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ABSTRACT

Biological evolution has distilled the experiences of many learners into the gen-
eral learning algorithms of humans. Our novel meta reinforcement learning algo-
rithm MetaGenRL is inspired by this process. MetaGenRL distills the experiences
of many complex agents to meta-learn a low-complexity neural objective func-
tion that decides how future individuals will learn. Unlike recent meta-RL algo-
rithms, MetaGenRL can generalize to new environments that are entirely different
from those used for meta-training. In some cases, it even outperforms human-
engineered RL algorithms. MetaGenRL uses off-policy second-order gradients
during meta-training that greatly increase its sample efficiency.

1 INTRODUCTION

The process of evolution has equipped humans with incredibly general learning algorithms. They
enable us to solve a wide range of problems, even in the absence of a large number of related prior
experiences. The algorithms that give rise to these capabilities are the result of distilling the collec-
tive experiences of many learners throughout the course of natural evolution. By essentially learning
from learning experiences in this way, the resulting knowledge can be compactly encoded in the ge-
netic code of an individual to give rise to the general learning capabilities that we observe today.

In contrast, Reinforcement Learning (RL) in artificial agents rarely proceeds in this way. The learn-
ing rules that are used to train agents are the result of years of human engineering and design,
(e.g. Williams (1992); Wierstra et al. (2008); Mnih et al. (2013); Lillicrap et al. (2016); Schulman
et al. (2015a)). Correspondingly, artificial agents are inherently limited by the ability of the designer
to incorporate the right inductive biases in order to learn from previous experiences.

Several works have proposed an alternative framework based on meta reinforcement learn-
ing (Schmidhuber, 1994; Wang et al., 2016; Duan et al., 2016; Finn et al., 2017; Houthooft et al.,
2018; Clune, 2019). Meta-RL distinguishes between learning to act in the environment (the rein-
forcement learning problem) and learning to learn (the meta-learning problem). Hence, learning
itself is now a learning problem, which in principle allows one to leverage prior learning experi-
ences to meta-learn general learning rules that surpass human-engineered alternatives. However,
while prior work found that learning rules could be meta-learned that generalize to slightly different
environments or goals (Finn et al., 2017; Plappert et al., 2018; Houthooft et al., 2018), generalization
to entirely different environments remains an open problem.

In this paper we present MetaGenRL', a novel meta reinforcement learning algorithm that meta-
learns learning rules that generalize to entirely different environments. MetaGenRL is inspired by
the process of natural evolution as it distills the experiences of many agents into the parameters
of an objective function that decides how future individuals will learn. Similar to Evolved Policy
Gradients (EPG; Houthooft et al. (2018)), it meta-learns low complexity neural objective functions
that can be used to train complex agents with many parameters. However, unlike EPG, it is able to
meta-learn using second-order gradients, which offers several advantages as we will demonstrate.

We evaluate MetaGenRL on a variety of continuous control tasks and compare to RL? (Wang et al.,
2016; Duan et al., 2016) and EPG in addition to several human engineered learning algorithms.

'Code is available at http: //louiskirsch.com/code/metagenrl
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Compared to RL? we find that MetaGenRL does not overfit and is able to train randomly initialized
agents using meta-learned learning rules on entirely different environments. Compared to EPG we
find that MetaGenRL is more sample efficient, and outperforms significantly under a fixed budget
of environment interactions. The results of an ablation study and additional analysis provide further
insight into the benefits of our approach.

2 PRELIMINARIES

Notation We consider the standard MDP Reinforcement Learning setting defined by a tuple e =
(S, A, P, pg,r,7,T) consisting of states S, actions A, the transition probability distribution P :
S x A xS — Ry, an initial state distribution pg : S — R, the reward function : S x A —
[—Rmaz, Rmaz), @ discount factor +, and the episode length 7. The objective for the probabilistic
policy 74 : S x A — R, parameterized by ¢ is to maximize the expected discounted return:

T-1

B> ~'ri], where so ~ po(s0), ar ~ wg(arlse), sis1 ~ P(sipalse,ar),re = r(s,ar), (1)
t=0

with 7 = (s, ao, 7o, 51, ..., ST—1,07-1,7T7-1)-

Human Engineered Gradient Estimators A popular gradient-based approach to maximiz-
ing Equation 1 is REINFORCE (Williams, 1992). It directly differentiates Equation 1 with respect
to ¢ using the likelihood ratio trick to derive gradient estimates of the form:

T-1 T-1
vd,E-,—[LRE[NF(ﬂ 7T¢)} = ET[V¢ Z log7r¢(at|st) . Z ’ytl_trt/)]. (2)

t=0 t'=t

Although this basic estimator is rarely used in practice, it has become a building block for an entire
class of policy-gradient algorithms of this form. For example, a popular extension from Schulman
et al. (2015b) combines REINFORCE with a Generalized Advantage Estimate (GAE) to yield the
following policy gradient estimator:

T-1

VB Laap(r, 4, V)] :=E,[Vy > logms(aslse) - A(r,V,1)]. 3)
t=0

where A(7,V,t) is the GAE and V : S — R is a value function estimate. Several recent other
extensions include TRPO (Schulman et al., 2015a), which discourages bad policy updates using
trust regions and iterative off-policy updates, or PPO (Schulman et al., 2017), which offers similar
benefits using only first order approximations.

Parametrized Objective Functions In this work we note that many of these human engineered
policy gradient estimators can be viewed as specific implementations of a general objective function
L that is differentiated with respect to the policy parameters:

VB [L(T, 79, V)]. )

Hence, it becomes natural to consider a generic parametrization of L that, for various choices of
parameters «, recovers some of these estimators. In this paper, we will consider neural objective
functions where L, is implemented by a neural network. Our goal is then to optimize the parameters
« of this neural network in order to give rise to a new learning algorithm that best maximizes
Equation 1 on an entire class of (different) environments.

