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ABSTRACT

Solving tasks in open environments has been one of the long-time pursuits of
reinforcement learning research. We propose that data confusion is the core un-
derlying problem. Although there exist methods that implicitly alleviate it from
different perspectives, we argue that their solutions are based on task-specific prior
knowledge that is constrained to certain kinds of tasks and lacks theoretical guar-
antees. In this paper, Subjective Reinforcement Learning Framework is proposed
to state the problem from a broader and systematic view, and subjective policy
is proposed to represent existing related algorithms in general. Theoretical anal-
ysis is given about the conditions for the superiority of a subjective policy, and
the relationship between model complexity and the overall performance. Results
are further applied as guidance for algorithm design without task-specific prior
knowledge.

1 INTRODUCTION

One important target of reinforcement learning (RL) is to realize an autonomous agent that can help
people solve various kinds of tasks in open environments, where the agent’s observations and the
environment’s dynamics is both diverse and unpredictable (Wu et al., 2019). For example, a vision-
based robot doing housework in all kinds of room-settings may observe various combinations of
indoor scenes; different tasks may require it to take different actions under the same observation; the
successor observation after performing an action is not predictable, because the shape of rooms, fur-
niture settings and pets’ movements, etc. are not known a priori. Classical RL models environment
and tasks as a Markov Decision Process (MDP). From this perspective, tasks in open environments
pose difficulties that the state space S is large, the state transition dynamics P is nonstationary, and
the reward function R may be contradictory(Brodeur et al., 2017; Xu et al., 2018).

We argue that the key problem underlying these difficulties is data confusion, that is every sample
the agent acquires from an open environment may reflect the properties of only a small part of
the entire environment for a specific time period (Kempka et al., 2016), thus data samples with
similar current observations may have contradictory meanings under different circumstances, i.e.
different transition dynamics, state (or state-action) values or action preferences. For this problem,
current RL methods introduce out-of-MDP information such as task-encoding (Zhu et al., 2016) and
goal-description (Wang et al., 2018), or expand the state space into history space, in which every
element is the concatenation of all information gained so far τt = s1:t (Farias et al., 2007). As
for the former category, the quality and quantity of extra information are decided by the designer
(Schaul et al., 2015). As for the latter category, although the whole history is what we can use
best to alleviate data confusion in theory, it increases the complexity to a maximum point and is
hard to achieve in practice; algorithms in this category thus either introduce regularization terms or
transform the optimization target to easier ones. The problem is that both these categories depend on
humans’ understandings to certain tasks and lack theoretical guarantees; consider that tasks in open
environments are diverse and unpredictable, it is necessary to build a system that can dynamically
fit tasks without prior knowledge.

Intuitively, we humans also face data confusion problems in the real world, e.g. when going to
office from home, different modes of transportation may include conflict behaviors e.g. walking in
opposite directions. However, as long as we utilize arbitrary information and subjectively choose
one of the modes, e.g. taking the bus, this task becomes concrete and without confusion; also we may
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subjectively focus on more concise aspects of the problem e.g. selecting bus numbers, which make
the tasks simpler. Inspired by this, we propose a novel framework named Subjective Reinforcement
Learning Framework that models the environment and tasks as a set of simple MDPs with no data
confusion problem, and a subjectivity model over them; the corresponding subjective policy then
includes two parts: acquiring subjectivity for each state with subjective samples, and choosing an
action under the selected subjectivity. From this perspective, all aforementioned existing methods
can be summarized as introducing subjective samples, i.e. state history or extra task information,
beyond current observation st to form a subjectivity so that the resulting subjectivity-conditioned
policy does not suffer from data confusion problem and thus have better performance. Therefore they
can be recognized as instantiations of our subjective policy, and analysis based on our framework is
general and meaningful for all these methods.

In this paper, we discuss the conditions under which the subjective policy can achieve better results,
and analyze in theory the relationship between overall performance and some key elements that
characterize a subjective policy. The key elements are concrete and modifiable, and the analytical
results guide us to design policy models that fit the need of problems in open complex environments
without task-specific prior knowledge and with theoretically-guaranteed performance.

