLU)-FC(16, 1, Gumbel-
Softmax). The structure of GNN is GNN(121, 128, ReLU)-GNN(128, 32, ReLU)-FC(32, 2, soft-
max). Note that there is one-dimensional edge attribute indicating the transaction amount in this
dataset.

Cora The sparsification network runs with: FC(2866, 32, ReLU)-FC(32, 1, Gumbel-Softmax). The
structure of GNN is GNN(1433, 128, ReLU)-GNN(128, 64, ReLU)-FC(64, 7, softmax).

Citeseer The sparsification network runs with: FC(7406, 64, ReLU)-FC(64, 1, Gumbel-Softmax).
The structure of GNN is GNN(3703, 128, ReLU)-GNN(128, 64, ReLU)-FC(64, 6, softmax).

As the spectral sparsification models cannot be jointly trained with subsequent GNN module, the
sparsification process is treated as a preprocessing step. For Spectral Sparsifier (SS), ε is set to 0.4
in all datasets. For the Rank Degree algorithm (RD), we select 1% of nodes as the initial seeds and
adopt ρ ∈ {0.1, 0.2, · · · , 0.8} for the best results.
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S3 QUALITATIVE EDGE SAMPLING EVALUATION

In this section, we qualitatively demonstrate the difference by Figure 1(a) original graph, Figure 1(b)
NeuralSparse, Figure 3(a) SS, and Figure 3(b) RD. In addition, we provide quantitative analysis
in Table S1, where we report the percentage of edges that connect nodes of same class labels in
sparsified graphs. Both qualitative and quantitative results suggest a common trend: NeuralSparse
prefers to select neighbors with the same labels compared with the baseline methods.

Table S1: Percentage of edges connecting nodes of the same labels
Reddit PPI Transaction Cora Citeseer

Original 53.1% 55.0% 67.3% 82.2% 73.1%
SS 50.9% 52.8% 62.8% 79.8% 75.6%
RD 49.8% 53.5% 63.4% 84.8% 72.3%

NeuralSparse 59.6% 61.5% 76.8% 93.1% 87.4%

S4 EXPERIMENT WITH SIMILAR NUMBERS OF TRAINABLE PARAMETERS

In this section, we evaluate the impact brought by reducing the number of parameters in a GNN with
NeuralSparse so that the numbers of trainable parameters in a NeuralSparse GNN and an original
GNN are similar. In particular, we focus on GCN in this set of experiment. Using the same notation
in S2.2, NeuralSparse-GCN-Compact is implemented as follows.

Reddit. NeuralSparse-GCN-Compact runs with: FC(1204, 8, ReLU)-FC(8, 1, Gumbel-Softmax)
and GCN(602, 112, ReLU)-GCN(112, 64, ReLU)-FC(64, 41, softmax). The total number of train-
able parameters is 86,856 in the NeuralSparse-GCN-Compact, while it is 87,872 in the original
GCN.

PPI. NeuralSparse-GCN-Compact runs with: FC(100, 16, ReLU)-FC(16, 1, Gumbel-Softmax) and
GCN(50, 118, ReLU)-GCN(118, 128, ReLU)-FC(128, 121, softmax). The total number of trainable
parameters is 38,108 in the NeuralSparse-GCN-Compact, while it is 38,272 in the original GCN.

Transaction. NeuralSparse-GCN-Compact runs with: FC(243, 16, ReLU)-FC(16, 1, Gumbel-
Softmax) and GCN(121, 100, ReLU)-GCN(100, 32, ReLU)-FC(32, 2, softmax). The total num-
ber of trainable parameters is 19,268 in the NeuralSparse-GCN-Compact, while it is 19,648 in the
original GCN.

Cora NeuralSparse-GCN-Compact runs with: FC(2866, 8, ReLU)-FC(8, 1, Gumbel-Softmax) and
GCN(1433, 115, ReLU)-GCN(115, 32, ReLU)-FC(32, 7, softmax). The total number of trainable
parameters is 191,635 in the NeuralSparse-GCN-Compact, while it is 192,064 in the original GCN.

Citeseer NeuralSparse-GCN-Compact runs with: FC(7406, 32, ReLU)-FC(32, 1, Gumbel-Softmax)
and GCN(3703, 64, ReLU)-GCN(64, 32, ReLU)-FC(32, 6, softmax). The total number of trainable
parameters is 476,256 in the NeuralSparse-GCN-Compact, while it is 482,560 in the original GCN.