3 META-LEARNING NEURAL OBJECTIVES

In this work we propose MetaGenRL, a novel meta reinforcement learning algorithm that meta-
learns neural objective functions of the form L, (7,74, V). MetaGenRL makes use of value
functions and second-order gradients, which makes it more sample efficient compared to prior
work (Duan et al., 2016; Wang et al., 2016; Houthooft et al., 2018). More so, as we will demonstrate,
MetaGenRL meta-learns objective functions that generalize to vastly different environments.
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Figure 1: A schematic of MetaGenRL. On the left a population of agents (z € 1,...,N), where
each member consist of a critic Qf;) and a policy wgf) that interact with a particular environment
e and store collected data in a corresponding replay buffer B(*). On the right a meta-learned
neural objective function L,, that is shared across the population. Learning (dotted arrows) proceeds
as follows: Each policy is updated by differentiating L, while the critic is updated using the usual
TD-error (not shown). L, is meta-learned by computing second-order gradients that can be obtained
by differentiating through the critic.

Our key insight is that a differentiable critic Qy : S X A — R can be used to measure the effect
of locally changing the objective function parameters o based on the quality of the corresponding
policy gradients. This enables a population of agents to use and improve a single parameterized
objective function L, through interacting with a set of (potentially different) environments. During
evaluation (meta-test time), the meta-learned objective function can then be used to train a randomly
initialized RL agent in a new environment.

3.1 FroM DDPG TO GRADIENT-BASED META-LEARNING OF NEURAL OBJECTIVES

We will formally introduce MetaGenRL as an extension of the DDPG actor-critic framework (Silver
et al., 2014, Lillicrap et al., 2016). In DDPG, a parameterized critic of the form Qg : S x A — R
transforms the non-differentiable RL reward maximization problem into a myopic value maximiza-
tion problem for any s; € S. This is done by alternating between optimization of the critic Q9 and
the (here deterministic) policy m4. The critic is trained to minimize the TD-error by following:

Vy Z (Qe(Snat) - yt)Q, where y; = 1y + - Q9(5t+1777¢(5t+1))7 )
(Stvat>Tt,5t+1)

and the dependence of y; on the parameter vector 6 is ignored. The policy 74 is improved to
increase the expected return from arbitrary states by following the gradient V, > . Qo (st, Tg(st))-
Both gradients can be computed entirely off-policy by sampling trajectories from a replay buffer.

MetaGenRL builds on this idea of differentiating the critic Q¢ with respect to the policy parameters.
It incorporates a parameterized objective function L, that is used to improve the policy (i.e. by
following the gradient V4L, ), which adds one extra level of indirection: The critic Qg improves
L, while L, improves the policy 7. By first differentiating with respect to the objective function
parameters «, and then with respect to the policy parameters ¢, the critic can be used to measure the
effect of updating 74 using L, on the estimated return’:

VaQo(st, g (st)), where ¢ = ¢ — VLo (1, 2(4),V). (6)

This constitutes a type of second order gradient V, V4 that can be used to meta-train L, to provide
better updates to the policy parameters in the future. In practice we will use batching to optimize
Equation 6 over multiple trajectories 7.

Similarly to the policy-gradient estimators from Section 2, the objective function L (7, z(¢), V)
receives as inputs an episode trajectory 7 = (So.7—1, @o.7—1,T0.7—1), the value function estimates

?In case of a probabilistic policy 7o (at]st) the following becomes an expectation under 74 and a reparam-
eterizable form is required (Williams, 1988; Kingma & Welling, 2014; Rezende et al., 2014). Here we focus
on learning deterministic target policies.
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Algorithm 1 MetaGenRL: Meta-Training

Require: p(e) a distribution of environments
P < {(e; ~ple),¢1,01,B1 + 2),...} > Randomly initialize population of agents
Randomly initialize objective function L,,
while L, has not converged do
fore,¢,0,B € Pdo > For each agent 7 in parallel
if extend replay buffer B then
Extend B using 7y in e

Sample trajectories from B

Update critic Q¢ using TD-error

Update policy by following V4 L,

Compute objective function gradient A; for agent ¢ according to Equation 6
Sum gradients ) |, A; to update L,

V, and an auxiliary input z(¢) (previously 74) that can be differentiated with respect to the policy
parameters. The latter is critical to be able to differentiate with respect to ¢ and in the simplest case it
consists of the action as predicted by the policy. While Equation 6 is used for meta-learning L,,, the
objective function L, itself is used for policy learning by following V4 L (7, z(¢), V). See Figure 1
for an overview. MetaGenRL consists of two phases: During meta-training, we alternate between
critic updates, objective function updates, and policy updates to meta-learn an objective function
L, as described in Algorithm 1. During meta-testing in Algorithm 2, we take the learned objective
function L, and keep it fixed while training a randomly initialized policy in a new environment to
assess its performance.

We note that the inputs to L,, are sampled from a replay buffer rather than solely using on-policy
data. If L, were to represent a REINFORCE-type objective then it would mean that differentiat-
ing L, yields biased policy gradient estimates. In our experiments we will find that the gradients
from L, work much better in comparison to a biased off-policy REINFORCE algorithm, and to
an importance-sampled unbiased REINFORCE algorithm, while also improving over the popular
on-policy REINFORCE and PPO algorithms.

3.2 PARAMETRIZING THE OBJECTIVE FUNCTION

We will implement L, using an LSTM (Gers et al., 2000; Hochreiter & Schmidhuber, 1997) that
iterates over 7 in reverse order and depends on the current policy action 74(s¢) (see Figure 2). At
every time-step L, receives the reward r;, taken action a;, predicted action by the current policy
74 (st), the time ¢, and value function estimates V;, V;11°. Ateach step the LSTM outputs the objec-
tive value [y, all of which are summed to yield a single scalar output value that can be differentiated
with respect to ¢. In order to accommodate varying action dimensionalities across different environ-
ments, both 7, (s;) and a; are first convolved and then averaged to obtain an action embedding that
does not depend on the action dimensionality. Additional details, including suggestions for more
expressive alternatives are available in Appendix B.

