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Abstract

‘When agents interact with a complex environment, they must form and maintain
beliefs about the relevant aspects of that environment. We propose a way to
efficiently train expressive generative models in complex environments. We show
that a predictive algorithm with an expressive generative model can form stable
belief-states in visually rich and dynamic 3D environments. More precisely, we
show that the learned representation captures the layout of the environment as well
as the position and orientation of the agent. Our experiments show that the model
substantially improves data-efficiency on a number of reinforcement learning (RL)
tasks compared with strong model-free baseline agents. We find that predicting
multiple steps into the future (overshooting), in combination with an expressive
generative model, is critical for stable representations to emerge. In practice, using
expressive generative models in RL is computationally expensive and we propose
a scheme to reduce this computational burden, allowing us to build agents that are
competitive with model-free baselines.

1 Introduction

We are interested in making agents that can solve a wide range of tasks in complex and dynamic
environments. While tasks may be vastly different from each other, there is a large amount of
structure in the world that can be captured and used by the agents in a task-independent manner.
This observation is consistent with the view that such general agents must understand the world
around them [1]. The collection of algorithms that learn representations by exploiting structure in
the data that are general enough to support a wide range of downstream tasks is what we refer to as
unsupervised learning or self-supervised learning. We hypothesize that an ideal unsupervised learning
algorithm should use past observations to create a stable representation of the environment. That
is, a representation that captures the global factors of variation of the environment in a temporally
coherent way. As an example, consider an agent navigating in a complex landscape. At any given
time, only a small part of the environment is observable from the the perspective of the agent. The
frames that this agent observes can vary significantly over time, even though the global structure of
the environment is relatively static with only a few moving objects. An useful representation of such
an environment would contain, for example, a map describing the overall layout of the terrain. Our
goal is to learn such representations in a general manner.

Predictive models have long been hypothesized as a general mechanism to produce useful represen-
tations based on which an agent can perform a wide variety of tasks in partially observed worlds
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[2, 3]. A formal way of describing agents in partially observed environments is through the notion
of partially observable Markov decision processes [4, 5] (POMDPs). A key concept in POMDPs is
the notion of a belief-state, which can be defined as the sufficient statistics of future states [6, 7, 8].
In this paper we refer to belief-states as any vector representation that is sufficient to predict future
observations as in [9, 10].

A fundamental problem in building useful environment models, which we want to address in this
work, is long-term consistency [11, 12]. This problem is characterized by many models’ failure to
perform coherent long-term predictions, while performing accurate short-term predictions, even in
trivial but partially observed environments [11, 13, 14].

We argue that this is not merely a model capacity issue. As previous work has shown, globally
coherent environment maps can be learned by position conditioned models [15]. We thus propose
that this problem is better diagnosed as the failure in model conditioning and a weak objective, which
we discuss in more details in Section 2.1.

The main contributions of this paper are: 1) We demonstrate that an expressive generative model of
rich 3D environments can be learned from merely first-person views and actions to capture long-term
consistency; 2) we provide an analysis of three different belief-state architectures (LSTM [16],
LSTM + Kanerva Memory [17] and LSTM + slot-based Memory [18]) on the ability to decode
the environment’s map and the agent’s location. 3) we design and perform experiments to test
the effects of both overshooting and memory, demonstrating that generative models benefit from
these components more than deterministic models; 4) we show that training agents that share their
belief-state with the generative model have substantially increased data-efficiency compared to a
strong model-free baseline [19, 18], without significantly affecting the training speed; 5) we show
one of the first agents that learns to collect construction materials in order to build complex structures
from a first-person perspective in a 3d environment.

The remainder of this paper is organized as follows: in Section 2 we introduce the main components
of our agent’s architecture and discuss some key challenges in using expressive generative models in
RL. Namely, the problem of conditioning, Section 2.1, and why next-step models are not sufficient
in Section 2.2, in Section 3 we discuss related research. Finally, we describe our experiments in
Section 4.