Table S2: Node classification performance with similar numbers of trainable parameters

Dataset Reddit PPI Transaction Cora Citeseer
Metrics Micro-F1 Micro-F1 AUC Accuracy Accuracy

GCN 0.922 ± 0.041 0.532 ± 0.024 0.564 ± 0.018 0.810 ± 0.027 0.694 ± 0.020
NeuralSparse- 0.946 ± 0.020 0.600 ± 0.014 0.610 ± 0.022 0.821 ± 0.014 0.715 ± 0.014GCN
NeuralSparse- 0.943 ± 0.018 0.601 ± 0.021 0.605 ± 0.013 0.820 ± 0.012 0.713 ± 0.009GCN-Compact

From the evaluation results shown in Table S2, we draw the following observations. First,
both NeuralSparse-GCN and NeuralSparse-GCN-Compact consistently outperform GCN on all the
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datasets. Second, compared with NeuralSparse-GCN, NeuralSparse-GCN-Compact achieves com-
parable prediction accuracy with smaller variance in most cases.

S5 HOW PERFORMANCE EVOLVES AS HYPER-PARAMETER k CHANGES?

3 6 9 12 15 18
Hyper-parameter k

0.62

0.64

0.66

0.68

AU
C

NeuralSparse-GAT in Testing
NeuralSparse-GAT in Validation
NeuralSparse-GraphSAGE in Testing
NeuralSparse-GraphSAGE in Validation

Figure S1: Impact from hyper-parameter k on validation and testing on the Transaction dataset

In this section, we demonstrate how the hyper-parameter k impacts the performance of
NeuralSparse-GAT and NeuralSparse-GraphSAGE in both validation and testing on the Transac-
tion dataset. In terms of validation, as shown in Figure S1, the validation performance increases
when k ranges from 2 to 10 with more available graph data. After k exceeds 10, the increase in
validation performance slows down and turns to be saturated. In terms of testing performance, it
shares a similar trend when k ranges from 2 to 10. Meanwhile, the testing performance drops more
after k exceeds 10.

S6 EMPIRICAL COMPARISON BETWEEN NEURALSPARSE AND LDS

S6.1 EVALUATION RESULTS

In this section, we compare NeuralSparse and LDS (Franceschi et al., 2019) with the datasets in
transductive setting. Here, we utilize three ways to prepare the input graphs of Cora and Citeseer
datasets.

• Setting A: k-NN graphs (Franceschi et al., 2019). In this setting, the graph structures
are completely missing. The input graphs are replaced with k-nearest neighbor graphs
initialized from node features. The k in kNN graph is selected from {10, 20}.

• Setting B: original input graphs of Cora and Citeseer datasets with the same random split
as Kipf & Welling (2017).

• Setting C: edge union of original input graphs and k-NN graphs with k fixed as 10.

Table S3: Node classification performance in setting A
Cora(10) Cora(20) Citeseer(10) Citeseer(20)

GCN 0.641 ± 0.009 0.631 ± 0.013 0.653 ± 0.012 0.671 ± 0.019
LDS-GCN 0.715 ± 0.008 0.703 ± 0.011 0.691 ± 0.021 0.715 ± 0.011

NeuralSparse-GCN 0.723 ± 0.012 0.719 ± 0.008 0.731 ± 0.011 0.724 ± 0.017

Our observation is summarized as follows. In general, NeuralSparse and LDS achieves comparable
node classification accuracy. Specifically, NeuralSparse has relatively better performance in Setting
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Table S4: Node classification performance in setting B
Cora Citeseer

GCN 0.810 ± 0.027 0.694 ± 0.020
LDS 0.831 ± 0.017 0.727 ± 0.021

NeuralSparse-GCN 0.821 ± 0.014 0.724 ± 0.014

Table S5: Node classification performance in setting C
Cora + kNN Citeseer + kNN

GCN 0.631 ± 0.014 0.646 ± 0.009
LDS 0.731 ± 0.019 0.725 ± 0.013

NeuralSparse-GCN 0.751 ± 0.013 0.743 ± 0.007

A and Setting C. LDS performs slightly better in Setting B. From the above observation, we conjec-
ture that NeuralSparse is more robust to graphs with more random edges while LDS is more suitable
in a graph of relatively less noise by adding additional edges. We will verify the conjecture in the
next subsection.