By presenting the trajectory in reverse order to the LSTM (and L, correspondingly), it is able to
assign credit to an action a; based on its future impact on the reward, similar to policy gradient
estimators. More so, as a general function approximator using these inputs, the LSTM is in prin-
ciple able to learn different variance and bias reduction techniques, akin to advantage estimates,
generalized advantage estimates, or importance weights*. Due to these properties, we expect the
class of objective functions that is supported to somewhat relate to a REINFORCE (Williams, 1992)
estimator that uses generalized advantage estimation (Schulman et al., 2015b).

>The value estimates are derived from the Q-function, i.e. V; = Qq(s¢, mg(s:)), and are treated as a
constant input. Hence, the gradient V4 L, can not flow backwards through Q¢, which ensures that L, can not
naively learn to implement a DDPG-like objective function.

“We note that in practice it is is difficult to assess whether the meta-learned object function incorporates
bias / variance reduction techniques, especially because MetaGenRL is unlikely to recover known techniques.
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Algorithm 2 MetaGenRL: Meta-Testing t

Require: A test environment e, and an
objective function L,
Randomly initialize 7y, Vg, B < @ /‘ \
while 74 has not converged do
if extend replay buffer B then conv| r,V,V,.t
Extend B using 7y in e T

> LSTM —

Sample trajectories from B
Update Vp using TD-error &, 7(8,)
Update policy by following VL Figure 2: An overview of L (7, z(¢), V).

3.3 GENERALITY AND EFFICIENCY OF METAGENRL

MetaGenRL offers a general framework for meta-learning objective functions that can represent
a wide range of learning algorithms. In particular, it is only required that both 74 and L, can
be differentiated w.r.t. to the policy parameters ¢. In the present work, we use this flexibility to
leverage population-based meta-optimization, increase sample efficiency through off-policy second-
order gradients, and to improve the generalization capabilities of meta-learned objective functions.

Population-Based A general objective function should be applicable to a wide range of environ-
ments and agent parameters. To this extent MetaGenRL is able to leverage the collective experience
of multiple agents to perform meta-learning by using a single objective function L, shared among
a population of agents that each act in their own (potentially different) environment. Each agent
locally computes Equation 6 over a batch of trajectories, and the resulting gradients are combined
to update L. Thus, the relevant learning experience of each individual agent is compressed into the
objective function that is available to the entire population at any given time.

Sample Efficiency An alternative to learning neural objective functions using a population of
agents is through evolution as in EPG (Houthooft et al., 2018). However, we expect meta-learning
using second-order gradients as in MetaGenRL to be much more sample efficient. This is due to
off-policy training of the objective function L, and its subsequent off-policy use to improve the
policy. Indeed, unlike in evolution there is no need to train multiple randomly initialized agents in
their entirety in order to evaluate the objective function, thus speeding up credit assignment. Rather,
at any point in time, any information that is deemed useful for future environment interactions can
directly be incorporated into the objective function. Finally, using the formulation in Equation 6
one can measure the effects of improving the policy using L, for multiple steps by increasing the
corresponding number of gradient steps before applying g, which we will explore in Section 5.2.3.

Meta-Generalization The focus of this work is to learn general learning rules that during test-
time can be applied to vastly different environments. A strict separation between the policy and the
learning rule, the functional form of the latter, and training across many environments all contribute
to this. Regarding the former, a clear separation between the policy and the learning rule as in
MetaGenRL is expected to be advantageous for two reasons. Firstly, it allows us to specify the
number of parameters of the learning rule independent of the policy and critic parameters. For
example, our implementation of L, uses only 15K parameters for the objective function compared
to 384K parameters for the policy and critic. Hence, we are able to only use a short description
length for the learning rule. A second advantage that is gained is that the meta-learner is unable
to directly change the policy and must, therefore, learn to make use of the objective function. This
makes it difficult for the meta-learner to overfit to the training environments.

4 RELATED WORK

Among the earliest pursuits in meta-learning are meta-hierarchies of genetic algorithms (Schmidhu-
ber, 1987) and learning update rules in supervised learning (Bengio et al., 1990). While the former
introduced a general framework of entire meta-hierarchies, it relied on discrete non-differentiable
programs. The latter introduced local update rules that included free parameters, which could be
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learned using gradients in a supervised setting. Schmidhuber (1993) introduced a differentiable
self-referential RNN that could address and modify its own weights, albeit difficult to learn.

Hochreiter et al. (2001) introduced differentiable meta-learning using RNNSs to scale to larger prob-
lem instances. By giving an RNN access to its prediction error, it could implement its own meta-
learning algorithm, where the weights are the meta-learned parameters, and the hidden states the
subject of learning. This was later extended to the RL setting (Wang et al., 2016; Duan et al., 2016;
Santoro et al., 2016; Mishra et al., 2018) (here refered to as RL?). As we show empirically in our pa-
per, meta-learning with RL? does not generalize well. It lacks a clear separation between policy and
objective function, which makes it easy to overfit on training environments. This is exacerbated by
the imbalance of O(n?) meta-learned parameters to learn O(n) activations, unlike in MetaGenRL.

Many other recent meta-learning algorithms learn a policy parameter initialization that is later fine-
tuned using a fixed reinforcement learning algorithm (Finn et al., 2017; Schulman et al., 2017;
Grant et al., 2018; Yoon et al., 2018). Different from MetaGenRL, these approaches use second
order gradients on the same policy parameter vector instead of using a separate objective function.
Albeit in principle general (Finn & Levine, 2018), the mixing of policy and learning algorithm leads
to a complicated way of expressing general update rules. Similar to RL2, adaptation to related tasks
is possible, but generalization is difficult (Houthooft et al., 2018).

