
Meta-Reinforcement Learning for Adaptive Autonomous Driving

Yesmina Jaafra 1 2 3 Jean Luc Laurent 1 Aline Deruyver 2 Mohamed S. Naceur 3

Abstract
Reinforcement learning (RL) methods achieved
major advances in multiple tasks surpassing hu-
man performance. However, most of RL strate-
gies show a certain degree of weakness and may
become computationally intractable when deal-
ing with high-dimensional and non-stationary
environments. In this paper, we build a meta-
reinforcement learning (MRL) method embed-
ding an adaptive neural network (NN) controller
for efficient policy iteration in changing task con-
ditions. Our main goal is to extend RL application
to the challenging task of urban autonomous driv-
ing in CARLA simulator.

1. Introduction
”Every living organism interacts with its environment and
uses those interactions to improve its own actions in order
to survive and increase” (Lewis & Vrabie, 2009). Inspired
from animal behaviorist psychology, reinforcement learn-
ing (RL) is widely used in artificial intelligence research
and refers to goal-oriented optimization driven by an im-
pact response or signal (Sutton & Barto, 2018). Properly
formalized and converted into practical approaches (Khan
et al., 2012), RL algorithms have recently achieved major
progress in many fields as games (Mnih et al., 2015; Silver
et al., 2016) and advanced robotic manipulations (Levine
et al., 2016; Lillicrap et al., 2016) beating human perfor-
mance. However, and despite several years of research
and evolution, most of RL strategies show a certain degree
of weakness and may become computationally intractable
when dealing with high-dimensional and non-stationary en-
vironments (Wahlström et al., 2015). More specifically, the
industrial application of autonomous driving in which we
are interested in this work, remains a highly challenging
”unsolved problem” more than one decade after the promis-
ing 2007 DARPA Urban Challenge (Buehler et al., 2009).
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The origin of its complexity lies in the large variability in-
herent to driving task arising from the uncertainty of human
behavior, diversity of driving styles and complexity of scene
perception.

An interpretation of the observed vulnerability due to learn-
ing environment changes has been provided in context-
aware (dependence) research assuming that ”concepts in
the real world are not eternally fixed entities or structures,
but can have a different appearance or definition or meaning
in different contexts” (Widmer, 1997). There are several
tasks that require context-aware adaptation like weather
forecast with season or geography, speech recognition with
speaker origins and control processes of industrial installa-
tions with climate conditions. One solution to cope with this
variability is to imitate the behavior of human who are more
comfortable with learning from little experience and adapt-
ing to unexpected perturbations. These natural differences
compared to machine learning and specifically RL methods
are shaping the current research intending to eschew the
problem of data inefficiency and improve artificial agents
generalization capabilities (Lake et al., 2017). Tackling
this issue as a multi-task learning problem (Caruana, 1997),
meta-learning has shown promising results and stands as
one of the preferred frames to design fast adapting strategies
(Santoro et al., 2016; Ravi & Larochelle, 2017). It refers to
learn-to-learn approaches that aim at training a model on a
set of different but linked tasks and subsequently generalize
to new cases using few additional examples (Finn et al.,
2017).

In this paper we aim at extending RL application to the
challenging task of urban autonomous driving in CARLA
simulator. We build a meta-reinforcement learning (MRL)
method where agent policies behave efficiently and flexibly
in changing task conditions. We consolidate the approach
robustness by integrating a neural network (NN) controller
that performs a continuous iteration of policy evaluation and
improvement. The latter allows reducing the variance of
the policy-based RL and accelerating its convergence. Be-
fore embarking with a theoretical modeling of the proposed
approach in section 3, we introduce in the next section meta-
learning background and related work in order to better
understand the current issues accompanying its application
to RL settings. In the last section, we evaluate our method
using CARLA simulator and discuss experimental results.
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2. Background and Related Work
Generally, in order to acquire new skills, it is more useful
to rely on previous experience than starting from scratch.
Indeed, we learn how to learn across tasks requiring, each
time, less data and trial-and-error effort to conquer further
skills (Lake et al., 2017). The term meta-learning that refers
to learning awareness on the basis of prior experience was
first cited by (Biggs, 1985) in the field of educational psy-
chology. It consists in taking control of a learning process
and guiding it in accordance with the context of a specific
task. In machine learning research, meta-learning is not a
new concept and displays many similarities with the above
definition (Thrun & Pratt, 1998; Schmidhuber & Huber,
1991; Naik & Mammone, 1992). It assumes that rather than
building a learning strategy on the basis of a single task, it
will be more effective to train over a series of tasks sharing
a set of similarities then generalize to new situations. By
acquiring prior biases, meta-learning addresses models inac-
curacies achieving fast adaptation from few additional data
(Clavera et al., 2018). At an architectural level, the learning
is operated at two scales: a base-level system is assigned to
rapid learning within each task, and a meta (higher) level
system uses previous one feedback for gradual learning
across tasks (Wang et al., 2017).

