
Under review as a conference paper at ICLR 2020

A DEEP DIVE INTO COUNT-MIN SKETCH FOR EX-
TREME CLASSIFICATION IN LOGARITHMIC MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Extreme Classification Methods have become of paramount importance, particu-
larly for Information Retrieval (IR) problems, owing to the development of smart
algorithms that are scalable to industry challenges. One of the prime class of
models that aim to solve the memory and speed challenge of extreme multi-label
learning is Group Testing. Multi-label Group Testing (MLGT) methods construct
label groups by grouping original labels either randomly or based on some simi-
larity and then train smaller classifiers to first predict the groups and then recover
the original label vectors. Recently, a novel approach called MACH (Merged Av-
erage Classifiers via Hashing) was proposed which projects the huge label vectors
to a small and manageable count-min sketch (CMS) matrix and then learns to pre-
dict this matrix to recover the original prediction probabilities. Thereby, the model
memory scalesO(logK) forK classes. MACH is a simple algorithm which works
exceptionally well in practice. Despite this simplicity of MACH, there is a big gap
between the theoretical understanding of the trade-offs with MACH. In this paper
we fill this gap. Leveraging the theory of count-min sketch we provide precise
quantification of the memory-identifiablity tradeoffs. We extend the theory to
the case of multi-label classification, where the dependencies make the estima-
tors hard to calculate in closed forms. To mitigate this issue, we propose novel
quadratic approximation using the Inclusion-Exclusion Principle. Our estimator
has significantly lower reconstruction error than the typical CMS estimator across
various values of number of classes K, label sparsity and compression ratio.

1 INTRODUCTION

Extreme Classification has taken center-stage of Data Mining and Information Retrieval research
in the past few years (Zamani et al., 2018; Prabhu et al., 2018b; Jain et al., 2019; Choromanska
& Langford, 2015). It refers to the vanilla multiclass and multilabel classification problems where
the number of classes K is significantly large. A large number of classes K brings a new set of
computational and memory challenges in training and deploying classifiers.

There have been several paradigms of models that tackle the scale challenge of Extreme Classifi-
cation like 1-vs-all methods (Prabhu et al., 2018b; Jain et al., 2019; Babbar & Schölkopf, 2017),
tree based methods (Prabhu et al., 2018a; Jain et al., 2016), embedding models (Nigam et al., 2019;
Bhatia et al., 2015), etc. (as noted on the popular Extreme Classification Repository). One of the
recent approaches proposed to alleviate the scale challenge of Multilabel Classification is Group
Testing (Ubaru & Mazumdar, 2017; Ubaru et al., 2016; Vem et al., 2017). In this method, all labels
are grouped randomly into m groups/clusters. Each label may go into more than one group. We first
train a classifier that predicts which of these clusters the input belongs to (treating each cluster as a
separate label in a multilabel setting). For any given input, we first predict the clusters into which the
true labels of the input may have been pooled. We can then identify all the true labels by taking an
intersection over the inverted clusters. This approach suffers from a critical problem that even tree
based approaches have, i.e., hard assignment of clusters. Since the recovery of true labels depends
solely on hard-prediction of clusters, a mistake in the cluster prediction can cost us dearly in the
final label prediction. Also, since the labels are pooled randomly, each individual meta-classifier is
a weak and noisy one.

In a recent development, Merged Average Classifiers via Hashing (MACH) (Medini et al., 2019) was
proposed that alleviates the hard-prediction problem in Group Testing methods by identifying the
best labels based on the sum of prediction probabilities of the respective groups for a given input. In
the hindsight, MACH subtly learns to predict a count-min sketch (CMS) (Cormode & Muthukrish-
nan, 2005) matrix of the original probability vector. For the case of multiclass classification (every

1

Under review as a conference paper at ICLR 2020

input having just a single label unlike multilabel), MACH proposes an unbiased estimator to recover
the original K dimensional probability vector from the predicted CMS matrix. Multiclass classifi-
cation naturally fits into the count-min sketch setting as no two labels can appear simultaneously for
a given input. But the proposed theory does not naturally extend to multilabel learning. Further, the
variance and error bounds for multiclass classification rely heavily on the choice of number of hash
tables and the size of each hash table. That aspect has not been explored in prior work.