S6.2 RANDOM EDGE ADDITION TO CORA AND CITESEER

We further compare NeuralSparse and LDS (Franceschi et al., 2019) on the node classification tasks
where original graph structure is available but more random edges are introduced as noise. Starting
from the original graphs, we add edges by randomly sampling two nodes u, v from node set V and
connecting them.

The results are shown in Figure S2. In both datasets, NeuralSparse achieves better performance
compared with LDS as the noise level goes beyond 200%. When the amount of noise increases, the
classification accuracy of LDS drops significantly.

This result confirms our conjecture that NeuralSparse is more robust to random edges, compared to
LDS.
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Figure S2: Node classification performance when adding noise to graph structure.

With the above comments and experimental results, we hope to clarify the difference between the
two models and demonstrate that our proposed NeuralSparse is more robust to noises in real-life
graphs.
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S7 HOW DO TASK-IRRELEVANT EDGES COULD NEGATIVELY IMPACT THE
PERFORMANCE OF GCN?

In this section, we use an example to demonstrate how an input graph with task-irrelevant edges
could impact the performance of GCN. For the ease of discussion and visualization, we focus on
a GCN with a simple architecture and synthetic graphs where we could adjust graph topology by
hyper-parameters in graph generators.

In terms of GCN, we investigate a one-layer GCN

fW = Softmax(ÂXW ) = Softmax(ZW ) (7)

where Â is a normalized adjacency matrix, X is the input node feature matrix, W is the GCN
parameters, and Z = ÂX denotes node representations in the aggregation space. Intuitively, the
quality of Z has direct impact to this GCN’s performance.

In terms of input graphs, we generate them for node classification tasks as follows.

1. Nodes and their labels. 2,000 nodes are generated, where 1,000 nodes are assigned with
positive labels and the rest are assigned with negative labels.

2. Node features. Each node has a two-dimensional feature vector. For positive nodes, the
node features are generated from a Gaussian distribution, where µpos = (−0.5, 0) and
Σpos is a diagonal matrix with Σpos[0, 0] = Σpos[1, 1] = 0.3. For negative nodes, the node
features are generated from another Gaussian distribution, where µneg = (0.5, 0) and Σneg
is a diagonal matrix with Σneg[0, 0] = Σneg[1, 1] = 0.3.

3. Edges. Given a hyper-parameter d̄, for each node, it randomly selects d̄ nodes as its one-
hop neighbors. With respect to this node classification task, an edge that connects two
nodes of different labels could be irrelevant, bringing noise to the GCN.

(a) �̅� = 0 (b) 	�̅� = 10 (c) �̅� = 20

Figure S3: Distributions of Z in graphs with different d̄

In Figure S3, the distributions of node representation Z are demonstrated at different d̄. When d̄ is
0, Â is an identity matrix so that we simply use input node features in model learning. As shown in
Figure S3(a), it is difficult to find a good boundary that well separates the positive and negative nodes
by using node features only. However, when we adjusts d̄ to 10 or 20 with richer connections, the
situation doesn’t get better. Because of the noise introduced by irrelevant edges, it becomes harder to
find the classification boundary. While a deep learning may still be able to find a complex boundary
that well separates the training data, the boundary could overfit the introduced noise, resulting in
low generalization power.

In Figure S4, we illustrate how NeuralSparse enhances the prediction accuracy of the GCN. In
particular, we focus on the graph with d̄ = 20, and sparsify this graph by NeuralSparse. As shown
in Figure S4, ranging the hyper-parameter k from 1 to 15, the distributions of Z vary. When k
is 1, there is no significant change compared with the distribution in Figure S3(a), as the amount
of accessible relevant graph data is still small. When k is increased to 5 or 10, the classification
boundary becomes much clearer. As the edge generation process is uniformly random, the expected
number of relevant edges per node is roughly 10. When k is 15, this k could be an over-estimate on
the amount of relevant edges, making it a bit harder to find a good separation.
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(a) 𝑘 = 1 (b) 𝑘 = 5 (c) 𝑘 = 10 (d) 𝑘 = 15

Figure S4: Distributions of Z in sparsified subgraphs by NeuralSparse

(a) 𝑘 = 1 (b) 𝑘 = 5 (c) 𝑘 = 10 (d) 𝑘 = 15

Figure S5: Distributions of Z in sparsified subgraphs by random downsampling

In Figure S5, we demonstrate how random downsampling could impact the prediction accuracy of
the GCN. In general, we could not see any significant improvement. Indeed, it is crucial to perform
a task-driven sparsification as NeuralSparse does.
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