To sum up, we think our contributions are as follows:

1. To our best knowledge, we are the first to point out data confusion as a key problem to
solving tasks in open complex environments;

2. We propose a novel framework named Subjective RL Framework and give theoretical anal-
ysis from a broader and systematic view;

3. We provide guidances for algorithm design based on our theoretical results.

2 RELATED WORK

Our subjective RL framework deals with data confusion problem facing tasks in open environments,
which has also been implicitly considered in several RL fields: multi-task RL (Zhu et al., 2016),
meta-RL (Rakelly et al., 2019), continuous adaptation (Yu et al., 2018) and hierarchical RL (Al-
Emran, 2015). We analyze their inherent defects—dependence on designers’ knowledge for tasks—
in the following three paragraphs.

The field of multi-task RL considers an agent performing different tasks in possibly different envi-
ronments, where data confusion is expected to happen across tasks. One direct category of methods
equips the agent with extra task-specific information (Riedmiller et al., 2018), e.g. a vector gi
describing the goal of task Ti; these methods requires the extra information to be available and suf-
ficient enough to distinguish tasks from each other, which is guaranteed by designers’ knowledge.
Considering cases where suitable extra information is not available, various task-encoding methods
have been proposed (Sung et al., 2017), which generally extract a task feature vector from the whole
trajectory τ and build the policy under condition of such feature vectors. These methods can be
concluded as adding regularization terms into the complex end-to-end framework according to ex-
perts’ prior knowledge, which includes the length (Sorokin & Burtsev, 2019) and prior distribution
(Rakelly et al., 2019) of the feature vector.

Meta-RL methods, or learning-to-learn, turns to model the learning process instead of the original
task (Gupta et al., 2018a;b), which implicitly bypass the problem of data confusion. However,
these methods still treat the learning process as a single-value function, e.g. the learning process of
task embedding (Lan et al., 2019) and an exploration strategy (Garcia & Thomas, 2019); thus their
successes are based on the assumption that there are no data confusion in the meta learning phase.
Similarly, continuous adaptation problems focuses on the transfer performance from source to target
tasks and neglect the data confusion problem by assuming that the relationship between successive
tasks can be correctly modeled by single-value mappings (Al-Shedivat et al., 2018).

Hierarchical RL is a broad field where methods aim to divide complex tasks into many different
sub-tasks so that the overall data-efficiency can be improved (Barto & Mahadevan, 2003; Al-Emran,
2015). Although this idea of divide-and-conquer may result in the confusing data samples being
divided into different sub-models and thus each sub-model handles no confusion, which is one
typical target of subjectivity in our framework, the actual performance is determined by the design

2



Under review as a conference paper at ICLR 2020

of the hierarchical structure, e.g. number of options (Jain et al., 2018) and capacity of both the
top-level and low-level models, which are still designed according to prior knowledge and adjusted
through empirical results. Instead, our framework takes all these hyper-parameters in consideration
and can adjust to tasks without prior knowledge.

The data confusion problem in open environments can also be recognized from the perspective of
errors in function approximation. Existing research on function approximators in RL consider some
specific types of model like linear approximations or neural networks, and analysis are given about
the overall convergence or performance of certain RL algorithms (Schoknecht, 2003; Achiam et al.,
2019; Papavassiliou & Russell, 1999). However, approximators considered are end-to-end and do
not consider the utilization of extra information. Different from these, our framework formalizes
both original data samples and extra information used to construct subjectives, and so has the capac-
ity to analyze the effect of extra information.

3 SUBJECTIVE REINFORCEMENT LEARNING FRAMEWORK

In this section we describe the data confusion problem of tasks in open environments. Then we give
mathematical formulation of our subjectivity reinforcement learning framework that states the data
confusion problem from a broader and systematic view.

3.1 PROBLEM STATEMENT

In traditional RL, the environment and tasks are modeled as 〈T,S,A, P,R, γ, ρ〉, where T =
{0, 1, 2, . . . } is the set of considered time steps, S = {st} the state space, A = {at} the action
space, P (st+1 |st, at ) the transition probabilities from each state-action pair to successive states,
R : S × R → [0, 1] the reward distribution over states that expresses the task, γ the discount factor
that describes the relative importance between short-sight and far-sight rewards, and ρ the proba-
bilistic distribution of initial observations. The goal of traditional RL is to find a policy πT : S → A
that maximizes the following return:

max
πT∈ΠT

G (πT) =
∑
s0∈S

ρ (s0)
{ ∞∑
t=1

γt
∫
r

[rR (r |st ) dr]
}

=
∑
s0∈S

ρ (s0)VπT (s0) (1)

where VπT
(s) is the state-value function that satisfies the following Bellman equation:

VπT
(s) =

∑
a∈A

πT (a|s)
∑
s′∈S

P (s′| s, a)

∫
r

R (r |s′ ) [r + γVπT
(s′)] dr (2)

RL agents interact with the environment to collect transitions 〈st, at, st+1, rt+1〉. Different RL
algorithms utilize the collected transitions and equation (2) in different ways to construct functions
that represent polices so as to maximize objective (1). Generally they can be summarized into three
categories: model-constructing, value-based, and direct action-mapping, which respectively process
the transitions into forms of (st, at) → st+1, st → V (or (st, at) → Q for state-action value-based
methods) and st → at. In this paper we call such correspondences “data samples” to emphasize that
they are the actual data used to construct function that represent the policy, and use z = (x, y) to
generally represent the content and label of a data sample. Further, we denote the function as gT(·),
and the optimization problem becomes:

min
gT

ND∑
i=1

L [yi, gT (xi)] (3)

where D is the set of data samples and ND is the number of them; L is a predefined loss function,
e.g. l2-norm.

Note that data samples reflect properties of environment, policy and tasks, and they depend on
the sampling process in RL. Because gT(·) is a single-value mapping, normally the optimization
problem (3) results in the expectation of data samples and alleviate the variances induced by the
sampling processes. However, in open environments the observation space S is large, the transition
dynamics P is nonstationary, and reward function R may be contradictory; thus same state-action
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pairs may transit to contradictory successive states and rewards; then the Bellman equation (2) may
return different label y for the same data content x. Such differences come from the variances in
environment or tasks, and should not be entangled through expectation. In this paper we name this
problem data confusion. To eliminate this problem, extra information, which we denote as κ, need
to be introduced, and the key problem is how to select κ and efficiently use it to eliminate data
confusion at the minimum cost of simplicity. In the next subsection we introduce Subjective RL
Framework to formalize this problem.

As aforementioned, methods that expand the state space directly into the history space and try to
construct the mapping from history to labels does not necessarily eliminates this problem in practice,
so it remains meaningful to analyze the data confusion problem under the assumption that function
approximators can only handle finite length of states. To make notations simple, here we focus on
confusing mapping from single states and leave the history to the subjectivity part, without loss of
generality.

3.2 FRAMEWORK

We propose to model tasks in open environments as
〈
h,Mk

〉
, where h is the subjectivity that “sub-

jectively” treats the entire large, nonstationary and possibly contradictory environment as some sep-
arate, simple and stationary MDPs Mk =

〈
T k,Sk,Ak, P k, Rk, γk, ρk

〉
, which we call subjective

MDPs. One key property of subjective MDP is that there are not data confusion problems for the
functions used to construct corresponding policies, i.e πkS (a|s), V kS (s), QkS (s, a) and P kS (s, a)
should not contain data confusions. The expected role of h is to utilize extra information κ to divide
contradictory data samples into different sets. A formal definition of it is given below.

Definition 1. The subjectivity h in subjective RL framework is a function that maps a piece of extra
information κ to the sum-to-one vector that corresponds to the weights of all possible subjective
MDPs Mk.

Correspondingly, we maintain a subjective policy πkS (a|s, κ) for each subjective MDP and the over-
all policy can be formulated as:

πz (a|s, κ) =

NS∑
k=1

hk (s, κ)πkS (a|s) (4)

where hk is the k-th element of h and NS is a variable characterizing the number of maintained
subjective MDPs; κ ∼ F (κ) where F (κ) is a distribution that is assumed to be available. Here κ
may correspond to multiple types of information, including state history, out-of-MDP task encoding,
samples from related tasks, etc. Similarly the overall value functions or model transitions can be
represented in similar forms, e.g. Vπz (s, κ) =

∑NS

k=1 hk (s, κ)V kS (s).

Then the overall global optimization problem of the task becomes:

max
πz∈Πz

G (πz) =
∑
s0∈S

ρ (s0)
{ ∞∑
t=1

γt
∫
r

[rR (r |st ) dr]
}

=
∑
s0∈S

ρ (s0)Vπz (s0) (5)

where

Vπz (s, κ) =
∑
a∈A

[πz (a|s, κ)]
∑
s′∈S

{
NS∑
k=1

hk (s, κ)P k (s′| s, a)
]

·
NS∑
k=1

hk (s, κ)

∫
r

{
Rk (r |s′ ) [r + γVπz (s′, κ)] dr

}} (6)

Note that the subjectivities only disentangle the original problem into a variable number of subjec-
tive MDPs and does not change the original properties, thus the global return G reflects the same
optimization goal.