Our Contributions: In this work we broadly make the following contributions: 1) We revisit
MACH with a thorough analysis of proposed reconstruction estimator for multiclass learning. In
particular, we prove that the variance of estimation is inversely proportional to the product of prod-
uct of number of hash tables and size of each hash table (in theorem 2). 2) We also obtain a lower
bound on hash table hyperparametrs given a tolerance to prediction error (in Theorems 4 and 5).
3) We propose a novel reconstruction estimator for the case of multilabel learning using Inclusion-
Exclusion principle (in theorem 6). This estimator comes out as a solution to a quadratic equation
(hence we code-name it as ‘quadratic estimator’). 4) We simulate multilabel learning setting by gen-
eratingK dimensional probability vectors and their proxy CMS measurements. We then reconstruct
the probability vector using both the mean estimator and the quadratic estimator and show that the
reconstruction Mean-Squared Error (MSE) is significantly lower for the new estimator.

2 BACKGROUND

Count-Min Sketch: Count-Min Sketch (CMS) (Cormode & Muthukrishnan, 2005) was proposed
to solve the frequency counting problem in large streaming setting. Assume that we have an infinite
stream of elements e1, e2, e3, ... coming in. Each of these elements can take any value between K
distinct ones. Here, K is very large and we cannot afford to store an array of counts to store every
element’s frequency (limited memory setting). We need a sub-linear efficient data structure from
which we can retrieve the frequency of every element.

In Count-Min Sketch (Cormode & Muthukrishnan, 2005), we basically assign O(logK) ‘signa-
tures’ to each class using 2-universal hash functions. We use O(logK) different hash functions
H1, H2, H3, ...,HO(logK), each mapping any class i to a small range of buckets B << K, i.e.,
Hj(i) ∈ {0, 1, 2, ..., B}. We maintain a counting-matrix C of order O(logK) ∗B. If we encounter
class i in the stream of classes, we increment the counts in cells H1(i), H2(i)....., HO(logK)(i). It
is easy to notice that there will be collisions of classes into these counting cells. Hence, the counts
for a class in respective cells could be over-estimates of the true count.

Figure 1: Illustration of count-min sketch for a stream of letters AB-
CAACD. The hash codes for each letter for 4 different hash functions is
shown on the left and the accumulated counts for each of the letter in the
stream is shown on the right

During inference, we
want to know the fre-
quency of a particular el-
ement say a1. We sim-
ply go to all the cells
where a1 is mapped
to. Each cell gives and
over-estimated value of
the original frequency of
a1. To reduce the off-
set of estimation, the al-
gorithm proposes to take
the minimum of all the
estimates as the approxi-

mate frequency, i.e., napprox(a1) = min(C[1, H1(i)], C[2, H2(i),, C[logK,HlogK]).

An example illustration of CMS is shown in figure 1.

Connecting CMS and Extreme Classification: Given a data instance x, a vanilla classifier outputs
the probabilities pi, i ∈ {1, 2, ..., K}. We want to essentially compress the information of these
K numbers to logK,i.e., we can only keep track of logK = BR measurements. Ideally, without
any assumption, we cannot compress the information in K numbers to anything less than O(K), if
we want to retain all information. However, in classification, the most informative quantity is the
identity of argmax pi. If we can identify a scheme that can recover the high probability classes from
smaller measurement vector, we can train a small-classifier to map an input to these measurements
instead of the big classifier.