One of the first contribution to meta-learning is the classi-
cal Algorithm Selection Problem (ASP) proposed by (Rice,
1976) considering the relationship between problem charac-
teristics and the algorithm suitable to solve it. Then based
on the concept of ASP, the No Free Lunch (NFL) theorem
(Wolpert & Macready, 1997) demonstrated that the general-
ization performance of any learner across all tasks is equal
to 0. The universal learner is consequently a myth and each
algorithm performs well only on a set of tasks delimiting
its area of expertise. ASP and NFL theorem triggered a
large amount of research assigned to parameter and algo-
rithm recommendation (Jankowski & Grabczewski, 2011;
Brazdil et al., 2008; Soares et al., 2004; Pfahringer et al.,
2000). In this type of meta-learning, a meta-learner appre-
hend the relationship between data characteristics called
meta-features and base-learners performance in order to
predict the best model to solve a specific task. Various
meta-learners have been used and generally consist of shal-
low algorithms like decision trees, k-Nearest Neighbors
and Support Vector Machines (Vanschoren, 2018). Regard-
ing meta-features, the most commonly used ones included
statistical and information-theoretic parameters as well as
land-marking and model-based extractors (Vilalta et al.,
2009).

The recent regain of interest in neural network models and
more specifically deep learning resulting from the advent of
large training datasets and computational resources allowed
the resurgence of neural network Meta-learning (Li et al.,

2018). Instead of requiring explicit task characteristics,
the meta-level learns from the structure of base-models
themselves. Neural networks are particularly suitable to
this kind of transfer learning given their inner capabilities
of data features abstraction and rule inductions reflected
in their connection weights and biases. The typology of
meta-learners developed so far includes recurrent models,
metrics and optimizers with several areas of application in
classification, regression and RL (Li et al., 2017).

Meta-learning algorithms extended recently to the context
of RL can be classified in two broad categories. A first set
of methods implement a recurrent neural network (RNN) or
its memory-augmented variant (LSTM) as the meta-learner.
(Duan et al., 2016) study RL optimization in the frame
of a reinforcement learning problem (RL2) where policies
are represented with RNNs that receive past rewards and
actions, in addition to the usual inputs. The approach is eval-
uated on multi-armed bandits (MAB) and tabular Markov
Decision Processes (MDPs). In (Wang et al., 2017), Ad-
vantage Actor-Critic (A2C) algorithms with recurrence are
trained using different architectures of LSTM (simple, con-
volutional and stacked). The experiments are conducted
on bandits problems with increasing level of complexity
(dependent/independent arms and restless).

In the second category, the learner gradients are used for
meta-learning. Such methods are task-agnostic and adapt-
able to any model trained with gradient-descent. The
gradient-based strategy has been originally introduced by
(Finn et al., 2017) with their Model-Agnostic Meta-Learning
(MAML) algorithm. It has been demonstrated efficient for
different problem settings including gradient RL with neu-
ral network policies. MAML mainly aims at generating a
model initialization sensitive to changes and reaching opti-
mal results on a new scenario after just few gradient updates.
Meta-SGD (Li et al., 2017) uses stochastic gradient descent
to meta-learn, besides a model initialization, the inner loop
learning rate and the direction of weights update. In Reptile
(Nichol et al., 2018), the authors design a first order ap-
proximation of MAML computationally less expensive than
the original method which includes second order derivative
of gradient. (Shedivat et al., 2018) propose a probabilistic
view of MAML for continuous adaptation in RL settings.
A competitive multi-agent environment (RoboSumo) was
designed to run iterated adaptation games for the approach
testing.

A major part of MRL papers have been evaluated either
at a preliminary level of experimentation or on elementary
tasks (2D navigation, simulated muJoCo robots and ban-
dit problems). In this work we consider an application of
gradient-based MRL in a more challenging dynamic envi-
ronment involving realistic and complex sides of real world
tasks, which is CARLA simulator for autonomous driving
(Dosovitskiy et al., 2017).
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3. MRL with Policy Evaluation
The proposed model consists of a MRL framework em-
bedding an adaptive NN controller to tackle both the non-
stationarity and high dimensionality issues inherent to au-
tonomous driving environments in CARLA simulator.