Objective functions have been learned prior to MetaGenRL. Houthooft et al. (2018) evolve an ob-
jective function that is later used to train an agent. Unlike MetaGenRL, this approach is extremely
costly in terms of the number of environment interactions required to evaluate and update the ob-
jective function. Most recently, Bechtle et al. (2019) introduced learned loss functions for rein-
forcement learning that also make use of second-order gradients, but use a policy gradient estimator
instead of a Q-function. Similar to other work, their focus is only on narrow task distributions.
Learned objective functions have also been used for learning unsupervised representations (Metz
et al., 2019), DDPG-like meta-gradients for hyperparameter search (Xu et al., 2018), and learning
from human demonstrations (Yu et al., 2018). Concurrent to our work, Alet et al. (2020) uses tech-
niques from architecture search to search for viable artificial curiosity objectives that are composed
of primitive objective functions.

Li & Malik (2016; 2017) and Andrychowicz et al. (2016) conduct meta-learning by learning op-
timizers that update parameters ¢ by modulating the gradient of some fixed objective function L:
A¢ = fo(V4L) where « is learned. They differ from MetaGenRL in that they only modulate the
gradient of a fixed objective function L instead of learning L itself.

Another connection exists to meta-learned intrinsic reward functions (Schmidhuber, 1991a; Dayan
& Hinton, 1993; Wiering & Schmidhuber, 1996; Singh et al., 2004; Niekum et al., 2011; Zheng et al.,

2018; Jaderberg et al., 2019). Choosing V4L = @qﬁ Zthl 7+(7), where 7, is a meta-learned reward
and V is a gradient estimator (such as a value based or policy gradient based estimator) reveals that
meta-learning objective functions includes meta-learning the gradient estimatior V itself as long as
it is expressible by a gradient V on an objective L, . In contrast, for intrinsic reward functions, the
gradient estimator V is normally fixed.

Finally, we note that positive transfer between different tasks (reward functions) as well as envi-
ronments (e.g. different Atari games) has been shown previously in the context of transfer learn-
ing (Kistler et al., 1997; Parisotto et al., 2015; Rusu et al., 2016; 2019; Nichol et al., 2018) and
meta-critic learning across tasks (Sung et al., 2017). In contrast to this work, the approaches that
have shown to be successful in this domain rely entirely on human-engineered learning algorithms.

5 EXPERIMENTS

We investigate the learning and generalization capabilities of MetaGenRL on several continuous
control benchmarks including HalfCheetah (Cheetah) and Hopper from MuJoCo (Todorov et al.,
2012), and LunarLanderContinuous (Lunar) from OpenAl gym (Brockman et al., 2016). These
environments differ significantly in terms of the properties of the underlying system that is to be
controlled, and in terms of the dynamics that have to be learned to complete the environment. Hence,
by training meta-RL algorithms on one environment and testing on other environments they provide
a reasonable measure of out-of-distribution generalization.
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Table 1: Mean return across multiple seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?:
6 meta-train X 2 meta-test seeds, EPG: 3 meta-train X 2 meta-test seeds) obtained by training
randomly initialized agents during meta-test time on previously seen environments (cyan) and on
unseen environments (brown). Boldface highlights best meta-learned algorithm. Mean returns (6
seeds) of several human-engineered algorithms are also listed.

Training \ Testing Cheetah  Hopper Lunar
Cheetah & Hopper MetaGenRL 2185 2439 18
EPG -571 20 -540
RL? 5180 289 -479
Lunar & Cheetah MetaGenRL 2552 2363 258
EPG -701 8 =707
RL? 2218 5 283
Lunar & Hopper & Walker & Ant MetaGenRL (40 agents) 3106 2869 201
Cheetah & Lunar & Walker & Ant 3331 2452 -71
Cheetah & Hopper & Walker & Ant 2541 2345 -148
PPO 1455 1894 187
DDPG / TD3 8315 2718 288
off-policy REINFORCE (GAE) -88 1804 168
on-policy REINFORCE (GAE) 38 565 120

In our experiments, we will mainly compare to EPG and to RL? to evaluate the efficacy of our ap-
proach. We will also compare to several fixed model-free RL algorithms to measure how well the
algorithms meta-learned by MetaGenRL compare to these handcrafted alternatives. Unless other-
wise mentioned, we will meta-train MetaGenRL using 20 agents that are distributed equally over
the indicated training environments®. Meta-learning uses clipped double-Q learning, delayed policy
& objective updates, and target policy smoothing from TD3 (Fujimoto et al., 2018). We will allow
for 600K environment interactions per agent during meta-training and then meta-test the objective
function for 1M interactions. Further details are available in Appendix B.

5.1 COMPARISON TO PRIOR WORK

Evaluating on previously seen environments We meta-train MetaGenRL on Lunar and compare
its ability to train a randomly initialized agent at test-time (i.e. using the learned objective function
and keeping it fixed) to DDPG, PPO, and on- and off-policy REINFORCE (both using GAE) across
multiple seeds. Figure 3a shows that MetaGenRL markedly outperforms both the REINFORCE
baselines and PPO. Compared to DDPG, which finds the optimal policy, MetaGenRL performs only
slightly worse on average although the presence of outliers increases its variance. In particular, we
find that some meta-test agents get ‘stuck’ for some time before reaching the optimal policy (see
Section A.2 for additional analysis). Indeed, when evaluating only the best meta-learned objective
function that was obtained during meta-training (MetaGenRL (best objective func) in Figure 3a) we
are able to observe a strong reduction in variance and even better performance.

We also report results (Figure 3a) when meta-training MetaGenRL on both Lunar and Cheetah, and
compare to EPG and RL? that were meta-trained on these same environments®. For MetaGenRL
we were able to obtain similar performance to meta-training on only Lunar in this case. In contrast,
for EPG it can be observed that even one billion environment interactions is insufficient to find
a good objective function (in Figure 3a quickly dropping below -300). Finally, we find that RL?
reaches the optimal policy after 100 million meta-training iterations, and that its performance is
unaffected by additional steps during testing on Lunar. We note that RL? does not separate the
policy and the learning rule and indeed in a similar ‘within distribution’ evaluation, RL? was found
successful (Wang et al., 2016; Duan et al., 2016).

