Published as a conference paper at ICLR 2020

ES-MAML: SIMPLE HESSIAN-FREE META LEARNING

Xingyou Song*, Yuxiang Yang?’, Krzysztof Choromanski Aldo Pacchiano
Google Brain UC Berkeley
{xingyousong, yxyang, kchoro}@google .com pacchiano@berkeley.edu

Wenbo Gao*', Yunhao Tang'
Columbia University
{wg2279,yt2541}Rcolumbia.edu

ABSTRACT

We introduce ES-MAML, a new framework for solving the model agnostic meta
learning (MAML) problem based on Evolution Strategies (ES). Existing algo-
rithms for MAML are based on policy gradients, and incur significant difficulties
when attempting to estimate second derivatives using backpropagation on stochas-
tic policies. We show how ES can be applied to MAML to obtain an algorithm
which avoids the problem of estimating second derivatives, and is also conceptu-
ally simple and easy to implement. Moreover, ES-MAML can handle new types
of non-smooth adaptation operators, and other techniques for improving perfor-
mance and estimation of ES methods become applicable. We show empirically
that ES-MAML is competitive with existing methods and often yields better adap-
tation with fewer queries.

1 INTRODUCTION

Meta-learning is a paradigm in machine learning that aims to develop models and training algo-
rithms which can quickly adapt to new tasks and data. Our focus in this paper is on meta-learning in
reinforcement learning (RL), where data efficiency is of paramount importance because gathering
new samples often requires costly simulations or interactions with the real world. A popular tech-
nique for RL meta-learning is Model Agnostic Meta Learning (MAML) (Finn et al., 2017;2018)), a
model for training an agent which can quickly adapt to new and unknown tasks by performing one
(or a few) gradient updates in the new environment. We provide a formal description of MAML in
Section 2

MAML has proven to be successful for many applications. However, implementing and running
MAML continues to be challenging. One major complication is that the standard version of MAML
requires estimating second derivatives of the RL reward function, which is difficult when using
backpropagation on stochastic policies; indeed, the original implementation of MAML (Finn et al.|
2017) did so incorrectly, which spurred the development of unbiased higher-order estimators (DiCE,
(Foerster et al., 2018))) and further analysis of the credit assignment mechanism in MAML (Rothfuss
et al., 2019). Another challenge arises from the high variance inherent in policy gradient methods,
which can be ameliorated through control variates such as in T-MAML (Liu et al., 2019), through
careful adaptive hyperparameter tuning (Behl et al.l [2019; |/Antoniou et al.,|2019) and learning rate
annealing (Loshchilov & Hutter, 2017)).

To avoid these issues, we propose an alternative approach to MAML based on Evolution Strategies
(ES), as opposed to the policy gradient underlying previous MAML algorithms. We provide a
detailed discussion of ES in Section[3.1] ES has several advantages:

*Equal contribution.
tWork performed during Google internship.
*Work performed during the Google Al Residency Program. http://g.co/airesidency

http://g.co/airesidency

Published as a conference paper at ICLR 2020

1. Our zero-order formulation of ES-MAML (Section [3.2] Algorithm [3) does not require es-
timating any second derivatives. This dodges the many issues caused by estimating second
derivatives with backpropagation on stochastic policies (see Section [2|for details).

2. ES is conceptually much simpler than policy gradients, which also translates to ease of
implementation. It does not use backpropagation, so it can be run on CPUs only.

3. ES is highly flexible with different adaptation operators (Section [3.3).

4. ES allows us to use deterministic policies, which can be safer when doing adaptation (Sec-
tion[4.3). ES is also capable of learning linear and other compact policies (Section [.2)).

On the point (@), a feature of ES algorithms is that exploration takes place in the parameter space.
Whereas policy gradient methods are primarily motivated by interactions with the environment
through randomized actions, ES is driven by optimization in high-dimensional parameter spaces
with an expensive querying model. In the context of MAML, the notions of “exploration” and “task
identification” have thus been shifted to the parameter space instead of the action space. This dis-
tinction plays a key role in the stability of the algorithm. One immediate implication is that we can
use deterministic policies, unlike policy gradients which is based on stochastic policies. Another
difference is that ES uses only the total reward and not the individual state-action pairs within each
episode. While this may appear to be a weakness, since less information is being used, we find in
practice that it seems to lead to more stable training profiles.

This paper is organized as follows. In Section[2] we give a formal definition of MAML, and discuss
related works. In Section 3| we introduce Evolutionary Strategies and show how ES can be applied
to create a new framework for MAML. In Section[d] we present numerical experiments, highlighting
the topics of exploration (Section4.T), the utility of compact architectures (Section4.2), the stability
of deterministic policies (Section |4.3), and comparisons against existing MAML algorithms in the
few-shot regime (Section[4.4). Additional material can be found in the Appendix.

2 MODEL AGNOSTIC META LEARNING IN RL

We first discuss the original formulation of MAML (Finn et al.l 2017). Let 7 be a set of rein-
forcement learning tasks with common state and action spaces S, A, and P(7T) a distribution over
T. In the standard MAML setting, each task 7; € 7 has an associated Markov Decision Process
(MDP) with transition distribution ¢;(s¢.+1|s¢, at), an episode length H, and a reward function Ry,
which maps a trajectory T = (Sg, a1, ..., ag—1, Sg) to the total reward R(7). A stochastic policy is
a function 7 : S — P(A) which maps states to probability distributions over the action space. A
deterministic policy is a function 7 : § — A. Policies are typically encoded by a neural network
with parameters 6, and we often refer to the policy 7y simply by 6.

The MAML problem is to find the so-called MAML point (called also a meta-policy), which is a
policy 6* that can be ‘adapted’ quickly to solve an unknown task 7" € T by taking a (few policy
gradient steps with respect to 7T'. The optimization problem to be solved in training (in its one-shot
version) is thus of the form:

max J(0) = Epop) [Er s (r]67) [Rr(T")]], (1

where: 0" = U(0,T) = 0 + aVoE,.p,(rjo)[R7(7)] is called the adapted policy for a step size
a > 0and Pr(+|n) is a distribution over trajectories given task T' € T and conditioned on the policy
parameterized by 7.

Standard MAML approaches are based on the following expression for the gradient of the MAML
objective function (I)) to conduct training:

VQJ(Q) =]ETNP(T) [ET"NPT(T’W’) [V@/ log PT (T/|0/)RT(T/)V9U(9, T)H (2)

We collectively refer to algorithms based on computing (2) using policy gradients as PG-MAML.

"We adopt the common convention of defining the adaptation operator with a single gradient step, to sim-
plify notation. It can be extended to multiple steps.

Published as a conference paper at ICLR 2020

Since the adaptation operator U (6, T') contains the policy gradient VyE, p, (-jo)[R(7)], its own
gradient VU (6, T) is second-order in 6:

VoU = I+a/PT(T|9)V§ logﬂg(T)RT(T)dT—l—a/PT(T|9)V9 log 79(7) Vg log mo (1) Ry (7)dr.