3.1. Preliminaries
The RL task considered in this work is a Markov De-
cision Process (MDP) defined according to the tuple
(S,A, p, r, γ, ρ0, H) where S is the set of states, A is the
set of actions, p(st+1|st, at) is the state transition distri-
bution predicting the probability to reach a state st+1 in
the next time step given current state and action, r is a
reward function, γ is the discount factor, ρ0 is the initial
state distribution and H the horizon. Consider the sum
of expected rewards (return) from a trajectory τ(0,H−1) =
(s0, a0, ..., sH−1, aH−1, sH). A RL setting aims at learning
a policy π of parameters θ (either deterministic or stochas-
tic) that maps each state s to an optimal action amaximizing
the return R of the trajectory.

Rt =

t+H−1∑
j=t

γj−trj+1 (1)

Following the discounted return expressed above, we can
define a state value function V (s) : S → R to measure the
current state return estimated under policy π:

V (st) = E[Rt|st = s] (2)

In order to optimize the parameterized policy πθ, we use
gradient descents like in the family of REINFORCE algo-
rithms (Williams, 1992) updating the policy parameters θ in
the direction:

∆θ = α∇θ log πθ(st|at)Rt (3)

3.2. Method
We build an approach of NN meta-learning compatible with
RL setting. Our contribution consists in combining (1) a
gradient-based meta-learner like in MAML (Finn et al.,
2017) to learn a generalizable model initialization and (2)
a NN controller for more robust and continuous adaptation.
The agent policy πθ approximated by a convolutional neural
network (CNN) is trained to quickly adapt to a new task
through few standard gradient descents. Explicitly, this
consists in finding an optimal initialization of parameters
θ∗ allowing a few-shot generalization of the learned model.
Given a batch of tasks Ti sampled from p(T ), the meta-
objective is formulated as follows:

max
θ

ETi∼p(T )RTi
(θ′i) where θ

′
i = θ + α∇θRTi

(θ) (4)

The MRL approach includes two levels of processing: the
inner and the outer loops associated respectively to the base
and meta-learning.

In the inner loop, we start by reducing the disturbances char-
acterizing policy based methods and induced by the score
function Rt. Indeed, complex domains with conflicting dy-
namics and high dimensional observations like autonomous
driving yield a large amount of uncertainty. One flexible
solution to reduce disturbances and accelerate learning con-
vergence is policy iteration. Subsequently, we modify the
RL scheme by integrating a step of policy evaluation and
improvement that generates added bonuses to guide the
agent towards new states.

The policy evaluation is performed with temporal difference
(TD) learning combining Monte Carlo method and dynamic
programming (Sutton & Barto, 2018) to learn, with step size
ω, the value function approximated by a CNN:

V (st) = V (st) + ωδt (5)

Where δt is the multi-step TD error that consists in bootstrap-
ping the sampled returns from the value function estimate:

δt = [

t+H−1∑
j=t

γj−trj ] + γHV (st+H)− V (st) (6)

Multi-step returns allow the agent to gather more informa-
tion on the environment before calculating the error in the
value function estimates. Subsequently, the improvement
of the policy is performed through the replacement of the
score function Rt by the TD error δt in the policy gradient:

∆θ = α∇θ log πθ(st|at)δt (7)

For each sampled task Ti, the policy parameters θ′i are com-
puted using the updated gradient descent:

θ′i = θ + α∇θ log πθ(st|at)δt (8)

Once the models and related evaluations are generated for
all batch tasks, the outer loop is activated. It consists in oper-
ating a meta-gradient update of the initial model parameters
with a meta-step size β on the basis of the previous level
rewards RTi

(θ′i):

θ ← θ + β∇θ
∑

Ti∼p(T )

RTi(θ
′
i) (9)

The steps detailed above are iterated until an accepted per-
formance is reached. The resulting model initialization θ∗

should be able to achieve fast driving adaptation after only
a few gradient steps.