5 An ablation study in Section A.3 revealed that a large number of agents is indeed required.

8In order to ensure a good baseline we allowed for a maximum of 100/ environment interactions for RL>
and 1B for EPG, which is more than eight / eighty times the amount used by MetaGenRL. Regarding EPG,
this did require us to reduce the total number of seeds to 3 meta-train X 2 meta-test seeds.
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(a) Previously seen Lunar environment. (b) Unseen Hopper environment.

Figure 3: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms. We train randomly initialized agents
on (a) environments that were encountered during training, and (b) on significantly different environ-
ments that were unseen. Training environments are denoted by T in the legend. All runs are shown
with mean and standard deviation computed over multiple random seeds (MetaGenRL: 6 meta-train
x 2 meta-test seeds, RL2: 6 meta-train x 2 meta-test seeds, EPG: 3 meta-train x 2 meta-test seeds,
and 6 seeds for all others).

Table 1 provides a similar comparison for two other environments. Here we find that in general
MetaGenRL is able to outperform the REINFORCE baselines and PPO, and in most cases (except
for Cheetah) performs similar to DDPG’. We also find that MetaGenRL consistently outperforms
EPG, and often RL2. For an analysis of meta-training on more than two environments we refer to
Appendix A.

Generalization to vastly different environments We evaluate the same objective functions
learned by MetaGenRL, EPG and the recurrent dynamics by RL? on Hopper, which is signifi-
cantly different compared to the meta-training environments. Figure 3b shows that the learned
objective function by MetaGenRL continues to outperform both PPO and our implementations of
REINFORCE, while the best performing configuration is even able to outperform DDPG.

When comparing to related meta-RL approaches, we find that MetaGenRL is significantly better in
this case. The performance of EPG remains poor, which was expected given what was observed
on previously seen environments. On the other hand, we now find that the RL? baseline fails com-
pletely (resulting in a flat low-reward evaluation), suggesting that the learned learning rule that was
previously found to be successful is in fact entirely overfitted to the environments that were seen
during meta-training. We were able to observe similar results when using different train and test
environment splits as reported in Table 1, and in Appendix A.

5.2 ANALYSIS

5.2.1 META-TRAINING PROGRESSION OF OBJECTIVE FUNCTIONS

Previously we focused on test-time training randomly initialized agents using an objective function
that was meta-trained for a total of 600K steps (corresponding to a total of 12 environment inter-
actions across the entire population). We will now investigate the quality of the objective functions
during meta-training.

Figure 4 displays the result of evaluating an objective function on Hopper at different intervals dur-
ing meta-training on Cheetah and Lunar. Initially (28K steps) it can be seen that due to lack of
meta-training there is only a marginal improvement in the return obtained during test time. How-
ever, after only meta-training for 86/ steps we find (perhaps surprisingly) that the meta-trained

"We emphasize that the neural objective function under consideration is unable to implement DDPG and
only uses a constant value estimate (i.e. V4V = 0 by using gradient stopping) during meta testing.
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Figure 4: Meta-training with 20 agents on Cheetah and Lunar. We test the objective function at five
stages of meta-training by using it to train three randomly initialized agents on Hopper.
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Figure 5: We meta-train MetaGenRL using several alternative parametrizations of L, on a) Lunar
and Cheetah, and b) present results of testing on Cheetah. During meta-training a representative ex-
ample of a single agent population is shown with shaded regions denoting standard deviation across
the population. Meta-test results are reported as per usual across 6 meta-train X 2 meta-test seeds.

objective function is already able to make consistent progress in optimizing a randomly initialized
agent during test-time. On the other hand, we observe large variances at test-time during this phase
of meta-training. Throughout the remaining stages of meta-training we then observe an increase in
convergence speed, more stable updates, and a lower variance across seeds.

5.2.2 ABLATION STUDY

We conduct an ablation study of the neural objective function that was described in Section 3.2. In
particular, we assess the dependence of L, on the value estimates V;,V; 1 and on the time compo-
nent that could to some extent be learned. Other ablations, including limiting access to the action
chosen or to the received reward, are expected to be disastrous for generalization to any other envi-
ronment (or reward function) and therefore not explored.

Dependence ont We use a parameterized objective function of the form L, (as, ¢, Vi, ms(s¢) |t €
0,...,T — 1) as in Figure 2 except that it does not receive information about the time-step ¢ at each
step. Although information about the current time-step is required in order to learn (for example)
a generalized advantage estimate (Schulman et al., 2015b), the LSTM could in principle learn such
time tracking on it own, and we expect only minor effects on meta-training and during meta-testing.
Indeed in Figure 5b it can be seen that the neural objective function performs well without access to
t, although it converges slower on Cheetah during meta-training (Figure 5a).

Dependence on V' We use a parameterized objective function of the form L (a¢, ¢, t, s (s¢) [t €
0,...,T — 1) as in Figure 2 except that it does not receive any information about the value estimates
at time-step ¢. There exist reinforcement learning algorithms that work without value function esti-
mates (eg. Williams (1992); Schmidhuber & Zhao (1998)), although in the absence of an alternative
baseline these often have a large variance. Similar results are observed for this ablation in Figure 5a
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Figure 6: We meta-train MetaGenRL on the LunarLander and HalfCheetah environments using
one, three, and five inner gradient steps on ¢. Meta-test results are reported across 3 meta-train X 2
meta-test seeds.
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during meta-training where a possibly large variance appears to affect meta-training. Correspond-
ingly during test-time (Figure 5b) we do not find any meaningful training progress to take place.
In contrast, we find that we can remove the dependence on one of the value function estimates, i.e.
remove V, 1 but keep V;, which during some runs even increases performance.

5.2.3 MULTIPLE GRADIENT STEPS

We analyze the effect of making multiple gradient updates to the policy using L, before applying
the critic to compute second-order gradients with respect to the objective function parameters as
in Equation 6. While in previous experiments we have only considered applying a single update,
multiple gradient updates might better capture long term effects of the objective function. At the
same time, moving further away from the current policy parameters could reduce the overall quality
of the second-order gradients. Indeed, in Figure 6 it can be observed that using 3 gradient steps
already slightly increases the variance during test-time training on Hopper and Cheetah after meta-
training on LunarLander and Cheetah. Similarly, we find that further increasing the number of
gradient steps to 5 harms performance.