3)
Correctly computing the gradient (2)) with the term (3] using automatic differentiation is known to
be tricky. Multiple authors (Foerster et al.L | 2018; |Rothfuss et al.,|2019; |Liu et al.|[2019) have pointed
out that the original implementation of MAML incorrectly estimates the term (3), which inadver-
tently causes the training to lose ‘pre-adaptation credit assignment’. Moreover, even when correctly
implemented, the variance when estimating (3) can be extremely high, which impedes training. To
improve on this, extensions to the original MAML include ProMP (Rothfuss et al.l [2019), which
introduces a new low-variance curvature (LVC) estimator for the Hessian, and T-MAML (Liu et al.,
2019)), which adds control variates to reduce the variance of the unbiased DiCE estimator (Foerster
et al., 2018). However, these are not without their drawbacks: the proposed solutions are com-
plicated, the variance of the Hessian estimate remains problematic, and LVC introduces unknown
estimator bias.

Another issue that arises in PG-MAML is that policies are necessarily stochastic. However, ran-
domized actions can lead to risky exploration behavior when computing the adaptation, especially
for robotics applications where the collection of tasks may involve differing system dynamics as
opposed to only differing rewards (Yang et al.l2019). We explore this further in Section[4.3]

These issues: the difficulty of estimating the Hessian term , the typically high variance of V.J ()
for policy gradient algorithms in general, and the unsuitability of stochastic policies in some do-
mains, lead us to the proposed method ES-MAML in Section

Aside from policy gradients, there have also been biologically-inspired algorithms for MAML, based
on concepts such as the Baldwin effect (Fernando et al., 2018). However, we note that despite the
similar naming, methods such as ‘Evolvability ES’ (Gajewski et all [2019) bear little resemblance
to our proposed ES-MAML. The problem solved by our algorithm is the standard MAML, whereas
(Gajewskai et al., [2019) aims to maximize loosely related notions of the diversity of behavioral char-
acteristics. Moreover, ES-MAML and its extensions we consider are all derived notions such as
smoothings and approximations, with rigorous mathematical definitions as stated below.

3 ES-MAML ALGORITHMS

Formulating MAML with ES allows us to employ numerous techniques originally developed for
enhancing ES, to MAML. We aim to improve both phases of MAML algorithm: the meta-learning
training algorithm, and the efficiency of the adaptation operator.

3.1 EVOLUTION STRATEGIES METHODS (ES)

Evolution Strategies (ES) (Wierstra et al., 2008} 2014)), which recently became popular for RL (Sal-
imans et al., 2017), rely on optimizing the smoothing of the blackbox function f : RY — R,
which takes as input parameters # € R? of the policy and outputs total discounted (expected) re-
ward obtained by an agent applying that policy in the given environment. Instead of optimizing the
function f directly, we optimize a smoothed objective. We define the Gaussian smoothing of F
as fo(0) = Egnr0,1,)[f (0 + og)]. The gradient of this smoothed objective, sometimes called an
ES-gradient, is given as (see: (Nesterov & Spokoinyl 2017)):

~ 1
Volo(0) = ~Eg-xionolf(0 +og)e]. @
Note that the gradient can be approximated via Monte Carlo (MC) samples:

In ES literature the above algorithm is often modified by adding control variates to equation @] to
obtain other unbiased estimators with reduced variance. The forward finite difference (Forward-FD)
estimator (Choromanski et al.,2018)) is given by subtracting the current policy value f(6), yielding
Vo fo(0) = LEqpn0,1,)[(f(0 + og) — f(0))g]. The antithetic estimator (Nesterov & Spokoiny,

2017} Mania et al., 2018) is given by the symmetric difference Vg f, (6) = 5=Beno1)[(f(0 +

—

[S

=N & nm B W

Published as a conference paper at ICLR 2020

ESGrad (f,0,n,0)
inputs: function f, policy 6, number of perturbations n, precision o
Sample n i.i.d N (0, I) vectors g1, . - ., gn;
return - >"" | f(0 + 0g;)gi;
Algorithm 1: Monte Carlo ES Gradient

og) — f(0 — og))g]. Notice that the variance of the Forward-FD and antithetic estimators is
translation-invariant with respect to f. In practice, the Forward-FD or antithetic estimator is usually
preferred over the basic version expressed in equation [4]

In the next sections we will refer to Algorithm 1 for computing the gradient though we emphasize
that there are several other recently developed variants of computing ES-gradients as well as apply-
ing them for optimization. We describe some of these variants in Section [3.3|and appendix A
key feature of ES-MAML is that we can directly make use of new enhancements of ES.

3.2 META-TRAINING MAML WITH ES

To formulate MAML in the ES framework, we take a more abstract viewpoint. For each task T € T,
let f7(6) be the (expected) cumulative reward of the policy §. We treat f7" as a blackbox, and make
no assumptions on its structure (so the task need not even be MDP, and f7 may be nonsmooth). The
MAML problem is then

max J(6) := Eppery [T (U(6,T)). S

As argued in (Liu et al., [2019; Rothfuss et al., 2019) (see also Section E]) a major challenge for
policy gradient MAML is estimating the Hessian, which is both conceptually subtle and difficult to
correctly implement using automatic differentiation. The algorithm we propose obviates the need to
calculate any second derivatives, and thus avoids this issue.

Suppose that we can evaluate (or approximate) () and U(0,T), but f7 and U(-,T) may be

nonsmooth or their gradients may be intractable. We consider the Gaussian smoothing .J, of the
MAML reward , and optimize J,, using ES methods. The gradient V.J,,(6) is given by
~ 1
VJo(0) =Erupcr) |—fT (U0 +08.T))g (6)
g~N(01) LT
and can be estimated by jointly sampling over (7, g) and evaluating f7(U(0 + og,T)). This
algorithm is specified in Algorithm [2]box, and we refer to it as (zero-order) ES-MAML.

Data: initial policy 6, adaptation step size a,
meta step size 3, number of queries K

Data: initial policy 8y, meta step size 3 1 fort=0,1,...do
fort=0,1,...do 2 Sample n tasks 71, . .., T, and iid vectors
Sample n tasks T3, ..., T, and iid g1,-.-,8n ~ N(0,1);
vectors g1, ..., &, ~ N(0,1); 3 foreach (T}, g;) do
foreach (Tz;llgi) do s d® « ESGRAD(fT%,6, + 0g;, K, 0);
e‘ndvi — f1 U0+ 0gi, T0)) s 0\ « 0, + og; + ad;
_ Ti (g(D)y.
Ors1 < 0 + U‘% Do, vigi ¢ vi = fH6);
end 7 end
Algorithm 2: Zero-Order ES-MAML 8 Or1 < 0: + U’% Do Vi
(general adaptation operator U (-, T")) 9 end
Algorithm 3: Zero-Order ES-MAML with ES-
Gradient Adaptation

The standard adaptation operator U (-, T) is the one-step task gradient. Since f7 is permitted to be
nonsmooth in our setting, we use the adaptation operator U (0, T) = 6 + oV fI'(6) acting on its

smoothing. Expanding the definition of J,, the gradient of the smoothed MAML is then given by
~ 1 1
Vs (0) = =Erupm {fT (9 +0g+ —Ennonlf (0+o0g+ Uh)h]> g} : @)
7 g~N(0T) g

Published as a conference paper at ICLR 2020

This leads to the algorithm that we specify in Algorithm where the adaptation operator U (-, T') is
itself estimated using the ES gradient in the inner loop.