From the perspective of data samples, the policy function gz(·) becomes:

gz (x, κ) =

NS∑
k=1

hk (x, κ) gkS (x) = h (x, κ) · gS (x) (7)
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Figure 1: Samples in the Subjective RL Framework

where gkS is the k-th mapping for data samples from the corresponding subjective MDP, and gS is
the concatenation of all the mappings.

One important property of extra information κ is that it may become available only after certain
time step and its effect on subjectivity about data samples may only last for a finite time-period,
e.g. the history of states τt appear at time-step t and expires after the possibly existing episode
ends. Therefore we use κt to denote the extra information that becomes available at time-step t, and
introduce a data-related mask to characterize its range of effect: Φ (xj , κt) = 1 if κt can affect the
subjectivity about data content xj , and 0 otherwise. Note that Φ only depends on the arriving time
of extra information and the data samples, so it should be available under most conditions. Then the
constraint on h can be formalized as

hk (x, κt) =
1

NS
if Φ (x, κt) = 0 for k = 1, 2, . . . , NS (8)

Figure 1 provides an illustration of the relationship between data samples, extra information and the
mask.

We parametrize h and gS with αh and αS respectively, and require the range αh to satisfy the
constraint expressed in eq.(8). The optimization problem about data samples then becomes:

min
αh,αS

1

Nκ

Nκ∑
j=1

1

ND

ND∑
i=1

L [yi,h (xi, κj) · gS (xi)]
}

(9)

where Nκ is the number of available extra information.

4 THEORETICAL ANALYSIS

In the above section we formalize our Subjective Reinforcement Learning Framework which for-
mally considers the data confusion problem and the extra information used to eliminate it. Below
we analyze in theory the performance of a subjective policy. In the first part we focus on the return
G which is the optimization target of RL; in the second part we turn to analyze the risk bound of the
policy function which relates closely to G, is general, and does not depend on certain algorithms.

4.1 RETURN GAP

In reinforcement learning, the return G is the overall criterion to evaluate the performance of a
policy. Here we firstly define the return gap as:

δ = max
πz∈Πz

G (πz)− max
πT∈ΠT

G (πT) (10)

where πz refers the subjective policy and πT the policies in traditional forms.

For tasks in open environments, there may be more than one optimal trajectories τ∗ that maximize
the global return. For simplicity in notation here we consider cases where there is only one initial
state s0 and only one optimal trajectory, without loss of generality. Intuitively the loss function (3)
and (9) need not be zero for an optimal policy, but the policy function must represent data samples
from optimal trajectories well so as to be optimal; thus when data confusion problem happens within
such data samples, the subjective policy may gain better performance.
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In the following analysis we denote the optimal subjective policy as π∗z (which includes h∗k and πk∗S )
and let the optimal trajectory achieved by it be τ∗z = {(s0, a0), (s1, a1), . . . , (sT , aT )}. In order to
express the changing of extra information κ, we use subscript i.e. κt to denote the available extra
information at time t.

Theorem 1. Assume that all possible data samples appear infinite times when the total number of
samples ND →∞, then the return gap δ ≥ 0 holds true;

Proof. In our framework we have subjectivity h that aims to divide confused data samples under
the constraint of eq.(8). Consider a given piece of extra information κ and any subjectivity h0, our
subjective policy is defined as eq.(4). As for any traditional policy πT (a|s), we can define fake
subjective policies as:

πz,fake (a|s, κ) =

NS∑
k=1

h0,k (s, κ)πkS,fake (a|s) (11)

where πkS,fake (a|s) = πT (a|s) for any s, a, k. Then we have πz,fake (a|s) = πT (a|s) hold true
for any s, a, κ, which means the policy space ΠT is equally transformed in to Πz,fake. Because
πkS,fake (a|s) are defined to be the same with reference to k, we have Πz,fake ⊆ Πz . Therefore, under
the condition that samples required to estimate the optimal policy are plenty, which ensures that an
optimal policy can be learned out of the data, the introduced subjectivity extends the policy space
and theoretically provides no worse result than single-value-based methods, that is δ ≥ 0. �

Corollary 1. Further, if there exists steps i, j ∈ {1, . . . , T} such that transitions from τ∗z satisfies
si = sj but πz (a|si, κi) 6= πz (a|sj , κj), then δ > 0.