2 Methods

In this section we describe our proposed agent and model architectures. Our agent has two main
components. The first is a recurrent neural network (RNN) as in [19] which observes frames z;,
processes them through a feed-forward network and aggregates the resulting outputs by updating its
recurrent state b;. From this updated state, the agent core then outputs the action logits, a sampled
action and the value function baseline. The second component is the unsupervised model, which
can be: (i) a contrastive loss based on action-conditional CPC [20]; (ii) a deterministic predictive
model (similar to [11]) and (iii) an expressive generative predictive model based on ConvDRAW,
[21]. We also investigate different memory architectures in the form of slot-based memory (as used
in the reconstructive memory agent, RMA) [18] and compressive memory (Kanerva) [17]. The
unsupervised model consists of a recurrent network, which we refer to as simulation network or
SimCore, that starts with a given belief state s? = b; at some random time ¢, and then simulates
deterministically forward, seeing only the actions of the agent. After simulating for k steps, we use
the resulting state s} to predict the distribution of frames p(zy1x|bs, ar. (141)) = P(i4x|57)(in cases
(i1) and (iii)). A diagram illustrating this agent is provided in Figure 1 and the precise computation
steps are provided in Table 1. A concrete example of the computation of the model’s loss is provided
as pseudo-code in Appendix K.

Evaluating the loss of an expressive generative model for an entire sequence is computationally
expensive. We address this by only computing the model’s loss at a small random subset of the
frames in the sequence as shown in Table 1.

2.1 Frame generative models and the problem of conditioning.

It is known that expressive frame generative models are hard to condition [22, 23, 24, 25]. This is es-
pecially problematic for learning belief-states, because it is this conditioning that provides the learning
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Figure 1: Diagram of the agent and model. The agent receives observations z from the environment,
processes them through a feed-forward residual network (green) and forms a state using a recurrent
network (blue), online. This state is a belief state and is used to calculate policy and value as well as
being the starting point for predictions of the future. These are done using a second recurrent network
(orange) - a simulation network (SimCore) that simulates into the future seeing only the actions. The
simulated state is used to conditioning for a generative model (red) of a future frame.

Belief State Update by = RNNygent(be—1, at—1, %)
Agent Core Value and Policy Logits Visor = f(by)
Action a; ~ Cat(op)
Simulation State Initialization sV =10
Simulation State Update sf“ = RNNiimeore (SF, a1 1)

SimCore Simulation Starting Times t; ~unif(1, L,)

Likelihood Evaluation Times 8¢ ~unif(1, min(Ly, t; + Lo))

Predictive Loss L =- Zfi”l QL log p(xtﬁéi sf’“)

Table 1: Agent and simulation core definitions. The agent’s RNN state b; is what we call the belief
state. At the start of a simulation, the SimCore’s RNN state sf is initialized to be equal to the belief
state s = b;. The states of the SimCore RNN s¥ are used at times 4}, to condition the model of the
frames at times ¢; + &7.. Here L, is the total length of an episode, N, (typically 2) is the number of
points in the future used to evaluate the predictive loss, IV, (typically 6) is the number of random
points along the trajectory where we unroll the predictive model and L, is the overshoot length
(typically 4-32), which is the maximum time-length used to train the predictive model. We choose
Ny and N; small compared to L, to maintain a low computational cost of the model’s loss.

signal for the formation of belief-states. If the generative model ignores the conditioning information,

it will not be possible to optimize the belief-states. More precisely, if the generative model fails
to use the conditioning we have £ = — 25\21 ,Ij-z"l Inp(zi4s, \sf’“) R — vaztl ,ICV-Z‘]l Inp(zits,)

and thus V, £ ~ 0, and consequently learning the belief-state b; is not possible.

‘We observe this problem by experimenting with expressive state of-the-art deep generative models
such as PixelCNN [26], ConvDRAW [21] and RNVP [27]. We found empirically that a modified
ConvDRAW in combination with GECO [28] works well in practice, which allows us to learn stable
belief-states while maintaining good sample quality. As a result, we can use our model to consistently
simulate many steps into the future. More details of the modified ConvDRAW architecture and
GECO optimization experiments are provided in Appendix A and Appendix G respectively.

