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Abstract

Neural networks are becoming more and more popular for the analysis of
physiological time-series. The most successful deep learning systems in this
domain combine convolutional and recurrent layers to extract useful features to
model temporal relations. Unfortunately, these recurrent models are difficult to
tune and optimize. In our experience, they often require task-specific modifications,
which makes them challenging to use for non-experts. We propose U-Time, a fully
feed-forward deep learning approach to physiological time series segmentation
developed for the analysis of sleep data. U-Time is a temporal fully convolutional
network based on the U-Net architecture that was originally proposed for image
segmentation. U-Time maps sequential inputs of arbitrary length to sequences of
class labels on a freely chosen temporal scale. This is done by implicitly classifying
every individual time-point of the input signal and aggregating these classifications
over fixed intervals to form the final predictions. We evaluated U-Time for sleep
stage classification on a large collection of sleep electroencephalography (EEG)
datasets. In all cases, we found that U-Time reaches or outperforms current state-of-
the-art deep learning models while being much more robust in the training process
and without requiring architecture or hyperparameter adaptation across tasks.

1 Introduction

During sleep our brain goes through a series of changes between different sleep stages, which are
characterized by specific brain and body activity patterns [Kales and Rechtschaffen, 1968, Iber and
AASM, 2007]. Sleep staging refers to the process of mapping these transitions over a night of sleep.
This is of fundamental importance in sleep medicine, because the sleep patterns combined with other
variables provide the basis for diagnosing many sleep related disorders [Sateia, 2014]. The stages can
be determined by measuring the neuronal activity in the cerebral cortex (via electroencephalography,
EEG), eye movements (via electrooculography, EOG), and/or the activity of facial muscles (via
electromyography, EMG) in a polysomnography (PSG) study (see Figure S.1 in the Supplementary
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Material). The classification into stages is done manually. This is a difficult and time-consuming
process, in which expert clinicians inspect and segment the typically 8–24 hours long multi-channel
signals. Contiguous, fixed-length intervals of 30 seconds are considered, and each of these segments

is classified individually.

Algorithmic sleep staging aims at automating this process. Recent work shows that such systems
can be highly robust (even compared to human performance) and may play an important role in
developing novel biomarkers for sleep disorders and other (e.g., neurodegenerative and psychiatric)
diseases [Stephansen et al., 2018, Warby et al., 2014, Schenck et al., 2014]. Deep learning is becoming
increasingly popular for the analysis of physiological time-series [Faust et al., 2018] and has already
been applied to sleep staging [Robert et al., 1998, Ronzhina et al., 2012, Faust et al., 2019]. Today’s
best systems are based on a combination of convolutional and recurrent layers [Supratak et al., 2017,
Biswal et al., 2017]. While recurrent neural networks are conceptually appealing for time series
analysis, they are often difficult to tune and optimize in practice, and it has been found that for many
tasks across domains recurrent models can be replaced by feed-forward systems without sacrificing
accuracy [Bai et al., 2018, Chen and Wu, 2017, Vaswani et al., 2017].

This study introduces U-Time, a feed-forward neural network for sleep staging. U-Time as opposed
to recurrent architectures can be directly applied across datasets of significant variability without
any architecture or hyperparameter tuning. The task of segmenting the time series is treated similar
to image segmentation by the popular U-Net architecture [Ronneberger et al., 2015]. This allows
segmentation of an entire PSG in a single forward pass and to output sleep stages at any temporal
resolution. Fixing a temporal embedding, which is a common argument against feed-forward
approaches to time series analysis, is no problem, because in our setting the full time series is
available at once and is processed entirely (or in large chunks) at different scales by the special
network architecture.

In the following, we present our general approach to classifying fixed length continuous segments of
physiological time series. In Section 3, we apply it to sleep stage classification and evaluate it on 7
different PSG datasets using a fixed architecture and hyperparameter set. In addition, we performed
many experiments with a state-of-the-art recurrent architecture, trying to improve its performance
over U-Time and to assess its robustness against architecture and hyperparameter changes. These
experiments are listed in the Supplementary Material. Section 4 summarizes our main findings,
before we conclude in Section 5.

2 Method

U-Time is a fully convolutional encoder-decoder network. It is inspired by the popular U-Net
architecture originally proposed for image segmentation [Ronneberger et al., 2015, Koch et al., 2019b,
Perslev et al., 2019] and so-called temporal convolutional networks [Lea et al., 2016]. U-Time adopts
basic concepts from U-Net for 1D time-series segmentation by mapping a whole sequence to a dense
segmentation in a single forward pass.