6 CONCLUSION

We have presented MetaGenRL, a novel off-policy gradient-based meta reinforcement learning al-
gorithm that leverages a population of DDPG-like agents to meta-learn general objective functions.
Unlike related methods the meta-learned objective functions do not only generalize in narrow task
distributions but show similar performance on entirely different tasks while markedly outperforming
REINFORCE and PPO. We have argued that this generality is due to MetaGenRL’s explicit sepa-
ration of the policy and learning rule, the functional form of the latter, and training across multiple
agents and environments. Furthermore, the use of second order gradients increases MetaGenRL’s
sample efficiency by several orders of magnitude compared to EPG (Houthooft et al., 2018).

In future work, we aim to further improve the learning capabilities of the meta-learned objective
functions, including better leveraging knowledge from prior experiences. Indeed, in our current
implementation, the objective function is unable to observe the environment or the hidden state of
the (recurrent) policy. These extensions are especially interesting as they may allow more compli-
cated curiosity-based (Schmidhuber, 1991b; 1990; Houthooft et al., 2016; Pathak et al., 2017) or
model-based (Schmidhuber, 1990; Weber et al., 2017; Ha & Schmidhuber, 2018) algorithms to be
learned. To this extent, it will be important to develop introspection methods that analyze the learned
objective function and to scale MetaGenRL to make use of many more environments and agents.
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A ADDITIONAL RESULTS

A.1 ALL TRAINING AND TEST REGIMES

In the main text, we have shown several combinations of meta-training, and testing environments.
We will now show results for all combinations, including the respective human engineered baselines.
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Figure 7: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms on Hopper. We consider within
distribution testing (a), and out of distribution testing (b) by varying the meta-training environments
(denoted by 1) for the meta-RL approaches. All runs are shown with mean and standard deviation
computed over multiple random seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?: 6 meta-
train X 2 meta-test seeds, EPG: 3 meta-train X 2 meta-test seeds, and 6 seeds for all others).

Hopper On Hopper (Figure 7) we find that MetaGenRL works well, both in terms of generaliza-
tion to previously seen environments, and to unseen environments. The PPO, REINFORCE, RL2,
and EPG baselines are outperformed significantly. Regarding RL? we observe that it is only able to
obtain reward when Hopper was included during meta-training, although its performance is gener-
ally poor. Regarding EPG, we observe some learning progress during meta-testing on Hopper after
meta-training on Cheetah and Hopper (Figure 7a), although it drops back down quickly as test-time
training proceeds. In contrast, when meta-testing on Hopper after meta-training on Cheetah and
Lunar (Figure 7b) no test-time training progress is observed at all.

Cheetah Similar results are observed in Figure 8 for Cheetah, where MetaGenRL outperforms
PPO and REINFORCE significantly. On the other hand, it can be seen that DDPG notably out-
performs MetaGenRL on this environment. It will be interesting to further study these differences
in the future to improve the expressibility of our approach. Regarding RL? and EPG only within
distribution generalization results are available due to Cheetah having larger observations and / or
action spaces compared to Hopper and Lunar. We observe that RL? performs similar to our earlier
findings on Hopper but significantly improves in terms of within-distribution generalization (likely
due to greater overfitting, as was consistently observed for other splits). EPG shows initially more
promise on within distribution generalization (Figure 8a), but ends up like before.

Lunar On Lunar (Figure 9) we find that MetaGenRL is only marginally better compared to the
REINFORCE and PPO baselines in terms of within distribution generalization and worse in terms of
out of distribution generalization. Analyzing this result reveals that although many of the runs train
rather well, some get stuck during the early stages of training without or only delayed recovering.
These outliers lead to a seemingly very large variance for MetaGenRL in Figure 9b. We will provide
a more detailed analysis of this result in Section A.2. If we focus on the best performing objective
function then we observe competitive performance to DDPG (Figure 9a). Nonetheless, we notice
that the objective function trained on Hopper generalizes worse to Lunar, despite our earlier result
that objective functions trained on Lunar do in fact generalize well to Hopper. MetaGenRL is still
able to outperform both RL? and EPG in terms of out of distribution generalization. We do note
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Figure 8: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms on Cheetah. We consider within
distribution testing (a), and out of distribution testing (b) by varying the meta-training environments
(denoted by 1) for the meta-RL approaches. All runs are shown with mean and standard deviation
computed over multiple random seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?: 6 meta-
train X 2 meta-test seeds, EPG: 3 meta-train X 2 meta-test seeds, and 6 seeds for all others).
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Figure 9: Comparing the test-time training behavior of the meta-learned objective functions by
MetaGenRL to other (meta) reinforcement learning algorithms on Lunar. We consider within dis-
tribution testing (a), and out of distribution testing (b) by varying the meta-training environments
(denoted by t) for the meta-RL approaches. All runs are shown with mean and standard devia-
tion computed over multiple random seeds (MetaGenRL: 6 meta-train x 2 meta-test seeds, RL?: 6
meta-train X 2 meta-test seeds, EPG: 3 meta-train x 2 meta-test seeds, and 6 seeds for all others).

that EPG is able to meta-learn objective functions that are able to improve to some extent during test
time.

Comparing final scores An overview of the final scores that were obtained for MetaGenRL in
comparison to the human engineered baselines is shown in Table 2. It can be seen that MetaGenRL
outperforms PPO and off-/on-policy REINFORCE in most configurations while DDPG with TD3
tricks remains stronger on two of the three environments. Note that DDPG is currently not among
the representable algorithms by MetaGenRL.

A.2  STABILITY OF LEARNED OBJECTIVE FUNCTIONS
In the results presented in Figure 9 on Lunar we observed a seemingly large variance for MetaGenRL

that was due to outliers. Indeed, when analyzing the individual runs meta-trained on Lunar and
tested on Lunar we found that that one of the runs converged to a local optimum early on during
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Table 2: Agent mean return across multiple seeds (MetaGenRL: 6 meta-train X 2 meta-test seeds,
and 6 seeds for all others) for meta-test training on previously seen environments (cyan) and on
unseen (different) environments (brown) compared to human engineered baselines.