Proof: We have πT (a|si) = πT (a|sj) because si = sj . Because of πz (a|si, κi) 6= πz (a|sj , κj),
πT (a|si) = ai and πT (a|sj) = aj cannot hold at the same time. Thus τ∗z cannot be fully presented
by πT. As analyzed in part (1), the policies that can be represented by πT is a subset of πz , and
according to the assumption that τ∗z is unique, we reach the conclusion that δ > 0. �

The following theorem transforms the return gap into the analysis of risk bound of the policy func-
tions:

Theorem 2. Under the assumption of sufficient sampling and exploration, the gap between approx-
imate return and the optimal return satisfies the following inequality:

lim
w→∞

|G (πw)−G∗| ≤ δcom + 2γε

(1− γ)
2 (12)

where πw is the policy at the w-th iteration, γ the discount rate, δcom the bound on error incurred
in computation of policy update and ε the worst-case bound of error on function approximation
(Bertsekas & Tsitsiklis, 1997):

max
s∈S

∣∣∣V̂w (s)− Vπw (s)
∣∣∣ ≤ ε, w = 1, 2, . . . (13)

Proof : Bertsekas & Tsitsiklis (1997) proves that:

lim
w→∞

sup max
s∈S
|Vπw (s)− V ∗ (s)| ≤ δcom + 2γε

(1− γ)
2 (14)

where V ∗ the optimal state value function. Recall that the overall optimization problem is defined
as:

max
π∈Π

G (π) =
∑
s0∈S

ρ (s0)Vπ (s0) (15)

Because ρ (s0) ≥ 0 and
∑
s0∈S ρ (s0) = 1 for any s0 ∈ S, the following equation gives the proof:

lim
w→∞

|G (πw)−G∗| = lim
w→∞

∣∣∣∣∣∑
s0∈S

ρ (s0)Vπw (s0)−
∑
s0∈S

ρ (s0)V ∗ (s0)

∣∣∣∣∣
≤ lim
w→∞

∑
s0∈S

ρ (s0) |Vπw (s0)− V ∗ (s0)|

=
∑
s0∈S

ρ (s0) lim
w→∞

|Vπw (s0)− V ∗ (s0)| ≤ δcom + 2γε

(1− γ)
2

(16)
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�

In practice, γ is a part of the environment, and δcom can be made small (Bertsekas & Tsitsiklis,
1997). Thus the above theorem shows that decreasing ε is necessary for improving the overall
performance. In the following subsection we analyze the relationship between ε and the general
design of policy functions.

4.2 RISK BOUND

In order to analyze the errors in approximation of policy functions, we transform the loss L in the
optimization target of the policy to a compact and probabilistic form. First we concatenate the
denotation of extra information κi and data sample (xj , yj) as dij = (κi, xj , yj); we consider the
number of available dij to be n and thus use di to represent the input of subjectivity. We then use
b to denote the weight vector output of the subjectivity h (di); then we combine the NS subjective
MDPs base on b as g (di, b) = b · gS (di) where g(·) and gS does not depend on the κ part of di;
finally we equally express the original subjectivity in the probabilistic form h (di, b) = P (b|di) and
reach the transformation of L:

L [yi,h (xi, κj) · gS (xi)] = Eb

{
L [yi, g (di, b)]h (di, b)

}
(17)

We denote the distribution of b and d respectively as F (b) and F (d); the parameters of h and g are
still αh and αS. Then we define the expected risk and empirical risk as follows:

Definition 2. The expected risk functional in subjective reinforcement learning is:

Risk (αh, αS) =

∫∫
L [yi, g (di, b)]h (di, b) dF (b) dF (d) (18)

For simplicity, we use α to denote the combined set of αh and αS, and ς (d, b, α) =
L [yi, g (di, b)]h (di, b). Then the above definition results in:

Risk (α) =

∫∫
ς (d, b, α) dF (b) dF (d) (19)

We denote the considered number of possible b to be m; under specific design of the output of
h (x, κ), m can be represented using NS, e.g. in one-hot cases we have m = NS. Then we can
define the empirical risk functional as follows.