We can also derive an algorithm analogous to PG-MAML by applying a first-order method to the
MAML reward Erp (7 f7 (6 + oV f7(6)) directly, without smoothing. The gradient is given by

VI(0) = Erepr VI (0 +aV T (0)(T+aVf7(0)), ®)

which corresponds to equation (3) in (Liu et al.,[2019) when expressed in terms of policy gradients.
Every term in this expression has a simple Monte Carlo estimator (see Algorithm []in the appendix
for the MC Hessian estimator). We discuss this algorithm in greater detail in Appendix [A.1] This
formulation can be viewed as the “MAML of the smoothing”, compared to the “smoothing of the
MAML” which is the basis for Algorithm 3] It is the additional smoothing present in equation [f]
which eliminates the gradient of U (-, T') (and hence, the Hessian of fT). Just as with the Hessian
estimation in the original PG-MAML, we find empirically that the MC estimator of the Hessian
(Algorithm) has high variance, making it often harmful in training. We present some comparisons
between Algorithm 3]and Algorithm[5} with and without the Hessian term, in Appendix[A.1.2]

Note that when U (-, T') is estimated, such as in Algorithm the resulting estimator for V.J, will in
general be biased. This is similar to the estimator bias which occurs in PG-MAML because we do
not have access to the true adapted trajectory distribution. We discuss this further in Appendix

3.3 IMPROVING THE ADAPTATION OPERATOR WITH ES

Algorithm[2]allows for great flexibility in choosing new adaptation operators. The simplest extension
is to modify the ES gradient step: we can draw on general techniques for improving the ES gradient
estimator, some of which are described in Appendix[A.3] Some other methods are explored below.

3.3.1 IMPROVED EXPLORATION

Instead of using i.i.d Gaussian vectors to estimate the ES gradient in U (-, T"), we consider samples
constructed according to Determinantal Point Processes (DPP). DPP sampling (Kulesza & Taskar,
2012; |Wachinger & Golland, [2015) is a method of selecting a subset of samples so as to maximize
the ‘diversity’ of the subset. It has been applied to ES to select perturbations g; so that the gradient
estimator has lower variance (Choromanski et al., 2019a). The sampling matrix determining DPP
sampling can also be data-dependent and use information from the meta-training stage to construct
a learned kernel with better properties for the adaptation phase. In the experimental section we show
that DPP-ES can help in improving adaptation in MAML.

3.3.2 HiLL CLIMBING AND POPULATION SEARCH

Nondifferentiable operators U(-,T') can be also used in Algorithm [2} One particularly interesting
example is the local search operator given by U(0,T) = argmax{f7(0') : |0’ — 0| < R},
where R > 0 is the search radius. That is, U(6,T) selects the best policy for task 7" which is in a
‘neighborhood’ of 6. For simplicity, we took the search neighborhood to be the ball B(6, R) here,
but we may also use more general neighborhoods of 6. In general, exactly solving for the maximizer
of T over B(#, R) is intractable, but local search can often be well approximated by a hill climbing
algorithm. Hill climbing creates a population of candidate policies by perturbing the best observed
policy (which is initialized to @), evaluates the reward f7 for each candidate, and then updates the
best observed policy. This is repeated for several iterations. A key property of this search method
is that the progress is monotonic, so the reward of the returned policy U (6, T)) will always improve
over . This does not hold for the stochastic gradient operator, and appears to be beneficial on
some difficult problems (see Section [4.1)). It has been claimed that hill climbing and other genetic
algorithms (Moriarty et al.,|1999) are competitive with gradient-based methods for solving difficult
RL tasks (Such et al| 2017} Risi & Stanley, [2019). Another stochastic algorithm approximating
local search is CMA-ES (Hansen et al., 2003} Igel, 2003} [Krause et al., 2016), which performs more
sophisticated search by adapting the covariance matrix of the perturbations.

Published as a conference paper at ICLR 2020

Figure 1: (a) ES-MAML and PG-MAML exploration behavior. (b) Different exploration methods
when K is limited (K = 5 plotted with lighter colors) or large penalties are added on wrong goals.

ES-MAML E>§p|oration

A

PG-MAML Exploration o, Four Corner (K=5, 10) Four Corner Hard (K=40),

- MC
‘|| == ppPP
-|| - HC

—50-
o ; ~100-
. Meta-Policy
Adapt. Policy - -
= ES-Adapt. Q

1.8

k b
2 -1 0 1 2 =2 -1 0 1 2

N/ \/}

¢

-2 -2 oL
2 -1 0 1 2 =2 -1 0 1 2 %2 -1 0o 1 2

(a) (b)
4 EXPERIMENTS

“2 -1 0 1 2

1
o
1
~ QAR
, y /
2 7 A
‘} !) —-300-
. 7
-
2

2 -1 0 1 2

Avg. Reward
(R
NN e
a o u
o © o

2
1
0

14
2
2
1
o

2
1
0
1
-2
2
1
0

—350 -

-1 —400-
0 500 1000 1500 0 50 100 150 200 250 300 350 400
2, 4 0 o1 3 ESMAML lterations ESMAML lterations

The performance of MAML algorithms can be evaluated in several ways. One important measure
is the performance of the final meta-policy: whether the algorithm can consistently produce meta-
policies with better adaptation. In the RL setting, the adaptation of the meta-policy is also a function
of the number K of queries used: that is, the number of rollouts used by the adaptation operator
U(-,T). The meta-learning goal of data efficiency corresponds to adapting with low K. The speed
of the meta-training is also important, and can be measured in several ways: the number of meta-
policy updates, wall-clock time, and the number of rollouts used for meta-training. In this section,
we present experiments which evaluate various aspects of ES-MAML and PG-MAML in terms of
data efficiency (K') and meta-training time. Further details of the environments and hyperparameters
are given in Appendix[A.7]

In the RL setting, the amount of information used drastically decreases if ES methods are applied in
comparison to the PG setting. To be precise, ES uses only the cumulative reward over an episode,
whereas policy gradients use every state-action pair. Intuitively, we may thus expect that ES should
have worse sampling complexity because it uses less information for the same number of rollouts.
However, it seems that in practice ES often matches or even exceeds policy gradients approaches
(Salimans et al.,[2017; Mania et al.| [2018)). Several explanations have been proposed: In the PG case,
especially with algorithms such as PPO, the network must optimize multiple additional surrogate
objectives such as entropy bonuses and value functions as well as hyperparameters such as the TD-
step number. Furthermore, it has been argued that ES is more robust against delayed rewards, action
infrequency, and long time horizons (Salimans et al.,[2017). These advantages of ES in traditional
RL also transfer to MAML, as we show empirically in this section. ES may lead to additional
advantages (even if the numbers of rollouts needed in training is comparable with PG ones) in terms
of wall-clock time, because it does not require backpropagation, and can be parallelized over CPUs.

4.1 EXPLORATION: TARGET ENVIRONMENTS

In this section, we present two experiments on environments with very sparse rewards where the
meta-policy must exhibit exploratory behavior to determine the correct adaptation.