2

Under review as a conference paper at ICLR 2020

The foremost class of models to accomplish this task are Encoder and Decoder based models like
Compressive Sensing (Baraniuk, 2007). The connection between compressed sensing and extreme
classification was identified in prior works (Hsu et al., 2009; Dietterich & Bakiri, 1995). We provide
an intuitive explanation of why compressed sensing or any other sketching algorithm does work like
count-min sketch in the appendix A.

2.1 MERGED AVERAGE CLASSIFIERS VIA HASHING (MACH)

Figure 2: Schematic diagram of MACH. Both the in-
put and the label vector are independently hashed R
times (label vector is hashed from K to B, K being
number of classes and B being number of buckets in
each of the R hash tables). Small models are then
trained in parallel.

MACH (Medini et al., 2019) is a new
paradigm for extreme classification that
uses universal hashing to reduce mem-
ory and computations. MACH randomly
merges K classes into B meta-classes or
buckets (B � K). We then runs any off-
the shelf classifier (typically simple feed
forward neural networks) to predict the
meta classes. This process is repeated R
number of times, changing the hash func-
tion each time (or by simply changing the
random seed of the same hash function,
to induce a different random pooling each
time). During prediction, MACH aggre-
gates the output from each of the R small
meta classifiers to retrieve the best class.

In the schema shown in figure 2, the input
is assumed to be a large dimensional sparse
vector. In order to reduce model size from
both ends (input and output), the sparse in-

put can also be feature hashed (Weinberger et al., 2009) to a manageable dimension. Please note that
the theoretical analysis of MACH is agnostic to the input feature hashing. We are only concerned
with retrieving the most relevant labels from the meta-class predictions.

The subsequent sections formalize the algorithm and quantify the mean, variance, error bounds and
hyper-parameter bounds.

3 THEORETICAL ANALYSIS

We begin with emphasizing that MACH does not assume any dependence among the classes. This is
a fairly strong assumption because often in extreme classification, the labels have strong correlations.
More so, this assumption is intrinsically violated in the case of multilabel learning. Nevertheless,
MACH works extremely well in practice, particularly at industry scale challenges.

Let there beK classes originally. We’ll hash them toB meta-classes using a universal hash function.
We repeat this process R times each with a different hash function (can be obtained by simply
changing the random seed each time). We only have anR∗B matrix that holds all information about
the original probability vector of K dimensions (R ∗ B � K). Typical classification algorithms
model the probability Pr(y = i|x) = pi where i ∈ {0, 1, 2...K − 1} . With MACH, we bypass the
hassle of training a huge last layer by instead modelling Pr(y = b|x) = P jb for every hash function
hj , where b ∈ {0, 1, 2, ..., B − 1} and j ∈ {0, 1, 2, ..., R − 1}. During prediction, we sought to
recover the K vector from P jb matrix using an unbiased estimator as shown in subsequent sections.

P jhj(i) stands for the probability of the bin (meta-class) that ith class is hashed into in jth repetition.
Our goal is to obtain an unbiased estimator of pi in terms of {P 1

h1(i)
, P 2

h2(i)
, ..., PRhR(i)}. From here

on, the analysis diverges between Multiclass and Multilabel classification problems.

3.1 MULTICLASS CLASSIFICATION

We have

P jb =
∑

i:hj(i)=b

pi;∀j and 1 =

K∑
i=1

pi =
∑
b∈[B]

P jb (1)

3

Under review as a conference paper at ICLR 2020

With the above equations, given the R classifier models, an unbiased estimator of pi is:
Theorem 1.

E
[

B

B − 1

[
1

R

R∑
j=1

P jhj(i) −
1

B

]]
= Pr

(
y = i

∣∣∣∣x) = pi (2)

Proof: Proof for this theorem has been given in (Medini et al., 2019). For clarity and coherence, we
show the proof again here.