Definition 3. The empirical risk functional in subjective reinforcement learning is:

Riskemp (α,m, n) =
1

m

m∑
i=1

1

n

n∑
j=1

ς (dj , bi, α) (20)

Note that the Risk (α) here expresses the ε in eq.(12). In order to minimize it, we consider the
maximum possible risk gap between Riskemp and Risk (α):

ξ〈m,n〉 = sup
α

[Risk (α)−Riskemp (α,m, n)] (21)

The above form of expression enable us to adopt results from Su et al. (2019), which is summarized
in the following theorem:

Theorem 3. Consider α∗ that minimizes the empirical risk (20), the following inequality takes
place with probability 1− η:

Risk (α∗) < Riskemp (α∗,m, n) + ζn,m (22)

where

η = 4 exp
{[ub
m

(1+ln
2m

ub
)−
(
ζn,m − 1

m

)2
(Bb −Ab)

2

]
m
}

+4 exp
{[ lnm

n
+
ud
n

(1+ln
2n

ud
)−
(
ζn,m − 1

n

)2
(Bd −Ad)2

]
n
}

(23)
Ab, Bb, Ad and Bd are bounds on functions:

Ab ≤ Risklocal (α, b) ≤ Bb, Ad ≤ ς (d, b, α) ≤ Bd (24)
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where Risklocal (α, b) =
∫
ς (d, b, α) dF (d); ub and ud are the VC dimension of function h and g

respectively.

Note that Ab, Bb, Ad and Bd are fixed once the actual form of functions are determined. We also
want to emphasize that α∗h and α∗S, which compose α∗, should respectively satisfy eq.(8) and the
independence of g(·) on κ.

5 GUIDANCE FOR ALGORITHM DESIGN

In previous section we analyze in theory how the performance of a subjective policy relates to dif-
ferent factors. Now we discuss how these results can be utilized to guide the designing of algorithms
for tasks in open environments.

As analyzed in section 3, there is data confusion problem in tasks in open environments. Generally
extra information should be introduced, but how to select the capacity of functions so that the overall
performance is optimal becomes an important problem, because there are not tasks-specific prior
knowledges in open environments. In theorem 2 we derive that, under the assumption of sufficient
exploration and sampling that ensures the unbiasedness of data samples, the gap between achieved
overall return and the optimal return tends to a value that is bounded according to ε; then in theorem
3, this ε is further bounded by ζn,m plus the empirical risk with probability 1− η, considering their
maximum values over the whole learning process.

Note that the elements in eq.(23), i.e. ub, ud, m, Ab, Bb, Ad and Bd, are all accessible and modifi-
able as long as the data and the designed functions are determined, and can have concrete meanings
if actual algorithms are given. Concretely, m may be the number of options if b is set to be one-hot
and the option-based algorithms are adopted; Ab, Bb, Ad and Bd may be directly accessible if sig-
moid functions are appended to function h and g; ub, ud can be determined once the functionals and
the mask Φ (x, κ) are given.

Therefore, for tasks in open complex environments, we may first select η which reflects the needed
confidence level of the analytical results. Then, after data samples from the tasks being collected,
eq.(23) guides us to reduce ζn,m through the design of elements ub, ud, m, Ab, Bb, Ad and Bd,
which can then be used for the design of actual forms or hyper-parameters. Note that the expected
risk Risk also includes Riskemp which may also be affected by such adjustments, but as both
Riskemp and ζn,m have been expressed explicitly, we argue that a satisfying adjustment is still
achievable despite the possible difficulty in computation. may also be affected by such adjustments.
Besides, the data samples change as the policy evolves during training, which may lead to the change
of ideal adjustments; for this case, changes to m, ub and ud may require the re-tunning of the
parameters α in e.g. neural networks; one solution is to calculate adjustments with strict η but change
them when loose η is not satisfied, another solution may require designing a form of parameter-
flexible function model.

6 CONCLUSION

In this paper we consider tasks in open complex environment and propose data confusion as one
core problem. Although current methods relieve this problem to some extent, their reliance on
task-specific prior knowledge limits their capacity for tasks in open environments. We propose sub-
jective reinforcement learning framework to represent data confusion problem from a broader view,
and subjective policy that generally represents many existing methods. Our theoretical analysis
shows the conditions under which a subjective policy outperforms traditional ones, and the relation-
ship between overall performance and the key elements that characterize a subjective policy. As
the elements are concrete and modifiable, our analysis further provides guidance for designing algo-
rithms with theoretically guaranteed performance. We also point out several difficulties in practical
implementation, which include the complexity in calculating ideal adjustments to the elements and
the probable necessity for re-tuning when considering specific kind of models; these problems are
planned as future works.
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