The four corners benchmark was introduced in (Rothfuss et al., |2019) to demonstrate the weak-
nesses of exploration in PG-MAML. An agent on a 2D square receives reward for moving towards
a selected corner of the square, but only observes rewards once it is sufficiently close to the target
corner, making the reward sparse. An effective exploration strategy for this set of tasks is for the
meta-policy 6* to travel in circular trajectories to observe which corner produces rewards; however,
for a single policy to produce this exploration behavior is difficult. In Figure[T} we demonstrate the
behavior of ES-MAML on the four corners problem. When K = 20, the same number of rollouts
for adaptation as used in (Rothfuss et al.l 2019), the basic version of Algorithm 3]is able to correctly
explore and adapt to the task by finding the target corner. Moreover, it does not require any modifi-
cations to encourage exploration, unlike PG-MAML. We further used K = 10, 5, which caused the
performance to drop. For better performance in this low-information environment, we experimented
with two different adaptation operators U (-, T) in Algorithm [2| which are HC (hill climbing) and
DPP-ES. The standard ES gradient is denoted MC.

Published as a conference paper at ICLR 2020

Furthermore, ES-MAML is not limited to “single goal” exploration. We created a more difficult
task, six circles, where the agent continuously accrues negative rewards until it reaches six target
points to “deactivate” them. Solving this task requires the agent to explore in circular trajectories,
similar to the trajectory used by PG-MAML on the four corners task. We visualize the behavior in
Figure[2] Observe that ES-MAML with the HC operator is able to develop a strategy to explore the
target locations.

Figure 2: ES-MAML exploration on six circle From Figure [, we observed that both oper-
task (K = 20). ators DPP-ES and HC were able to improve

exploration performance. We also created a
modified task by heavily penalizing incorrect
goals, which caused performance to dramati-
cally drop for MC and DPP-ES. This is due to
the variance from the MC-gradient, which may
result in a adapted policy that accidentally pro-
duces large negative rewards or become stuck

3 — \
2 2
/,11 \
0 0

- > ,
_—etapoley 7 in local-optima (i.e. refuse to explore due to
apt. Polic . . .
4 ES-Apdapt. o? ‘4\ b negative rewards). This is also fixed by the HC
4

-4 -2 0 2 -4 =2 0 2 4 adaptation, which enforces non-decreasing re-
wards during adaptation, allowing the ES-MAML to progress.

ES-MAML (MC), 6 Circles ES-MAML (HC), 6 Circles
4

IS

Additional examples on the classic Navigation-2D task are presented in Appendix[A.4] highlighting
the differences in exploration behavior between PG-MAML and ES-MAML.

4.2 GOOD ADAPTATION WITH COMPACT ARCHITECTURES

One of the main benefits of ES is due to its ability to train compact linear policies, which can
outperform hidden-layer policies. We demonstrate this on several benchmark MAML problems in
the HalfCheetah and Ant environments in Figure [3] In contrast, (Finn & Levine| 2018) observed
that PG-MAML empirically and theoretically suggested that training with more deeper layers under
SGD increases performance. We demonstrate that on the Forward-Backward and Goal-Velocity
MAML benchmarks, ES-MAML is consistently able to train successful linear policies faster than
deep networks. We also show that, for the Forward-Backward Ant problem, ES-MAML with the
new HC operator is the most performant. Using more compact policies also directly speeds up
ES-MAML, since fewer perturbations are needed for gradient estimation.

Figure 3: The Forward-Backward and Goal-Velocity MAML problems. We compare the perfor-

mance for Linear (L) policies and policies with one hidden layer (H) for different K.
GoalVelocityCheetah

ForwardBackwardAnt
- LK=40
400 - == L-HC,K=40
@ L-DPPK=40

1000 ForwardBackwardCheetah 50 5004 N

—100 -

AR

e PRI

300 . ™= HK=20

° 5 —150- -
2] N}J' ‘ H\»IWIM‘ RS- © 2 = HK=4
& 200-AMIRTIN 2 2 200-
- L . —250 -
4 ' - S 100-
< - | K=5 < —300 - - | K=20 <
—200 - - HK=5 _ @ HK=20 o
- | k=20 =350 - @ |HCK=20 -)
—400 - - HK=20 - @ HHCK=20
| | U ' U ' | —400 - | | i i - —100-+ | U ' U [
0 500 1000 1500 2000 2500 3000 0 200 400 600 800 1000 0 500 1000 1500 2000 2500
ESMAML lterations ESMAML lterations ESMAML lterations

4.3 DETERMINISTIC POLICIES

We find that deterministic policies often produce more stable behaviors than the stochastic ones that
are required for PG, where randomized actions in unstable environments can lead to catastrophic
outcomes. In PG, this is often mitigated by reducing the entropy bonus, but this has an undesirable
side effect of reducing exploration. In contrast, ES-MAML explores in parameter space, which
mitigates this issue. To demonstrate this, we use the “Biased-Sensor CartPole” environment from
(Yang et al] [2019). This environment has unstable dynamics and sparse rewards, so it requires
exploration but is also risky. We see in Figure [that ES-MAML is able to stably maintain the
maximum reward (500).

Published as a conference paper at ICLR 2020

Figure 4: Stability comparisons of ES and PG on the Biased-Sensor CartPole and Swimmer,
Walker2d environments. (L), (H), and (HH) denote linear, one- and two-hidden layer policies.

Cm’.caTJCP('JlesensorBlaS,K=25L 7cﬁorwardBr;u:lfw‘ardS‘wimmer,‘K=29 00 FOrwardBackwardWalker,K=20,
° ° ®
o (o]
-3 & &
) 5 5
<>l <>t 2 100 -| -» | ES -
- HES
0- @&» HPG -
& HH-PG
! ! ! - A ! ! ! — " - -100, ! ! | n L
0 50 100 150 200 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500
Iterations Iterations Iterations

‘We also include results in FigureElfrom two other environments, Swimmer and Walker2d, for which
it is known that PG is surprisingly unstable, and ES yields better training (Mania et al.}[2018). Notice
that we again find linear policies (L) outperforming policies with one (H) or two (HH) hidden layers.

4.4 Low-K BENCHMARKS

For real-world applications, we may be constrained to use fewer queries K than has typically been
demonstrated in previous MAML works. Hence, it is of interest to compare how ES-MAML com-
pares to PG-MAML for adapting with very low K.

One possible concern is that low K might harm ES in particular because it uses only the cumulative
rewards; if for example K = 5, then the ES adaptation gradient can make use of only 5 values. In
comparison, PG-MAML uses K - H state-action pairs, so for K = 5, H = 200, PG-MAML still
has 1000 pieces of information available.

However, we find experimentally that the standard ES-MAML (Algorithm [3) remains competitive
with PG-MAML even in the low- K setting. In Figure[5] we compare ES-MAML and PG-MAML on
the Forward-Backward and Goal-Velocity tasks across four environments (HalfCheetah, Swimmer,
Walker2d, Ant) and two model architectures. While PG-MAML can generally outperform ES-
MAML on the Goal-Velocity task, ES-MAML is similar or better on the Forward-Backward task.
Moreover, we observed that for low K, PG-MAML can be highly unstable (note the wide error
bars), with some trajectories failing catastrophically, whereas ES-MAML is relatively stable. This is
an important consideration in real applications, where the risk of catastrophic failure is undesirable.