For any j, we can always write

P jhj(i) = pi +
∑
k 6=i

1hj(k)=hj(i)pk (3)

where 1hj(k)=hj(i) is an indicator random variable (generically denoted by Ik from here on) sug-
gesting whether class k has been hashed into the same bin as class i using hash function j. Since
the hash function is universal, the expected value of the indicator is 1

B (each class will uniformly be
binned into one of the B buckets). Thus

E(P jh(i)) = pi +
1

B

∑
k 6=i

pk = pi + (1− pi)
1

B

This is because the expression
∑
k 6=i pk = 1−pi as the total probability sum up to one. Simplifying,

we get pi = B
B−1 (E(P jhj(i) −

1
B). Using linearity of expectation and the fact that E(P jhj(i)) =

E(P khj(i)) for any j 6= k, it is not difficult to see that this value is also equal to

E
[

B

B − 1

[
1

R

R∑
j=1

P jhj(i) −
1

B

]]

Let’s denote our new estimator for pi as p̂i =
(

B
B−1

)[
1
R

∑R
j=1 P

j
hj(i)

− 1
B

]
Theorem 2.

V ar(p̂i) ≤
(B − 1

B

)2 (1− pi)
RB

(4)

Proof: Using the known result V ar(aX + b) = a2V ar(X) and the fact that variance accumulates
over sum of i.i.d random variables, we can write

V ar(p̂i) =
(B − 1

B

)2
∗ 1

R2
∗R ∗ V ar(P jhj(i)) (5)

We first need to get V ar(P jhj(i)). From eqn. 3,

(P jhj(i))
2 = p2i +

∑
k 6=i

Ikp
2
k +

∑
k16=i

∑
k26=i

pk1pk2Ik1Ik2 + 2 ∗ pi ∗
∑
k 6=i

Ikpk

Hence,

E
[
(P jhj(i))

2
]
= p2i +

∑
k 6=i p

2
k

B
+

∑
k16=i

∑
k26=i pk1pk2

B2
+ 2 ∗ pi ∗

1− pi
B

=⇒

E
[
(P jhj(i))

2
]
= p2i +

∑
k 6=i p

2
k

B
+

(1− pi)(1− pi)
B2

+ 2 ∗ pi ∗
1− pi
B

and

E
[
P jhj(i)

]2
=
(
pi +

1− pi
B

)2
= p2i +

(1− pi)2

B2
+ 2 ∗ pi ∗

1− pi
B

Therefore,

V ar(P jhj(i)) = E
[
(P jhj(i))

2
]
− E

[
P jhj(i)

]2
=

∑
k 6=i p

2
k

B
(6)

4

Under review as a conference paper at ICLR 2020

It’s easy to see that
∑
k p

2
k ≤

∑
k pk = 1 − pi =⇒

∑
k 6=i p

2
k ≤ 1 − pi. Hence, by merging eqns.

5 and 6, we get

V ar(p̂i) ≤
(B − 1

B

)2 (1− pi)
RB

We can observe that larger the original probability pi, lower the variance of estimation which sug-
gests that the higher probabilities are retained with high certainty and the lower probabilities are
prone to noise. Since we only care for the correct prediction of the best class, we can offset the noise
by increasing R.

For a d dimensional dataset (or d non-zeros for sparse data), the memory required by a vanilla
logistic regression model (or any linear classifier) is O(Kd). O(Kd) is also the computational
complexity of prediction. With MACH, the memory complexity is O(BRd) and the computational
complexity is O(BRd + KR) (including inference). To obtain significant savings, we want BR
to be significantly smaller than K. We next show that BR ≈ O(logK) is sufficient for uniquely
identifying the final class with high probability. Also, we need to tune the two knobs R and B for
optimal performance on recovering the original probabilities. The subsequent theorems facilitate the
prior knowledge of reasonable values of R and B based on our reconstruction error tolerance.

In (Medini et al., 2019), the following theorem has been proven

Theorem 3. For any B, R =
log

K(K−1)
2δ1

logB , guarantees that all pairs of classes ci and cj are distin-
guishable from each other with probability greater than 1− δ1.