4. Experiments
In this section we evaluate the performance of the
continuous-adapting MRL model on the challenging task
of urban autonomous driving. The goal of our experiment
is to demonstrate the effectiveness of meta-level learning
combined with a NN controller to optimize the RL policy
and achieve a more robust learning of high-dimensional and
complex environments. At this stage of work, we present
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the preliminary results of our study assessing 2 basic as-
sumptions. The MRL agent is (1) adapting faster at training
time and (2) displaying better generalization capabilities in
unseen environments.

Figure 1. Left: Comparison of our approach (Meta-RL), the pre-
trained (Pre-RL) and the randomly initialized (Rand-RL) algo-
rithms in test-time adaptation to unseen environments. Right: A
zoomed window of the initial driving steps.

Environment settings. We conduct our experiments using
CARLA simulator for autonomous driving (Dosovitskiy
et al., 2017; Palanisamy, 2018) designed as a server-client
system. Carla 3D environment consists of static objects
and dynamic characters. As we consider the problem of
autonomous driving in changing conditions, we induce non-
stationary environments across training episodes by varying
several server settings. (1) The task complexity: select one
of the available towns as well as different start and end posi-
tions for the vehicle tasks (straight or with-turn driving). (2)
The traffic density: control the number of dynamic objects
such as pedestrians and vehicles. (3) Weather and lightening:
select a combination of weather and illumination conditions
to diversify visual effects controlling sun position, radia-
tion intensity, cloudiness and precipitation. Hence we can
exclusively use a subset of environments for meta-training
(”seen”) and a second subset for test-time adaptation (”un-
seen”). The reward is shaped as a weighted sum of the
distance traveled to target, speed in km/h, collisions damage
and overlaps with sidewalk and opposite lane.

Results. Given the preliminary level of experiments and
the absence of various state-of-the-art work on the recent
CARLA simulator, we adopt (Finn et al., 2017) methodol-
ogy consisting in comparing the continuous-adapting MRL
initialization with conventionally pre-trained and randomly
initialized RL algorithms. In all experiments the average
episodic reward is used to describe the methods global per-
formance. An episode is terminated when the target destina-
tion is reached or after a collision with a dynamic character.

Figure 1 depicts the test-time adaptation performance of the
3 models. During this phase, the RL agent initialized with
meta-learning still uses the NN controller for continuous
adaptation. The results confirm that our approach generates
models adapting faster in ”unseen” environments compar-
atively to the standard RL strategies. Zooming the initial
driving steps (figure 1), we notice that our method has dis-
tinctly surpassed the standard RL versions only after 10000

steps (500 gradient descents). Subsequently we should lead
further tests to identify a specific threshold for few shot
learning when evolving from low to high-dimensional set-
tings like autonomous driving task.

Figure 2. Generalization capabilities of our approach (right) and
the pre-trained RL (left): Comparison of adaptation results in
”seen” and ”unseen” environments.

In order to evaluate the generalization assumption, we com-
pare the models behavior on ”seen” and ”unseen” environ-
ments. Figure 2 does not reveal a significant ”shortfall”
of our approach performance between the 2 scenarios re-
flecting its robustness in non-stationary conditions. In the
contrary, the performance of the pre-trained standard RL
decreased notably in ”unseen” environments due to the lack
of generalization capabilities.

Although all results indicate a certain robustness of the
continuous-adapting MRL, it is too early to draw firm con-
clusions at this preliminary stage of evaluation. First, the
episodic reward indicator should be completed with the per-
centage of successfully ended episodes in order to demon-
strate the effective learning of the agent and allow the com-
parison with state-of-the-art work (Dosovitskiy et al., 2017;
Liang et al., 2018). Second, further consideration should
be addressed to the pertinence of few shot learning regimes
in very complex and high dimensional environments like
autonomous driving since the meta-learned strategy may
acquires a particular bias at training time ”that allows it to
perform better from limited experience but also limits its
capacity of utilizing more data” (Shedivat et al., 2018).

5. Conclusion
In this paper we addressed the limits of RL algorithms
in solving high-dimensional and complex tasks. Built on
gradient-based meta-learning, the proposed approach im-
plements a continuous process of policy assessment and
improvement using a NN controller. Evaluated on the chal-
lenging problem of autonomous driving using CARLA sim-
ulator, our approach showed higher performance and faster
learning capabilities than conventionally pre-trained and
randomly initialized RL algorithms. Considering this pa-
per as a preliminary attempt to scale up RL approaches to
high-dimensional real world applications like autonomous
driving, we plan in future work to bring deeper focus on
several sides of the approach such as the reward function,
CNN architecture and including vehicle characteristics in
the tasks complexity setup.
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