2.2 Why is next-step prediction not sufficient?

A theoretically sufficient and conceptually simple way to form a belief state b; is to train a next-step
prediction model p(x¢11|z1,...,2:) = p(xes1|be), where by = RNN(bs_1, x4, a;) summarizes
the past. Under an optimal solution, it contains all the information needed to predict the future



P(Tty1, Tryo, - . . |b) because any joint distribution can be factorized as a product of such conditionals:
P(Ty1, Trya, - .- |bt) = p(xes1]be) X p(2rp2|bey1 = f(x41,b:)) X ... This reasoning motivates a
lot of research using next-step prediction in RL, e.g. [29, 30].

We argue that next-step prediction exacerbates the conditioning problem described in Sec-
tion 2.1. In a physically realistic environment the immediate future observation x;,; can be
predicted, with high accuracy, as a near-deterministic function of the immediate past observa-
tions (4, ¢ This intuition can be expressed as p(@41|T(t—x),... .t> C(t—r—1),...,(t—1)s D(t—r)) =
P(Te11|T(—k),... t) A(t—r—1),...,(t—1))- That is, the immediate past weakens the dependency on belief-
state vectors, resulting in V;, £ ~ 0. Predicting the distant future, in contrast, requires knowledge of
the global structure of the environment, encouraging the formation of belief-states that contain that
information.

Generative environment models trained with overshooting have been explored in the context of
model-based planning [31, 32, 33, 34]. But evidence of the effect of overshooting has been restricted
to the agent’s performance evaluation [33, 31]. While there is some evidence that overshooting
improves the ability to predict the long-term future [11], there is no extensive study examining which
aspects of the environment are retained by these models.

As noted above, for a given belief-state the entropy of the distribution of target observations increases
with the overshoot length (due to partial observability and/or randomness in the environment), going
from a near deterministic (uni-modal) distribution to a highly multi-modal distribution. This leads us
to hypothesize that deterministic prediction models should benefit less from growing the overshooting
length compared to generative prediction models. Our experiments below support this hypothesis.

2.3 Belief-states, Localization and Mapping

Extracting a consistent high-level representation of the environment such as the bird’s eye view "map"
from merely first-person views and actions in a completely unsupervised manner is a notoriously
difficult task [12] and a lot of the success in addressing this problem is due to the injection of a
substantial amount of human prior knowledge in the models [35, 36, 37, 38, 39, 40].

While previous work has primarily focused on extracting human-interpretable maps of the environ-
ment, our approach is to decode position, orientation and top down view or layout of the environment
from the agent’s belief-state b;. This decoding process does not interfere with the agent’s training,
and is not restricted to 2D map-layouts.

We use one-layer MLP to predict the discretized position and orientation and a convolutional network
to predict the top down view (map decoder). When the belief-state b; is learned by an LSTM, it is
composed of the LSTM hidden state h; and the LSTM cell state c;. Since the location and map decoder
need access to the full belief-state, we condition these maps on the vector u; = concat(hy, tanh(c;)).
When using the episodic, slot based, RMA memory we first take a number of reads from the memory
conditioned on the current belief-state b; and concatenate them with u; defined above. For the
Kanerva memory we learn a fixed set of read vectors and concatenate the retrieved memories with
Ut.

3 Other Related Work

The idea of learning general world models to support decision-making is probably one of the most
pervasive ideas in Al research, [30, 11, 41, 42, 14, 43, 44, 45, 46, 33, 30, 47, 48, 3, 49, 50, 51, 52]. In
spite of a vast literature supporting the potential advantages of model-based RL, it has been a challenge
to demonstrate the benefits of model-based agents in visually rich, dynamic, 3D environments. The
challenge of model-based RL in rich 3D environments has compelled some researchers to use
privileged information such as camera-locations [15], depth information [53], and other ground-truth
state variables of the state simulator [54, 49]. On the other hand, some work has provided evidence
that we may not need very expressive models to benefit to some degree [30].