The above theorem specifies a bound such that no two pair of classes end up in the same bucket on
all R hash functions. While this is simple and intuitive, it does not take into account the ease of
classification. To be precise, when the difference between the probability of best class and the 2nd

best class is low (predictions are spurious), it is much harder to identify the best class as oppposed
to when the difference is higher. Theorem 3 is completely agnostic to such considerations.

Hence, the next theorems quantifies the requirements on R,B based on our tolerance to recovery
error between pi and p̂i and also the ease of prediction (given by the difference between the pi and
pj where i and j are the two best classes respectively).

Theorem 4. P (|p̂i − pi| < ε| > 1− δ2 =⇒ RB ≥ 1−pi
δ2ε2

Proof: Chebyshev’s inequality states that P (|X − E[X]| ≥ ε) ≤ V ar(X)
ε2 for any random variable

X . For our proposed unbiased estimator in theorem 1, we have

P (|pi − p̂i| ≥ ε) ≤
V ar(X)

ε2

Using theorem 2, P (|pi− p̂i| ≥ ε) ≤
(
B−1
B

)2
(1−pi)
RBε2 =⇒ P (|pi− p̂i| < ε) ≥ 1−

(
B−1
B

)2
(1−pi)
RBε2

Hence, P (|p̂i − pi| < ε| > 1 − δ2 =⇒
(
B−1
B

)2
(1−pi)
RBε2 < δ2. For a large enough B, B−1B ≈ 1.

Hence, we get the desired result

RB >
1− pi
δ2ε2

If the best class i∗ has pi∗ > α and we primarily care for recovering pi∗ with high probability, then
we have RB > 1−α

δ2ε2

The next and final theorem (in multiclass learning) introduces the notion of ‘Identifiability’.

Theorem 5. Identifiability: If RB ≥ 1−min(pi,pj)
2δε2 and classes i and j are the first and second best

respectively (pi > pj > pk for every k 6= i, j), then |pi − pj | > 2ε =⇒ P (p̂i > p̂j) > (1− δ)2

Proof: We have
P (p̂i > p̂j) > P (p̂i > pi − ε) ∗ P (p̂j < pj + ε)

5

Under review as a conference paper at ICLR 2020

But
P (p̂i > pi − ε) = P (|p̂i − pi| < ε) + 0.5 ∗ P (|p̂i − pi| ≥ ε) =⇒

P (p̂i > pi − ε) = 0.5 ∗ (1 + P (|p̂i − pi| < ε)) > 1− δ
Similarly P (p̂j < pj + ε) > 1− δ. Therefore, P (p̂i > p̂j) > (1− δ)2 .

Hence, based on the previous two theorems, we can get a reasonable estimate of what bucket size B
should we choose and how many models that we need to train in parallel.

3.2 MULTILABEL CLASSIFICATION

The major difference between multi-class and multi-label classification from an analysis perspective
is that eqn. 1 does not apply anymore. Hence, all the subsequent derivations do not apply in the case
of multi-label classification. In the following theorems, we’ll derive an approximate estimator using
inclusion-exclusion principle to recover original probability vectors from MACH measurements for
the case of multi-label classification.

Each pi independently takes a value in [0, 1]. If we do not assume any relation between pi, it would
be very difficult to derive an estimator. The most realistic assumption on the probability vectors is
sparsity. Most real datasets have only few labels per sample even when the number of classes K
is huge. For the purpose of analysis, we will assume that

∑K
i=1 pi = V where V is the average of

number of active labels per input.
Theorem 6.

(V + 1−B) +
√

(B − (V + 1))2 − 4V + 4BE[P jhj(i)]

2
≈ Pr

(
y = i

∣∣∣∣x) = pi (7)

Proof: P jhj(i) is the probability of union of all classes that have been hashed to bin hj(i) in jth hash
function. Hence, using inclusion-exclusion principle, it can be written as

P jhj(i) =
∑
k

pkIk −
∑∑
k1<k2

pk1∩k2Ik1Ik2 +
∑∑∑
k1<k2<k3

pk1∩k2∩k3Ik1Ik2Ik3 − ...