Training (below) / Test (right) Cheetah  Hopper Lunar
MetaGenRL (20 agents) Cheetah & Hopper 2185 2433 18
Cheetah & Lunar 2551 2363 258
Hopper & Lunar 4160 2966 146
Hopper 3646 2937 -62
Lunar 4366 2717 244
MetaGenRL (40 agents) Lunar & Hopper & Walker & Ant 3106 2869 201
Cheetah & Lunar & Walker & Ant 3331 2452 -71
Cheetah & Hopper & Walker & Ant = 2541 2345 -148
PPO - 1455 1894 187
DDPG / TD3 - 8315 2718 288
off-policy REINFORCE (GAE) - -88 1804 168
on-policy REINFORCE (GAE) - 38 565 120

Testing, after 55K steps Testing, after 155K steps Testing, after 454K steps Testing, after 654K steps

o

Mean return of agents

|
N
S
3

—— Meta-Training with 20 Agents on Lunar

200K 400K 600K 800K 1000K
Environment interactions per agent in the training population

Figure 10: Meta-training with 20 agents on LunarLander. We meta-test the objective function at
different stages in training on the same environment.

training and was unable to recover from this afterwards. On the other hand, we also observed that
runs can be ‘stuck’ for a long time to then make very fast learning progress. It suggests that the
objective function may sometimes experience difficulties in providing meaningful updates to the
policy parameters during the early stages of training.

We have further analyzed this issue by evaluating one of the objective functions at several intervals
throughout meta-training in Figure 10. From the meta-training curve (bottom) it can be seen that
meta-training in Lunar converges very early. This means that from then on, updates to the objective
function will be based on mostly converged policies. As the test-time plots show, these additional
updates appear to negatively affect test-time performance. We hypothesize that the objective func-
tion essentially ‘forgets’ about the early stages of training a randomly initialized agent, by only
incorporating information about good performing agents. A possible solution to this problem would
be to keep older policies in the meta-training agent population or use early stopping.

Finally, if we exclude four random seeds (of 12), we indeed find a significant reduction in the
variance (and increase in the mean) of the results observed for MetaGenRL (see Figure 11).

A.3 ABLATION OF AGENT POPULATION SI1ZE AND UNIQUE ENVIRONMENTS

In our experiments we have used a population of 20 agents during meta-training to ensure diversity
in the conditions under which the objective function needs to optimize. The size of this population
is a crucial parameter for a stable meta-optimization. Indeed, in Figure 12 it can be seen that meta-
training becomes increasingly unstable as the number of agents in the population decreases.

Using a similar argument, one would expect to gain from increasing the number of distinct envi-
ronments (or agents) during meta-training. In order to verify this, we have evaluated two additional
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MetaGenRL (f Cheetah & Lunar)
3001 —— MetaGenRL (t Cheetah & Hopper)
—— MetaGenRL (t Lunar)

200

100

Mean return

)

-100

—200

-300 T T T
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions

Testing on Lunar
400

300

200

100

Mean return

-100

—— MetaGenRL (t Hopper)

_200 MetaGenRL (t Cheetah & Lunar)
—— MetaGenRL (t Cheetah & Hopper)
—— MetaGenRL (t Lunar)

—300 + T T T T
0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Environment interactions

Figure 11: The left plot shows all 12 random seeds on the meta-test environment Lunar while the
right has the 4 worst random seeds removed. The variance is now reduced significantly.

Subset of agents meta-training on Lunar

Population mean return

S0 R YTV

~2507 vow - —
-500
-750
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_1250 —— Cheetah & Lunar - 10 agents
—— Cheetah & Lunar - 20 agents
-1500
0.0M 0.1M 0.2M 0.3M 0.4M 0.5M 0.6M

step

Figure 12: Stable meta-training requires a large
population size of at least 20 agents. Meta-
training performance is shown for a single run
with the mean and standard deviation across the
agent population.
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Figure 13: Meta-training on Cheetah, Lunar,
Walker, and Ant with 20 or 40 agents; meta-
testing on the out-of-distribution Hopper envi-
ronment. We compare to previous MetaGenRL
configurations.

settings: Meta-training on Cheetah & Lunar & Walker & Ant with 20 and 40 agents respectively.
Figure 13 shows the result of meta-testing on Hopper for these experiments (also see the final re-
sults reported for 40 agents in Table 2). Unexpectedly, we find that increasing the number of distinct
environments does not yield a significant improvement and, in fact, sometimes even decrease per-
formance. One possibility is that this is due to the simple form of the objective function under
consideration, which has no access to the environment observations to efficiently distinguish be-
tween them. Another possibility is that MetaGenRL’s hyperparameters require additional tuning in

order to be compatible with these setups.
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B EXPERIMENT DETAILS

In the following we describe all experimental details regarding the architectures used, meta-training,
hyperparameters, and baselines. The code to reproduce our experiments is available at http:
//louiskirsch.com/code/metagenrl.

B.1 NEURAL OBJECTIVE FUNCTION ARCHITECTURE

Neural Architecture In this work we use an LSTM to implement the objective function (Figure 2).
The LSTM runs backwards in time over the state, action, and reward tuples that were encountered
during the trajectory 7 under consideration. At each step ¢ the LSTM receives as input the reward
r¢, value estimates of the current and previous state V;, V1, the current timestep ¢ and finally the
action that was taken at the current timestep a; in addition to the action as determined by the current
policy mg(s:). The actions are first processed by one dimensional convolutional layers striding over
the action dimension followed by a reduction to the mean. This allows for different action sizes
between environments. Let A(®) € R'*P be the action from the replay buffer, A(™) ¢ R'*P be
the action predicted by the policy, and W € R?*¥ a learnable matrix corresponding to N outgoing
units, then the actions are transformed by

D
1
5 2 (AP, AW, (7
i=1

where [a, b] is a concatenation of a and b along the first axis. This corresponds to a convolution with
kernel size 1 and stride 1. Further transformations with non-linearities can be added after applying
W, if necessary. We found it helpful (but not strictly necessary) to use ReLU activations for half of
the units and square activations for the other half.