Our proposed model could in principle be used in combination with planning algorithms. But
we take a step back from planning and focus more on the effect of various model choices on the
learned representations and belief states. This approach is similar to having a representation shaped
via auxiliary unsupervised losses for a model-free RL agent. Combining auxiliary losses with



reinforcement learning is an active area of research and a variety of auxiliary losses have been
explored. A non-exhaustive list includes pixel control [55], contrastive predictive coding (CPC) [56],
action-conditional CPC [20], frame reconstruction [35, 57], next-frame prediction [18, 58, 20, 59]
and successor representations [60, 61, 62].

As in [20, 10, 50] our proposed architecture has a shared belief-state between the generative model
and the agent’s policy network. The closest paper to our work is [20], where a comparison is made
between action-conditional CPC and next-step prediction using a deterministic next-step model.
There are several key differences between this paper and our work: (i) We analyze the decoding of
the environment’s map from the belief state; (ii) We show that while next-frame prediction may be
sufficient to encode position and orientation, it is necessary to combine expressive generative models
with overshoot to form a consistent map representation; (iii) We demonstrate that an expressive
generative model can be trained to simulate visually rich 3D environments for several steps in the
future; (iv) We also analyze the impact on RL performance of various model choices. We also discuss
and propose solutions to the general problem of conditioning expressive generative models.

4 Experiments

We analyze our agent’s performance with respect to both its ability to represent the environment
(e.g. knows its position and map layout) and RL performance. Our experiments span three main
axes of variation: (i) the choice of unsupervised loss for the overshoots (e.g. deterministic prediction,
generative prediction and contrastive); (ii) the choice of overshoot length and (iii) the choice of
architecture for the belief-state and simulation RNNs (LSTM [16], LSTM with Kanerva memory
[17] and LSTM with the memory from the reconstructive memory agent (RMA) [18]). RMA uses a
slot based memory that stores all past vectors, whereas Kanerva memory updates existing memories
with new information in a compressive way, see Appendix B for more details.

The agent is trained using the IMPALA framework [19], a variant of policy gradients, see Appendix D
for details. The model is trained jointly with the agent, sharing the belief network. We find that the
running speed decreases only by about 20 — 40% compared to the agent without model. We use Adam
for optimization [63]. The detailed choice of various hyperparameters is provided in Appendix F.

Our experiments are performed using four families of procedural environments: (a) DeepMind-Lab
levels [64] and three new environments that we created using the Unity Engine: (b) Random City; (c)
Block building environment; (d) Random Terrain.

4.1 Random City

The Random City is a procedurally generated 3D navigation environment, Figure 2 showing first
person view (top row) and the top down view (second row). At the beginning of an episode, a random
number of randomly colored boxes (i.e. “buildings”) are placed on top of a 2d plane. We used this
environment primarily as a way to analyze how different model architectures affect the formation of
consistent belief-states. We generated training data for the models using fixed handcrafted policy that
chooses random locations and path planning policy to move between these locations and analyze the
model and the content of the belief state (no RL in this experiment).

In the third row of Figure 2 we show the top down view reconstructions from the belief state (to
emphasize, the belief-state was not trained with this information). We see that whenever the agent
sees a new building, the building appears on a map, and it still preserves the other buildings seen so
far even if they are not in its current field-of-view. Rows four and five show a later part of an input
sequence (when the model has seen a large part of the environment) and a rollout from the model. We
see that the model is able to preserve the information in its state and use this information to correctly
simulate forward.