Since all classes are independent of each other, we have

P jhj(i) =
∑
k

pkIk −
∑∑
k1<k2

pk1pk2Ik1Ik2 +
∑∑∑
k1<k2<k3

pk1pk2pk3Ik1Ik2Ik3 − ...

Since Ii = 1 w.p. 1, we have

P jhj(i) = pi +
∑
k 6=i

pkIk − pi
∑
k 6=i

pkIk −
∑∑

k1<k2;k16=k26=i

pk1pk2Ik1Ik2+

pi
∑∑

k1<k2;k16=k26=i

pk1pk2Ik1Ik2 +
∑∑∑

k1<k2<k3;k1 6=k2 6=k36=i

pk1pk2pk3Ik1Ik2Ik3 − ...

Aggregating similar terms, we get

P jhj(i) = 1− (1− pi) + (1− pi)
∑
k 6=i

pkIk − (1− pi)
∑∑

k1<k2;k16=k26=i

pk1pk2Ik1Ik2 +

(1− pi)
∑∑∑

k1<k2<k3;k16=k26=k3 6=i

pk1pk2pk3Ik1Ik2Ik3 − ... =⇒

P jhj(i) = 1− (1− pi)
[
1−

∑
k 6=i

pkIk +
∑∑

k1<k2;k1 6=k26=i

pk1pk2Ik1Ik2 − ...
]

Therefore, E[P jhj(i)] = 1− (1− pi)
[
1−

∑
k 6=i pk
1! B +

∑∑
k16=k26=i

pk1pk2

2! B2 − ...
]

6

Under review as a conference paper at ICLR 2020

In typical multilabel dataset, K runs into the order of millions where B is a few thousands. If
we ignore all terms with B in denominator, we essentially end up with a plain mean estimator
(p̂i = 1

R

∑R
j=1 P

j
hj(i)

). We ideally want to use all terms but it is very cumbersome to analyze the
summation (please note that the summation doesn’t simplify to exponential as we have the clause
kj 6= kl in each summation). In our case, we empirically show later on that even by limiting the
expression to first order summation (ignore all terms B2 or higher powers of B in denominator), we
get a much better estimator for true probability.

We can simplify the above expression into E[P jhj(i)] = 1− (1− pi)
[
1− V−pi

B

]
.

Solving for pi, we get our desired result pi =
(V+1−B)+

√
(B−V−1)2−4V+4BE[P j

hj(i)
]

2 .

Unfortunately, proposing an unbiased estimator using the above result is hard. One intuitive estima-

tor that can potentially work is p̂i =
(V+1−B)+

√
(B−V−1)2−4V+ 4B

R

R∑
j=1

P j
hj(i)

2 .

Using Jensen’s inequality (specifically, E[
√
X] ≤

√
E[X]),

E[p̂i] ≤
(V + 1−B) +

√
(B − V − 1)2 − 4V + 4BE[P jhj(i)]

2
= pi

Hence, E[p̂i] ≤ pi and we do not have an unbiased estimator. Nevertheless, the next section details
simulation experiments that corroborate that our proposed estimator for multilabel classification has
much lower mean-squared-error (MSE) than a plain mean estimator.

4 EXPERIMENTS
To simulate the setup for multi-label MACH, we perform the following steps:

• Choose a base prob ∈ (0, 1] which says how confident the prediction in the original prob-
ability vector is.
• Initialize aK dimensional vector p orig = (p1, p2,, pK) with all zeros. We then implant

the value base prob in int(V
base prob) number of random locations. We now have a vector

p orig which obeys
∑
pi = V .