Let x 2 R⌧S⇥C be a physiological signal with C channels sampled at rate S for ⌧ seconds. Let
e be the frequency at which we want to segment x, that is, the goal is to map x to b⌧ · ec labels,
where each label is based on i = S/e sampled points. In sleep staging, 30 second intervals are
typically considered (i.e., e = 1/30 Hz). The input x to U-Time are T fixed-length connected
segments of the signal, each of length i. U-Time predicts the T labels at once. Specifically, the model
f(x; ✓) : RT⇥i⇥C ! RT⇥K with parameters ✓ maps x to class confidence scores for predicting K
classes for all T segments. That is, the model processes 1D signals of length t = T i in each channel.

The segmentation frequency e is variable. For instance, a U-Time model trained to segment with
e = 1/30 Hz may output sleep stages at a higher frequency at inference time. In fact, the extreme
case of e = S, in which every individual time-point of x gets assigned a stage, is technically possible,
although difficult (or even infeasible) to evaluate (see for example Figure 3). U-Time, in contrast to
other approaches, allows for this flexibility, because it learns an intermediate representation of the
input signal where a confidence score for each of the K classes is assigned to each time point. From
this dense segmentation the final predictions over longer segments of time are computed by projecting
the fine-grained scores down to match the rate e at which human annotated labels are available.
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Figure 1: Illustrative example of how U-Time maps a potentially very long input sequence (here only
T = 4 for visual purposes) to segmentations at a chosen temporal scale (here e = 1/30 Hz) by first
segmenting the signal at every data-point and then aggregating these scores to form final predictions.

The U-Time model f consists of three logical submodules: The encoder fenc takes the raw physiolog-
ical signal and represents it by a deep stack of feature maps, where the input is sub-sampled several
times. The decoder fdec learns a mapping from the feature stack back to the input signal domain that
gives a dense, point-wise segmentation. A segment classifier fsegment uses the dense segmentation to
predict the final sleep stages at a chosen temporal resolution. These steps are illustrated in Figure 1.
An architecture overview is provided in Figure 2 and detailed in Supplementary Table S.2.

Encoder The encoder consists of four convolution blocks. All convolutions in the three submodules
preserve the input dimensionality through zero-padding. Each block in the encoder performs two
consecutive convolutions with 5-dimensional kernels dilated to width 9 [Yu and Koltun, 2015]
followed by batch normalization [Ioffe and Szegedy, 2015] and max-pooling. In the four blocks, the
pooling windows are 10, 8, 6, and 4, respectively. Two additional convolutions are applied to the fully
down-sampled signal. The aggressive down-sampling reduces the input dimensionality by a factor
1920 at the lowest layers. This 1) drastically reduces computational and memory requirements even
for very long inputs, 2) enforces learning abstract features in the bottom layers and, 3), combined
with stacked dilated convolutions, provides a large receptive field at the last convolution layer of the
encoder. Specifically, the maximum theoretical receptive field of U-Time corresponds to approx. 5.5
minutes given a 100 Hz signal (see Luo et al. [2017] for further information on theoretical and
effective receptive fields).

The input x to the encoder could be an entire PSG record (T = b⌧ · ec) or a subset. As the model is
based on convolution operations, the total input length t need not be static either, but could change
between training and testing or even between individual mini-batches. While t is adjustable, it
must be large enough so that all max-pooling operations of the encoder are defined, which in our
implementation amounts to tmin = 1920 or 19.2 seconds of a 100Hz signal. A too small t reduces
performance by preventing the model from exploiting long-range temporal relations.

Decoder The decoder consists of four transposed-convolution blocks [Long et al., 2014], each
performing nearest-neighbour up-sampling [Odena et al., 2016] of its input followed by convolution
with kernel sizes 4, 6, 8 and 10, respectively, and batch normalization. The resulting feature maps
are concatenated (along the filter dimension) with the corresponding feature maps computed by the
encoder at the same scale. Two convolutional layers, both followed by batch normalization, process
the concatenated feature maps in each block. Finally, a point-wise convolution with K filters (of size
1) results in K scores for each sample of the input sequence.

In combination, the encoder and decoder maps a t ⇥ C input signal to t ⇥ K confidence scores.
We may interpret the decoder output as class confidence scores assigned to every sample point of
the input signal, but in most applications we are not able to train the encoder-decoder network in a
supervised setting as labels are only provided or even defined over segments of the input signal.