Figure 5: Low K comparisons between ES-MAML and PG-MAML.
FB-Cheetah,K=5 N

FB-Swimmer,K=5 FB-Walker,K=5 . FB-Ant,K=20 | N

60 - L 350 ~ 200 -

~ - 300 - -
400 150 -
' - 250 - -
300 - e
™~ | 00- _ 100-
200 - F |
' - 150- - 50 B
100 -
4 - 100- -
0-| _
0-

-100 4 ‘ : : : - -1 : =50 4
o 200 400 600 800 lUUU U lUU ZUU EUU 4UU SU 800 lUUU o 2

o GV-Cheetah,K=5 L asoo OVESwWimmerK=5 o, GVWaIkerK 5 ases . G-Ant,K=20 | N

400 -

—400 -
~100 - 1 e o 8
350 - 2000 - ~—450 -
-200 - - 300 - -500 -
1500 -
250 - 550 -
—300 - =
200 - —600-
IOOD -
—400 - - 150 —650 -
100 700 -|
—500 - -
~750

—600

00 00 &0 80 IUUU
| ' ' '
0 200 400 600 800 1nnn n 200 400 600 E00 1000 1200 1400 1Enn n 200 400 &00 800 1000 1200 1400 1snn n 00 00 &0 w00 mnn

N ES-L I ES-H s PG-H I PG-HH

Published as a conference paper at ICLR 2020

5 CONCLUSION

We have presented a new framework for MAML based on ES algorithms. The ES-MAML approach
avoids the problems of Hessian estimation which necessitated complicated alterations in PG-MAML
and is straightforward to implement. ES-MAML is flexible in the choice of adaptation operators,
and can be augmented with general improvements to ES, along with more exotic adaptation op-
erators. In particular, ES-MAML can be paired with nonsmooth adaptation operators such as hill
climbing, which we found empirically to yield better exploratory behavior and better performance
on sparse-reward environments. ES-MAML performs well with linear or compact deterministic
policies, which is an advantage when adapting if the state dynamics are possibly unstable.

Published as a conference paper at ICLR 2020

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. In In-
ternational Conference on Learning Representations, 2018.

Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. How to train your MAML. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

Harkirat Singh Behl, Atilim Giines Baydin, and Philip H. S. Torr. Alpha MAML.: adaptive model-
agnostic meta-learning. CoRR, abs/1905.07435, 2019.

Jose Blanchet, Donald Goldfarb, Garud Iyengar, Fengpei Li, and Chaoxu Zhou. Unbiased simulation
for optimizing stochastic function compositions. arXiv:1711.07564, 2017.

Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E. Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmdissan,
Stockholm, Sweden, July 10-15, 2018, pp. 969-977, 2018.

Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, and Yunhao Tang. Struc-
tured monte carlo sampling for nonisotropic distributions via determinantal point processes.
arXiv:1905.12667, 2019a.

Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, and Yunhao Tang. From complexity
to simplicity: Adaptive es-active subspaces for blackbox optimization. NeurIPS 2019, 2019b.

Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang, Deepali Jain, Yuxiang
Yang, Atil Iscen, Jasmine Hsu, and Vikas Sindhwani. Provably robust blackbox optimization for
reinforcement learning. accepted to CoRL 2019, 2019c.

Chrisantha Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang, Tom Schaul, Denis
Teplyashin, Pablo Sprechmann, Alexander Pritzel, and Andrei A. Rusu. Meta-learning by
the baldwin effect. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pp. 109-110, 2018. doi:
10.1145/3205651.3205763. URL https://doi.org/10.1145/3205651.3205763|

Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 11261135, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurlPS 2018, 3-8 December 2018, Montréal, Canada., pp. 9537—
9548, 2018.

Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktéschel, Eric Xing, and Shimon
Whiteson. DiCE: The infinitely differentiable Monte Carlo estimator. In Proceedings of the 35th
International Conference on Machine Learning, volume 80, pp. 1529-1538, 2018.

Alexander Gajewski, Jeff Clune, Kenneth O. Stanley, and Joel Lehman. Evolvability ES: scalable
and direct optimization of evolvability. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO 2019, Prague, Czech Republic, July 13-17, 2019, pp. 107-115,
2019. doi: 10.1145/3321707.3321876. URL https://doi.org/10.1145/3321707.
33218776.

10

https://doi.org/10.1145/3205651.3205763
https://doi.org/10.1145/3321707.3321876
https://doi.org/10.1145/3321707.3321876

Published as a conference paper at ICLR 2020

Nikolaus Hansen, Sibylle Miiller, and Petros Koumoutsakos. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (cma-es). Evolutionary
Computation, 11(1):1-18, 2003.

Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis of alternating direc-
tion method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization,
26(1):337-364, 2016.

Christian Igel. Neuroevolution for reinforcement learning using evolution strategies. In 2003 IEEE
Congress on Evolutionary Computation, 2003.

Oswin Krause, Didac Arbones, and Christian Igel. Cma-es with optimal covariance update and
storage complexity. Advances in Neural Information Processing Systems, pp. 370-378, 2016.

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Foundations
and Trends in Machine Learning, 5(2-3):123-286, 2012.

Hao Liu, Richard Socher, and Caiming Xiong. Taming MAML: efficient unbiased meta-
reinforcement learning. In Proceedings of the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 4061-4071, 2019.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. Advances in Neural Information Processing Systems 31, pp.
1800-1809, 2018.

David Moriarty, Alan Schultz, and John Grefenstette. Evolutionary algorithms for reinforcement
learning. Journal of Artificial Intelligence Research, 11:241-276, 1999.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

Sebastian Risi and Kenneth Stanley. Deep neuroevolution of recurrent and discrete world models.
arXiv:1906.08857, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv:1703.03864, 2017.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv:1712.06567, 2017.

Christian Wachinger and Polina Golland. Sampling from determinantal point processes for scalable
manifold learning. Information Processing for Medical Imaging, pp. 687-698, 2015.

Mengdi Wang, Ji Liu, and Xingyuan Fang. Accelerating stochastic composition optimization. Jour-
nal of Machine Learning Research, 18:1-23, 2017.

Daan Wierstra, Tom Schaul, Jan Peters, and Jiirgen Schmidhuber. Natural evolution strategies. In
2008 IEEE Congress on Evolutionary Computation, pp. 3381-3387, 2008.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jiirgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15:949-980, 2014.

Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, and Chelsea Finn. Norml: No-reward meta
learning. In Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, pp. 323-331, 2019.

11

—

Published as a conference paper at ICLR 2020

A.1 FIRST-ORDER ES-MAML

A.1.1 ALGORITHM

Suppose that we first apply Gaussian smoothing to the task rewards and then form the MAML
problem, so we have J () = Eq.p(7)f7 (U(0,T)). The function J is then itself differentiable, and

we can directly apply first-order methods to it. The classical case where U (6,T) = 6 + anT(H)
yields the gradient

VI(6) = Erpr VS0 +aV [T (0) T+ aV? [T (6)). ©)

This is analogous to formulas obtained in e.g (Liu et al., 2019) for the policy gradient MAML. We
can then approximate this gradient as an input to stochastic first-order methods. An example with
standard SGD is shown in Algorithm 5]

Data: initial policy 6, adaptation step size «,
meta step size /3, number of queries K
1 fort=0,1,...do

ESHess (f,0,n,0) 2 Sample n tasks 771, ..., Ty;
inputs: function f, policy #, number of 3 foreach 7; do
perturbations n, precision o 4 d(lj’) +— ESGRAD(fT:,0,, K, 0);
Sample i.i.d (0, T) vectors g1, ..., En; (i) T,)
b Ly f((e—l—)ag»)' 5 H, < ESHESsS(f"+,0;,K,0);
n 4=zl v 6 0§“<—0t+a.di;

HO « L5 f(6+0gi)gigls
return 5 (H° — v - I); 7
Algorithm 4: Monte Carlo ES Hessian 8 end _)

o | Opr 0+ £ (T4 aHO)aP;

10 end
Algorithm 5: First Order ES-MAML

d{ « ESGraD(fT:,60" K, o);

A cEntral problem, as discussed in (Rothfuss et al.l |2019; [Liu et al., |2019) is the estimation of

V2 fT(6). However, a simple expression exists for this object in the ES setting; it can be shown that
-, 1 -,

V2ifT(g) = —5 En~von| T+ oh)hn’] — fT(O)1]. (10)

Note that for the vector h, h” is the transpose (and unrelated to tasks T'). A basic MC estimator is

shown in Algorithm Given an independent estimator for Vf7 (0 + oV f7(6)), we can then take
the product to obtain an estimator for V.J.