We analyze the effects of self-supervised loss type, overshoot length and memory architecture on
position prediction and map decoding accuracy. The results are shown in Figure 3. We make the
following observations: (i) an increase in the overshoot length improves the ability to decode the
agent’s position and the map layout for all losses (up to certain length); (ii) The contrastive loss
provides the best decoding of the agent’s position for all overshoot lengths Figure 3a; (iii) The
generative prediction loss provides the best map decoding and is the most sensitive to the overshoot
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Figure 2: Random City environment. Rows: 1. Input to the model sequence starting from the
beginning of the episode. 2. Top down view (a map). 3. Top down view decoded from the belief
state. The belief state was not trained with this decoding signal, but only from the first person view
(top row). We see that the model is able to fill up the map as it sees new frames. 4. Frames later in
the sequence (after 170 steps). 5. Rollout from the model. The model knows what it will see as the
agent rotates. See supplementary video https://youtu.be/d0nvAp_wxvO0.
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Figure 3: The choice of model and overshoot length have significant impact on state representation.
(a) All models benefit from an increase in the overshoot length with respect to position decoding,
with the Contrastive model reaching higher accuracy; (b) The Generative models are the most
sensitive to overshoot length with respect to Map decoding MSE. A substantial reduction in map
decoding MSE is obtained by using architectures with memory; (¢) Examples of decoded maps.
Each block shows real maps (top-row) and decoded maps (bottom-row). Top block: Contrastive
model samples at Overshoot Length 1 (MSE of approx. 160); Bottom block: Generative + Kanerva
at Overshoot Length 12 (MSE of approx. 117). We can clearly notice the difference in the details
for both models. (d) Effect of overshoot on environment’s map decoding. This analysis shows that
Generative and Generative + Kanerva benefit the most from an increase in overshoot length in contrast
to Deterministic and Contrastive architectures. In particular, we observe that Generative + Kanerva
architecture is particularly good at forming belief-states that contain a map of the environment.

length with respect to map decoding error Figure 3d. (iv) The combination of generative model with
Kanerva memory provides the best map decoding accuracy.

We also see that the contrastive loss is very good at localization but poor at mapping. This loss
is trained to distinguish a given state from others within the simulated sequence and from other
elements of the mini-batch. We hypothesize that keeping track of location very accurately allows to
distinguish a given time point from others, but that in a varied environment it is easy for the network
to distinguish one batch element from others without forming a map of the environment.

We also see that Kanerva memory works significantly better then pure LSTM and the slot based
memory. However, the latter result might be due to limitation of the method used to analyze the
content of the belief state. In fact it is likely that the information is in the state since slot based
memory stores all the past vectors, but that it is hard to extract this information. This also raises an
interesting point - what is a belief state? Storing all past data contains all the information a model
can have. We suggest that what we are after is a more compact representation that is stored in a easy
to access way. Kanerva memory aims to not only to store the past information but integrate it with
already stored information in a compressed way.
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Figure 4: Generative SimCore results in substantial data-efficiency gains for agents in DeepMind-Lab
relative to a strong model-free baseline. We also observe that model-free agents have substantially
higher variance in their scores. See supplementary video https://youtu.be/d0OnvAp_wxvO.
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Figure 5: The input and the rollout in DeepMind Lab. The agent is able to correctly rollout for many
steps, and remember where the rewarding object is (the object in the bottom right frames).

4.2 DeepMind Lab

DeepMind Lab [64] is a collection of 3D, first-person view environments where agents perform
a diverse set of tasks. We use a subset of DeepMind Lab (rat_goal_driven, rat_goal_doors,
rat_goal_driven_large and keys_doors_random) to investigate how the addition of the generative
prediction loss with overshoot affects the agent’s representation or belief-state as well as its RL
performance.

We compare four agents in the following experiments. The first termed LSTM is the standard
IMPALA agent with LSTM recurrent core. Next agent, termed RMA is the agent of [18], the core
of which consist of and LSTM and a slot based episodic memory. The final two agents termed
LSTM+SimCore and RMA+SimCore are the same as LSTM and RMA agents, but with the model
loss added.

The results of our experiments are shown in Figure 4. We see that adding the model loss improves
performance for both LSTM and RMA agents. While Kanerva memory significantly helps in the data
regime we found it to be unstable in the RL setting. More work is required to solve this problem.
We found that using the RMA memory helped substantially with large environments as shown in
Figure 4(rat_goal_driven_large).