• Generate 1000 samples of K dimensional label vectors where each dimension i is a
Bernoulli random variable with probability pi. These sample labels are realizations of
p orig.
• Merge each sample label vector into B dimensional binary labels where a bucket b is an
OR over the constituent classes {i : hj(i) = b}. We repeat this step for R different hash
functions ,i.e., for all j ∈ 1, 2, ..., R.
• For each of R repetitions, calculate the mean of the respective B dimensional labels to get
P j = (P j1 , P

j
2 ,, P

j
B)

• Reconstruct p approx using theorem 6 and {P j : j = 1, 2, .., R}.
• Calculate L2-norm of p orig − p approx
• Repeat all above steps for 10000 times (generating a different p orig each time) and report

the average L2-norm from the last step (it serves as the reconstruction MSE, lower the
better).

4.1 DISCUSSION OF RESULTS:
Following the above steps, we show the comparison of our proposed quadratic estimator in theorem
6 against the plain mean estimator by varying the values of K, B, V and base prob in figure 3. We
can infer the following insights from the plots :

• As K increases, the MSE grows. This is expected because the reconstructed vector has
a small non-zero probability for many of the K classes and this induces noise and hence
MSE grows. But the top classes are still retrieved with high certainty.

7

Under review as a conference paper at ICLR 2020

• For any K,V, base prob, the MSE decreases when B increases which is expected (fewer
collisions of classes and hence less noisier predictions). As the MSE gets lower, the gains
from the square-root estimator are also low. This is good because in scenarios whereB and
R are small, we can do much better recovery using the proposed estimator.

• For any K,B, base prob the MSE increases with V . This is again natural because larger
V induces more ‘true’ class collisions and hence the retrieval becomes fuzzy.

• For anyK,B, V the MSE decreases with base prob, albeit with much little difference than
previous cases. This is interesting because a high base prob means that we have few but
highly confident ‘true’ classes amongK. On the other hand, lower base prob indicates that
‘true’ classes are scattered among a larger subset among K classes. Yet, MACH recovers
the original probabilities with commendably low MSE.

Varying B for K = 10000 Varying V for K = 10000 Varying base prob for K = 10000

Varying B for K = 100000 Varying V for K = 100000 Varying base prob for K = 100000

Varying B for K = 1000000 Varying B for K = 1000000 Varying base prob for K = 1000000

Figure 3: Reconstruction Error (MSE) comparison between 1) vanilla mean estimator (plotted in
magenta) and 2) proposed square-root estimator (plotted in green); for various configurations of K,B
and V. The value of K varies as 10000, 100000, 1000000 for the 1st, 2nd and 3rd rows respectively.
In each row, the first plot fixes V, base prob and compares various values of B. The 2nd plot
fixes B, base prob and compares different values of B. The 3rd one fixes B, V and compares
different values of base prob. In all cases, we notice that the square-root estimator is consistently
and significantly lower in MSE than the corresponding mean estimator.

5 CONCLUSION

We perform a rigorous theoretical analysis of using Count-Min-Sketch for Extreme Classification
and come up with error bounds and hyper-parameter constraints. We identify a critical shortcoming
of reconstruction estimators proposed in prior research. We overcome the shortcoming by treating
each bucket in a hash table as a union of merged original classes. Using inclusion-exclusion principle
and a controlled label sparsity assumption, we come up with an approximate estimator to reconstruct
original probability vector from the predicted Count-Min Sketch measurements. Our new estimator
has significantly lower reconstruction MSE than the prior estimator.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Rohit Babbar and Bernhard Schölkopf. Dismec: Distributed sparse machines for extreme multi-
label classification. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, pp. 721–729. ACM, 2017.

Richard G Baraniuk. Compressive sensing [lecture notes]. IEEE signal processing magazine, 24
(4):118–121, 2007.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local em-
beddings for extreme multi-label classification. In Advances in neural information processing
systems, pp. 730–738, 2015.

Anna E Choromanska and John Langford. Logarithmic time online multiclass prediction. In Ad-
vances in Neural Information Processing Systems, pp. 55–63, 2015.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

Thomas G Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of artificial intelligence research, 2:263–286, 1995.