A.1.2 EXPERIMENTS WITH FIRST-ORDER ES-MAML

Unlike zero-order ES-MAML (Algorithm [3)), the first-order ES-MAML explicitly builds an approx-
imation of the Hessian of f7. Given the literature on PG-MAML, we expect that estimating the

Hessian VQJ?T(G) with Algorithmwithout any control variates may have high variance. We com-
pare two variants of first-order ES-MAML.:

1. The full version (FO-Hessian) specified in Algorithm 3]

2. The ‘first-order approximation’ (FO-NoHessian) which ignores the term I+on2]7T (0) and
approximates the MAML gradient as E_p(7)V 7 (0 + oV f7(0)). This is equivalent to
setting H) = 0 in line 5 of Algorithm 3]

The results on the four corner exploration problem (Section and the Forward-Backward Ant,
using Linear policies, are shown in Figure[AT] On Forward-Backward Ant, FO-NoHessian actually
outperformed FO-Hessian, so the inclusion of the Hessian term actually slowed convergence. On
the four corners task, both FO-Hessian and FO-NoHessian have large error bars, and FO-Hessian
slightly outperforms FO-NoHessian.

There is conflicting evidence as to whether the same phenomenon occurs with PG-MAML,; (Finn
et al., 2017} §5.2) found that on supervised learning MAML, omitting Hessian terms is competitive

12

Published as a conference paper at ICLR 2020

Figure A1l: Comparisons between the FO-Hessian and FO-NoHessian variants of Algorithm [5]

Four Corner (K=10) i 300.ForwardBackwardAnt (L,K=40),

—1504 @& FO-Hessian

250 - @ FO-NoHessian

& FO-Hessian
@& [O-NoHessian

—200-

- - 200-
p ©
g —250- = 150-
g &
o
= —300- E‘ 100
z 4 T I 50-
—as0 T TV
0,
—400 | | - =50+ | |] | -
5000 10000 15000 o] 2000 4000 6000 8000 10000
Iterations Iterations

but slightly worse than the full PG-MAML, and does not report comparisons with and without the
Hessian on RL MAML. (Rothfuss et al} 2019} [Liu et al] [2019) argue for the importance of the
second-order terms in proper credit assignment, but use heavily modified estimators (LVC, control
variates; see Section [2)) in their experiments, so the performance is not directly comparable to the
‘naive’ estimator in Algorithm [} Our interpretation is that Algorithm [4] has high variance, making
the Hessian estimates inaccurate, which can slow training on relatively ‘easier’ tasks like Forward-
Backward walking but possibly increase the exploration on four corners.

We also compare FO-NoHessian against Algorithm [3]on Forward-Backward HalfCheetah and Ant
in Figure In this experiment, the two methods ran on servers with different number of workers
available, so we measure the score by the total number of rollouts. We found that FO-NoHessian
was slightly faster than Algorithm [3] when measured by rollouts on Ant, but FO-NoHessian had
notably poor performance when the number of queries was low (KX = 5) on HalfCheetah, and failed
to reach similar scores as the others even after running for many more rollouts.

Figure A2: Comparisons between FO-NoHessian and Algorithm 3] by rollouts

, ForwardBackwardAnt

100, ST] 1000 - ForwardBackwardHalfCheetah
- FO-HK=20 800 -
- /0-HK=40

300- Z0-H,K=20 - 600 -
400-

Avg. Reward
= N
o (=]
o o
Avg. Reward
N
o
o

0- b -
& FO-H,K=20
—200- & FO-HK=5
0! N —400- - 70-HK=20 -
ZO-H,K=5
| | ! | | I —600 - | | \ | -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Rollouts le7 Rollouts le7

A.2 HANDLING ESTIMATOR BIAS

Since the adapted policy U (0, T) generally cannot be evaluated exactly, we cannot easily obtain
unbiased estimates of f7'(U (@, T)). This problem arises for both PG-MAML and ES-MAML.

We consider PG-MAML first as an example. In PG-MAML, the adaptation operator is U (6,T) =
0+ aVoE,p, (rjo)[2(7)]. In general, we can only obtain an estimate of VoE,p. (+|0)[R(7)] and
not its exact value. However, the MAML gradient is given by

Vo (0) = Erep) [Ernp, (101 [Vor log Pr(T'[0")R(T") VU (0, T)]] (11)

which requires exact sampling from the adapted trajectories 7/ ~ P7(7'|U(6,T)). Since this is
a nonlinear function of U (A, T), we cannot obtain unbiased estimates of V.J(6) by sampling 7’
generated by an estimate of U(6,T).

13

Published as a conference paper at ICLR 2020

In the case of ES-MAML, the adaptation operator is U(0,T) = 8 + aV f(0,T) = Enu(6,T; h) for
h ~ N(0,1), where u(0, T;h) = 6 + 2 f7 (0 + oh)h. Clearly, f7 (u(6,T;h)) is not an unbiased
estimator of f7(U(0,T)).

We may question whether using an unbiased estimator of f7(U(6,T)) is likely to improve per-
formance. One natural strategy is to reformulate the objective function so as to make the desired
estimator unbiased. This happens to be the case for the algorithm E-MAML (Al-Shedivat et al.,
2018)), which treats the adaptation operator as an explicit function of K sampled trajectories and

“moves the expectation outside”. That is, we now have an adaptation operator U (0, T; 71, ..., Tk),
and the objective function becomes
Er([Eq,,..onprrioyf (U0, T5 71, ., 7x))] (12)

An unbiased estimator for the E-MAML gradient can be obtained by sampling only from 7 ~
Pr(7|0) (Al-Shedivat et al 2018). However, it has been argued that by doing so, EEMAML does
not properly assign credit to the pre-adaptation policy (Rothfuss et al.,|2019). Thus, this particular
mathematical strategy seems to be disadvantageous for RL.

The problem of finding estimators for function-of-expectations f(IEX) is difficult and while general
unbiased estimation methods exist (Blanchet et al., 2017), they are often complicated and suffer
from high variance. In the context of MAML, ProMP compares the low variance curvature (LVC)
estimator (Rothfuss et al., |2019), which is biased, against the unbiased DiCE estimator (Foerster,
et al.,2018), for the Hessian term in the MAML gradient, and found that the lower variance of LVC
produced better performance than DiCE. Alternatively, control variates can be used to reduce the
variance of the DiCE estimator, which is the approach followed in (Liu et al., [2019).