We found that map reconstruction loss varies significantly during training. This could be due to policy
gradients affecting the belief state, changing policy or changing of the way the model represents the
information, with decoder having hard time keeping up. We found that longer overshoot lengths
perform better than shorter ones, but that did not translate into improved RL performance. This could
also be an artifact of the environment - there are permanent features present on the horizon, and the
agent does not need to know the map to navigate to the goal. The model is able to correctly rollout for
a number of steps, Figure 5 knowing where the rewarding object is (the object on the bottom right).

4.3 Voxel environment

We want to create an environment that requires agents to learn complex behaviours to solve tasks. For
this, we created a voxel-based, procedural environment with Unity that can be modified by the agents
via building mechanisms, resulting in a large combinatorial space of possible voxel configurations
and behavioural strategies. See accompanying video for examples of this environment and of learned
behaviors.
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Figure 6: Top: Voxel levels. There are four levels: BridgeFood, Cliff, Food and HighFood. For each
level, four views are shown: Early frame first person view, early frame third person view, later frame
first person view, later frame third person view. The agent sees only the first person view and its goal
is to pick up yellow blocks, which it needs to get to. The agent has blocks that it can place. The
agent learns how to build towers (BridgeFood and HighFood) and stairs (Cliff) to climb to the food.
Bottom: Training the agent with SimCore substantially increases data-efficiency. See supplementary
video https://youtu.be/d0nvAp_wxvO.

The environment consists of blocks of different types and appearances that are placed in a three
dimensional grid. The agent moves continuously through the environment, obeying Unity engine’s
physics. The agent has a simple inventory, can pick up blocks of certain types, place them back
into the world and interact with certain blocks. We build four levels, Figure 6 top, where the goal
is to consume all yellow blocks (‘food’). The levels are: Food: Five food blocks placed at random
locations in a plane - this is a curriculum level for the agent to quickly learn that yellow blocks give
reward. HighFood: The same setting, but the food is also placed at random height. If the food is
slightly high, the agent needs to look up and jump to get it. If the food is even higher, the agent needs
to place blocks on the ground, jump on them, look up at the food and jump. CIiff: There is a cliff of
random height with food at the top. The agent needs to first pick up blocks and then build structures
to climb and reach the top of the cliff. Interestingly, the agent learns to pick them up and build stairs
on the side of the cliff. Bridge: The agent needs to get to the other side of a randomly sized gap,
either by building a bridge or falling down and then building a tower to climb back up. The agent
learns the latter. We also trained the agent on more complex versions of the levels, showing rather
competent abilities of building high structures climbing, see Appendix J and the accompanying video.

We compared the LSTM and LSTM+SimCore agents (without an episodic memory) on these levels.
In this case, one agent is playing all four levels at the same time. From Figure 6 we see that the
SimCore significantly improves the performance on all the levels. In addition we found that the
performance is much less sensitive to Adam hyper-parameters as well as unroll length. We also
found that the model is able to simulate its movement, building behaviours and block picking, see
(Appendix J) for samples.

Finally we tested a map building ability in a more naturalistic, procedurally generated terrain,
Figure 11. This environment is harder than the city, because it takes significantly more steps to cross
the environment. We also analyzed a simple RL setting of picking up randomly placed blocks. We
found that an LSTM agent contains an approximate map, but the information not seen for a while
gradually fades away. We hope to scale up these experiments in the future.



5 Discussion

In this paper we introduced a scheme to train expressive generative environment models with RL
agents. We found that expressive generative models in combination with overshoot can form stable
belief states in 3D environments from first person views, with little prior knowledge about the
structure of these environments. We also showed that by sharing the belief-states of the model with
the agent we substantially increase the data-efficiency in a variety of RL tasks relative to strong
baselines. There are more elements that need to be investigated in the future. First, we found that
training the belief state together with the agent makes it harder to either form a belief state or decode
the map from it. This could result from the effect of policy gradients or changing of policy or
changing the way the belief is represented. Additionally we aim towards scaling up the system, either
through better training or better use of memory architectures. Finally, it would be good to use the
model not only for representation learning but for planning as well.
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