At each time-step the LSTM outputs a scalar value /; (bounded between —n and 7 using a scaled tanh
activation), which are summed to obtain the value of the neural objective function. Differentiating
this value with respect to the policy parameters ¢ then yields gradients that can be used to improve
7. We only allow gradients to flow backwards through 74(s;) to ¢. This implementation is closely
related to the functional form of a REINFORCE (Williams, 1992) estimator using the generalized
advantage estimation (Schulman et al., 2015b).

All feed-forward networks (critic and policy) use ReLU activations and layer normalization (Ba
et al., 2016). The LSTM uses tanh activations for cell and hidden state transformations, sigmoid
activations for the gates. The input time ¢ is normalized between 0 at the beginning of the episode
and 1 at the final transition. Any other hyper-parameters can be seen in Table 3.

Extensibility The expressability of the objective function can be further increased through several
means. One possibility is to add the entire sequence of state observations o;.7 to its inputs, or by
introducing a bi-directional LSTM. Secondly, additional information about the policy (such as the
hidden state of a recurrent policy) can be provided to L. Although not explored in this work, this
would in principle allow one to learn an objective that encourages certain representations to emerge,
e.g. a predictive representation about future observations, akin to a world model (Schmidhuber,
1990; Ha & Schmidhuber, 2018; Weber et al., 2017). In turn, these could create pressure to adapt
the policy’s actions to explore unknown dynamics in the environment (Schmidhuber, 1991b; 1990;
Houthooft et al., 2016; Pathak et al., 2017).

B.2 META-TRAINING

Annealing with DDPG At the beginning of meta-training (learning L, ), the objective function
is randomly initialized and thus does not make sensible updates to the policies. This can lead to
irreversibly breaking the policies early during training. Our current implementation circumvents
this issue by linearly annealing V4L, the first 10k timesteps (~ 2% of all timesteps) with DDPG
VQo(st, mp(st)). Preliminary experiments suggested that an exponential learning rate schedule
on the gradient of V4L, for the first 10k steps can replace the annealing with DDPG. The learning
rate anneals exponentially between a learning rate of zero and le-3. However, in some rare cases
this may still lead to unsuccessful training runs, and thus we have omitted this approach from the
present work.
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Standard training During training, the critic is updated twice as many times as the policy and
objective function, similar to TD3 (Fujimoto et al., 2018). One gradient update with data sampled
from the replay buffer is applied for every timestep collected from the environment. The gradient
with respect to ¢ in Equation 6 is combined with ¢ using a fixed learning rate in the standard way,
all other parameter updates use Adam (Kingma & Ba, 2015) with the default parameters. Any other
hyper-parameters can be seen in Table 3 and Table 4.

Using additional gradient steps In our experiments (Section 5.2.3) we analyzed the effect of
applying multiple gradient updates to the policy using L, before applying the critic to compute
second-order gradients with respect to the objective function parameters. For two updates, this gives

VaQo(st, Tyt (s¢)) with @' = ¢ — Vi Lo (11, 2(¢), V)
and ¢’ = ¢ — VyLo(12,2(0), V)

and can be extended to more than two correspondingly. Additionally, we use disjoint mini batches
of data 7: 71, 72. When updating the policy using V4L, we continue to use only a single gradient
step.

®)

B.3 BASELINES

RL? The implementation for RL? mimics the paper by Duan et al. (Duan et al., 2016). How-
ever, we were unable to achieve good results with TRPO (Schulman et al., 2015a) on the MuJoCo
environments and thus used PPO (Schulman et al., 2017) instead. The PPO hyperparameters and
implementation are taken from rllib (Liang et al., 2018). Our implementation uses an LSTM with
64 units and does not reset the state of the LSTM for two episodes in sequence. Resetting after
additional episodes were given did not improve training results. Different action and observation
dimensionalities across environments were handled by using an environment wrapper that pads both
with zeros appropriately.

EPG We use the official EPG code base https://github.com/openai/EPG from the orig-
inal paper (Houthooft et al., 2018). The hyperparameters are taken from the paper, V' = 64 noise
vectors, an update frequency of M = 64, and 128 updates for every inner loop, resulting in an inner
loop length of 8196 steps. During meta-test training, we run with the same update frequency for a
total of 1 million steps.

PPO & On-Policy REINFORCE with GAE We use the tuned implementations from https:
//spinningup.openai.com/en/latest/spinningup/bench.html which include a
GAE (Schulman et al., 2015b) baseline.

Off-Policy Reinforce with GAE The implementation is equivalent to MetaGenRL except that the
objective function is fixed to be the REINFORCE estimator with a GAE (Schulman et al., 2015b)
baseline. Thus, experience is sampled from a replay buffer. We have also experimented with an
importance weighted unbiased estimator but this resulted in poor performance.

DDPG Our implementation is based on https://spinningup.openai.com/en/
latest/spinningup/bench.html and uses the same TD3 tricks (Fujimoto et al., 2018) and
hyperparameters (where applicable) that MetaGenRL uses.
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Table 3: Architecture hyperparameters

Parameter | Value
Critic number of layers 3
Critic number of units 350
Policy number of layers 3
Policy number of units 350
Objective function LSTM units 32
Objective function action conv layers 3
Objective function action conv filters 32
Error bound 7 1000
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Table 4: Training hyperparameters

Parameter | Value
Truncated episode length 20
Global norm gradient clipping 1.0
Critic learning rate \; le-3
Policy learning rate Ay le-3
Second order learning rate A3 le-3
Obj. func. learning rate Ay le-3
Critic noise 0.2
Critic noise clip 0.5
Target network update speed 0.005
Discount factor 0.99
Batch size 100
Random exploration timesteps | 10000
Policy gaussian noise std 0.1
Timesteps per agent M
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