In the ES framework, the problem can also be formulated to avoid exactly evaluating U (-, T), and
hence circumvents the question of estimator bias. We observe an interesting connection between
MAML and the stochastic composition problem. Let us define un(0,T) = u(f,T; h) and f7 () =

(6 + og). For a given task T, the MAML reward is given by
FTU0,7)) = F [Enun(0,T)] = Eg fg (Enun(6,T)). (13)

This is a two-layer nested stochastic composition problem with outer function fT = Eg ng and
inner function U(-,T) = Epun (-, T). An accelerated algorithm (ASC-PG) was developed in (Wang
et al.,|2017)] for this class of problems. While neither ng nor uy (-, T') is smooth, which is assumed
in (Wang et al., |2017), we can verify that the crucial content of the assumptions hold:

1. Ehuh(97 T) = U(G, T)

2. We can define two functions

) =IO €O) =T+ SO - @)D
such that for any 61, 6o,

Egnll (601)¢2 (62)] = JU (61,)V f7 (62)

where JU denotes the Jacobian of U (-, T'), and g, h are independent vectors sampled from
N(0,T). This follows immediately from equation 4 and equation

The ASC-PG algorithm does not immediately extend to the full MAML problem, as upon taking
an outer expectation over T, the MAML reward J(0) = ErEgf (Enun(6,T)) is no longer a
stochastic composition of the required form. In particular, there are conceptual difficulties when the
number of tasks in 7 is infinite. However, it can be used to solve the MAML problem for each task
within a consensus framework, such as consensus ADMM (Hong et al.,[2016).

A.3 EXTENSIONS OF ES

In this section, we discuss several general techniques for improving the basic ES gradient estimator
(Algorithm [T)). These can be applied both to the ES gradient of the meta-training (the ‘outer loop’
of Algorithm , and more interestingly, to the adaptation operator itself. That is, given U (0,T) =

14

Published as a conference paper at ICLR 2020

0 + aV (), we replace the estimation of U by ESGRAD on line 4 of Algorithm [3{ with an

improved estimator of V £1 (6), which even may depend on data collected during the meta-training
stage. Many techniques exist for reducing the variance of the estimator such as Quasi Monte Carlo
sampling (Choromanski et al., 2018). Aside from variance reduction, there are also methods with
special properties.

A.3.1 ACTIVE SUBSPACES

Active Subspaces is a method for finding a low-dimensional subspace where the contribution of the
gradient is maximized. Conceptually, the goal is to find and update on-the-fly a low-rank subspace
L so that the projection V£ () of Vf7(9) into £ is maximized and apply V f7(8) . instead of
V f1(6). This should be done in such a way that V 7' () does not need to be computed explicitly.
Optimizing in lower-dimensional subspaces might be computationally more efficient and can be
thought of as an example of guided ES methods, where the algorithm is guided how to explore space
in the anisotropic way, leveraging its knowledge about function optimization landscape that it gained
in the previous steps of optimization. In the context of RL, the active subspace method ASEBO
(Choromanski et al.| [2019b) was successfully applied to speed up policy training algorithms. This
strategy can be made data-dependent also in the MAML context, by learning an optimal subspace
using data from the meta-training stage, and sampling from that subspace in the adaptation step.

A.3.2 REGRESSION-BASED OPTIMIZATION

Regression-Based Optimization (RBO) is an alternative method of gradient estimation. From Taylor
series expansion we have f(0 + d) — f(0) = Vf(0)"d + O(||/d||?). By taking multiple finite
difference expressions f(6 + d) — f(0) for different d, we can recover the gradient by solving a
regularized regression problem. The regularization has an additional advantage - it was shown that
the gradient can be recovered even if a substantial fraction of the rewards f(6 + d) are corrupted
(Choromanski et al., [2019c¢). Strictly speaking, this is not based on the Gaussian smoothing as in
ES, but is another method for estimating gradients using only zero-th order evaluations.

A.3.3 EXPERIMENTS

We present a preliminary experiment with RBO and ASEBO gradient adaptation in Figure [A3] To
be precise, the algorithms used are identical to Algorithm[3|except that in line 4, d¥) «— ESGRAD is
replaced by d(<~ RBO (yielding RBO-MAML) and d*) «+— ASEBO (yielding ASEBO-MAML)
respectively.

Figure A3: RBO-MAML and ASEBO-MAML compared to ES-MAML.

FB-Swimmer (L,K=40) .
M- , GoalVelocityCheetah (H,K=5) ,

40 - "= Unbiased " . —150-

50~

T

© 1 A T —200-
5 ¥ g

o 20- | IQ| - g

2 10- " e
< £

0- _ —300 -§n i ' i
@ ASEBO Adaptation
J @& Vanilla Adaptation

A |]] ' ' ' - o | | ! !]] | | r
0 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450
Iterations Iterations

On the left plot, we test for noise robustness on the Forward-Backward Swimmer MAML task, com-
paring standard ES-MAML (Algorithm [3) to RBO-MAML. To simulate noisy data, we randomly
corrupt 25% of the queries f7 (6 + og) used to estimate the adaptation operator U (8, T') with an
enormous additive noise. This is the same type of corruption used in (Choromanski et al., 2019c).

15

Published as a conference paper at ICLR 2020

Interestingly, RBO does not appear to be more robust against noise than the standard MC estimator,
which suggests that the original ES-MAML has some inherent robustness to noise.

On the right plot, we compare ASEBO-MAML to ES-MAML on the Goal-Velocity HalfCheetah
task in the low-K setting. We found that when measured in iterations, ASEBO-MAML outperforms
ES-MAML. However, ASEBO requires additional linear algebra operations and thus uses signif-
icantly more wall-clock time (not shown in plot) per iteration, so if measured by real time, then
ES-MAML was more effective.

A.4 NAVIGATION-2D EXPLORATION TASK

Navigation-2D (Finn et al.| 2017) is a classic environment where the agent must explore to adapt
to the task. The agent is represented by a point on a 2D square, and at each time step, receives
reward equal to its distance from a given target point on the square. Note that unlike the four corners
and six circles tasks, the reward for Navigation-2D is dense. We visualize the differing exploration
strategies learned by PG-MAML and ES-MAML in Figure[A4] Notice that PG-MAML makes many
tiny movements in multiple directions to ‘triangulate’ the target location using the differences in
reward for different state-action pairs. On the other hand, ES-MAML learns a meta-policy such that
each perturbation of the meta-policy causes the agent to move in a different direction (represented
by red paths), so it can determine the target location from the total rewards of each path.

Figure A4: Comparing the exploration behavior of PG-MAML and ES-MAML on the Navigation-
2D task. We use K = 20 queries for each algorithm.

PG-MAML Exploration, 2-D Navigation ES-MAML Exploration, 2-D Navigation

1.0- 1.0-

0.5- - 05-

0.0- e - 0.0-

-0.5- - =05
Il Meta-Policy
Adapt. Policy
N ES-Adapt. Q.
-1.0; : I I - -1.0; I ‘ :
-1.0 -0.5 0.0 0.5 10 “-1.0 -0.5 0.0 0.5 1.0

16

Published as a conference paper at ICLR 2020

A.5 PG-MAML RL BENCHMARKS

In Figure[A3] we compare ES-MAML and PG-MAML on the Forward-Backward and Goal-Velocity
tasks for HalfCheetah, Swimmer, Walker2d, and Ant, using the same values of K that were used in

the original experiments of (Finn et al., 2017).