Daniel J Hsu, Sham M Kakade, John Langford, and Tong Zhang. Multi-label prediction via com-
pressed sensing. In Advances in neural information processing systems, pp. 772–780, 2009.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multi-label loss functions for rec-
ommendation, tagging, ranking & other missing label applications. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 935–
944. ACM, 2016.

Himanshu Jain, Venkatesh Balasubramanian, Bhanu Chunduri, and Manik Varma. Slice: Scalable
linear extreme classifiers trained on 100 million labels for related searches. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, pp. 528–536. ACM,
2019.

Tharun Medini, Qixuan Huang, Yiqiu Wang, Vijai Mohan, and Anshumali Shrivastava. Simultane-
ous matching and ranking as end-to-end deep classification: A case study of information retrieval
with 50m documents. In Advances in Neural Information Processing Systems, pp. 55–63, 2019.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Lakshman Vihan, Ding Weitan, Shingavi Ankit,
Choon Hui Teo, Hao Gu, and Bing Yin. Semantic product search. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2876–
2885. ACM, 2019.

Yashoteja Prabhu, Anil Kag, Shilpa Gopinath, Kunal Dahiya, Shrutendra Harsola, Rahul Agrawal,
and Manik Varma. Extreme multi-label learning with label features for warm-start tagging, rank-
ing & recommendation. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pp. 441–449. ACM, 2018a.

Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel: Par-
titioned label trees for extreme classification with application to dynamic search advertising. In
Proceedings of the 2018 World Wide Web Conference, pp. 993–1002. International World Wide
Web Conferences Steering Committee, 2018b.

Shashanka Ubaru and Arya Mazumdar. Multilabel classification with group testing and codes. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3492–
3501. JMLR. org, 2017.

Shashanka Ubaru, Arya Mazumdar, and Alexander Barg. Group testing schemes from low-weight
codewords of bch codes. In 2016 IEEE International Symposium on Information Theory (ISIT),
pp. 2863–2867. IEEE, 2016.

Avinash Vem, Nagaraj T Janakiraman, and Krishna R Narayanan. Group testing using left-and-
right-regular sparse-graph codes. arXiv preprint arXiv:1701.07477, 2017.

9

Under review as a conference paper at ICLR 2020

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, pp. 1113–1120. ACM, 2009.

Hamed Zamani, Mostafa Dehghani, W Bruce Croft, Erik Learned-Miller, and Jaap Kamps. From
neural re-ranking to neural ranking: Learning a sparse representation for inverted indexing. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Manage-
ment, pp. 497–506. ACM, 2018.

A APPENDIX

Why not Compressive Sensing or Count-Sketch? The measurements in Compressive Sensing are
not a probability distribution but rather a few linear combinations of original probabilities. Imagine
a set of classes {cats, dogs, cars, trucks}. Suppose we want to train a classifier that predicts
a compressed distribution of classes like {0.6 ∗ cars + 0.4 ∗ cats, 0.5 ∗ dogs + 0.5 ∗ trucks}.
There is no intuitive sense to these classes and we cannot train a model using softmax-loss which
has been proven to work the best for classification. We can only attempt to train a regression model
to minimize the norm(like L1-norm or L2-norm) between the projections of true K-vector and the
predicted K-vectors(like in the case of (Hsu et al., 2009)). This severely hampers the learnability
of the model as classification is more structured than regression. On the other hand, imagine two
union-classes {[cars and trucks], [cats and dogs]}. It is easier for a model to learn how to predict
whether a data point belongs to ‘cars and trucks’ because unions are well defined. Count-Min
Sketch facilitates exactly this concept of union of classes.

10

	Introduction
	Background
	Merged Average Classifiers via Hashing (MACH)

	Theoretical Analysis
	Multiclass Classification
	Multilabel Classification

	Experiments
	Discussion of Results:

	Conclusion
	Appendix