Figure A5: Comparisons between ES-MAML and PG-MAML using the queries K from
2017).

800 -

FB-Cheetah,K=20 FB-Swimmer,K=20 FB-Walker,K=20

, FB-Ant,K=40 |

[L oo o400 0

700 -

350 - Al

e e

200 -

_ 100

—100 | ' ' ' r 0o | | | | - 0n ' | ' r 50+ | ' | | -
0 200 400 600 8OO 1000 O 100 200 300 400 500 0 500 1000 1500 2000] 200 400 600 800 1000
Gy-Chgetah k=20 GV-swimmerK=20 ., GV-WalkerK=2p ., . GANLK=40, , .

o L 450 4

50 - _ 400 -

100 - f Y _ 350 -

300 -
—150 71 =

250 -
-200 - | -

200 -
—250 - =

150 -|

—300 - - 100]

-350 - - 50-,

—4004 ¢ 0a e 0y 900,
0 100 200 300 400 500 0 200 400 600 BOO 1000 1200 1400 1600 0 200 400 600 800 1000 0 100 200 300 400 500 GOO 700 BOO 900

=N s ES-H PG-H I PG-HH

A.6 REGRESSION AND SUPERVISED LEARNING

MAML has also been applied to supervised learning. We demonstrate ES-MAML on sine regression
2017), where the task is to fit a sine curve f with unknown amplitude and phase given
a set of K pairs (z;, f(z;)). The meta-policy must be able to learn that all of tasks have a common
periodic nature, so that it can correctly adapt to an unknown sine curve outside of the points x;.

For regression, the loss is the mean-squared error (MSE) between the adapted policy 7y (x) and the
true curve f(x). Given data samples {(z;, f(z;)}X ,, the empirical loss is L(6) = + Zfil (f(xy)—
7e(x;))?. Note that unlike in reinforcement learning, we can exactly compute V L(6); for deep net-
works, this is by automatic differentiation. Thus, we opt to use Tensorflow to compute the adaptation
operator U(#,T) in Algorithm [3] This is in accordance with the general principle that when gra-
dients are available, it is more efficient to use the gradient than to approximate it by a zero-order
method (Nesterov & Spokoiny}, 2017).

We show several results in Figure [A6] The adaptation step size is « = 0.01, which is the same
as in [2017). For comparison, reports that PG-MAML can obtain a
loss of ~ 0.5 after one adaptation step with K = 5, though it is not specified how many iterations
the meta-policy was trained for. ES-MAML approaches the same level of performance, though the
number of training iterations required is higher than for the RL tasks, and surprisingly high for what
appears to be a simpler problem. This is likely again a reflection of the fact that for problems such
as regression where the gradients are available, it is more efficient to use gradients.

As an aside, this leads to a related question of the correct interpretation of the query number K in
the supervised setting. There is a distinction between obtaining a data sample (x;, f(«;)), and doing
a computation (such as a gradient) using that sample. If the main bottleneck is collecting the data
{(z;, f(z;)}, then we may be satisfied with any algorithm that performs any number of operations
on the data, as long as it uses only K samples. On the other hand, in the (on-policy) RL setting,
samples cannot typically be ‘re-used’ to the same extent, because rollouts 7 sampled with a given

17

Published as a conference paper at ICLR 2020

Figure A6: The MSE of the adapted policy, for varying number of gradient steps and query number
K. Runs are averaged across 3 seeds.

Sine, Varying Grad. Steps (K=20) Sine, 1 Grad. Step, Varying K

0 0 2 g W

s 2 = MWV

) [}

> > —3

5 -3 5

© ©

0 -4 @&] Grad. Steps g 4 - (=5

= 2 Grad. Steps < s K=10
-5 & 3 Grad. Steps - K=20

0 1000 2000 3000 0 1000 2000 3000

Iterations Iterations

policy g follow an unknown distribution P (7€) which reduces their usefulness away from 6. Thus,
the corresponding notion to rollouts in the SL setting would be the number of backpropagations (for

PG-MAML) or perturbations (for ES-MAML), but clearly these have different relative costs than
doing simulations in RL.

18

Published as a conference paper at ICLR 2020

A.7 HYPERPARAMETERS AND SETUPS

A.7.1 ENVIRONMENTS

Unless otherwise explicitly stated, we default to K = 20 and horizon = 200 for all RL experiments.
We also use the standard reward normalization in (Mania et al., 2018)), and use a global state nor-
malization (i.e. the same mean, standard deviation normalization values for MDP states are shared
across workers).

For the Ant environments (Goal-Position Ant, Forward-Backward Ant), there are significant differ-
ences in weighting on the auxiliary rewards such as control costs, contact costs, and survival rewards
across different previous work (e.g. those costs are downweighted in (Finn et al., 2017 whereas the
coefficients are vanilla Gym weightings in (Liu et al., 2019)). These auxiliary rewards can lead to
local minima, such as the agent staying stationary to collect the survival bonus which may be con-
fused with movement progress when presenting a training curve. To make sure the agent is explicitly
performing the required task, we opted to remove such costs in our work and only present the main
goal-distance cost and forward-movement reward respectively.

For the other environments, we used default weightings and rewards, since they do not change across
previous works.

A.7.2 ES-MAML HYPERPARAMETERS

Let N be the number of possible distinct tasks possible. We sample tasks without replacement,
which is important if N < 5, as each worker performs adaptations on all possible tasks.

For standard ES-MAML (Algorithm 3)), we used the following settings.

| Setting | Value]
(Total Workers, # Perturbations, # Current Evals) | (300, 150, 150)
(Train Set Size, Task Batch Size, Test Set Size) (50,5,5) or (N,N,N)
Number of rollouts per parameter 1
Number of Perturbations per worker 1
Outer-Loop Precision Parameter 0.1
Adaptation Precision Parameter 0.1
Outer-Loop Step Size 0.01
Adaptation Step Size () 0.05
Hidden Layer Width 32
ES Estimation Type Forward-FD
Reward Normalization True
State Normalization True

For ES-MAML and PG-MAML, we took 3 seeded runs, using the default TRPO hyperparameters
found in (Liu et al., [2019)).

19

	Introduction
	Model Agnostic Meta Learning in RL
	ES-MAML Algorithms
	Evolution Strategies Methods (ES)
	Meta-Training MAML with ES
	Improving the Adaptation Operator with ES
	Improved Exploration
	Hill Climbing and Population Search

	Experiments
	Exploration: Target Environments
	Good Adaptation with Compact Architectures
	Deterministic Policies
	Low-K Benchmarks

	Conclusion
	First-Order ES-MAML
	Algorithm
	Experiments with First-Order ES-MAML

	Handling Estimator Bias
	Extensions of ES
	Active subspaces
	Regression-Based Optimization
	Experiments

	Navigation-2D Exploration Task
	PG-MAML RL Benchmarks
	Regression and Supervised Learning
	Hyperparameters and Setups
	Environments
	ES-MAML Hyperparameters