3



Encoder Block

Input Output

Decoder Block

Skip connectionInput Output

4x

1D convolution
Batch normalization

NN up-sampling
Max pool
Concatenate

Average pool

4x
Segment Classifier

Dense 
segmentation

Sleep 
stages

Figure 2: Structural overview of the U-Time architecture. Please refer to Supplementary Figure S.2
for an extended, larger version.

Segment classifier The segment classifier serves as a trainable link between the intermediate
representation defined by the encoder-decoder network and the label space. It aggregates the sample-
wise scores to predictions over longer periods of time. For periods of i time steps, the segment
classifier performs channel-wise mean pooling with width i and stride i followed by point-wise
convolution (kernel size 1). This aggregates and re-weights class confidence scores to produce
scores of lower temporal resolution. In training, where we only have T labels available, the segment
classifier maps the dense t⇥K segmentation to a T ⇥K-dimensional output.

Because the segment classifier relies on the mean activation over a segment of decoder output, learning
the full function f (encoder+decoder+segment classifier) drives the encoder-decoder sub-network to
output class confidence scores distributed over the segment. As the input to the segment classifier
does not change in expectation if e (the segmentation frequency) is changed, this allows to output
classifications on shorter temporal scales at inference time. Such scores may provide important
insight into the individual sleep stage classifications by highlighting regions of uncertainty or fast
transitions between stages on shorter than 30 second scales. Figure 3 shows an example.

3 Experiments and Evaluation

Our brain is in either an awake or sleeping state, where the latter is further divided into rapid-eye-
movement sleep (REM) and non-REM sleep. Non-REM sleep is further divided into multiple states.
In his pioneering work, Kales and Rechtschaffen [1968] originally described four non-REM stages,
S1, S2, S3 and S4. However, the American Academy of Sleep Medicine (AASM) provides a newer
characterization [Iber and AASM, 2007], which most importantly changes the non-REM naming
convention to N1, N2, and N3, grouping the original stages S3 and S4 into a single stage N3. We use
this 5-class system and refer to Table S.1 in the Supplementary Material for an overview of primary
features describing each of the AASM sleep stages.

We evaluated U-Time for sleep-stage segmentation of raw EEG data. Specifically, U-Time was
trained to output a segmentation of an EEG signal into K = 5 sleep stages according to the AASM,
where each segment lasts 30 seconds (e = 1/30Hz). We fixed T = 35 in our experiments. That is,
for a S = 100Hz signal we got an input of t = 105000 samples spanning 17.5 minutes.

Our experiments were designed to gauge the performance of U-Time across several, significantly
different sleep study cohorts when no task-specific modifications are made to the architecture or
hyperparameters between each. In the following, we describe the data pre-processing, optimization,
and evaluation in detail, followed by a description of the datasets considered in our experiments.

Preprocessing All EEG signals were re-sampled at S = 100 Hz using polyphase filtering with
automatically derived FIR filters. Across the datasets, sleep stages were scored by at least one human
expert at temporal resolution e = 1/30 Hz. When stages were scored according to the Kales and
Rechtschaffen [1968] manual, we merged sleep stages S3 and S4 into a single N3 stage to comply
with the AASM standard. We discarded the rare and typically boundary-located sleep stages such as
‘movement’ and ‘non-scored’ and their corresponding PSG signals, producing the identical label set
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{W, N1, N2, N3, R} for all the datasets. EEG signals were individually scaled for each record to
median 0 and inter quartile range (IQR) 1.

Some records display extreme values typically near the start or end of the PSG studies when electrodes
are placed or the subject is entering or leaving the bed. To stabilize the pre-processing scaling as well
as learned batch normalization, all 30 second segments that included one or more values higher than
20 times the global IQR of that record were set to zero. Note that this only applied if the segment was
scored by the human observer (almost always classified ‘wake’ as these typically occur outside the
’in-bed’ region), as they would otherwise be discarded. We set the values to zero instead of discarding
them to maintain temporal consistency between neighboring segments.

Optimization U-Time was optimized using a fixed set of hyperparameters for all datasets. We
used the Adam optimizer [Kingma and Ba, 2014] with learning rate ⌘ = 5 · 10�6 minimizing the
generalized dice cost function with uniform class weights [Sudre et al., 2017, Crum et al., 2006],
L(y, ŷ) = 1� 2
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. This cost function is useful in sleep staging, because the classes
may be highly imbalanced. To further counter class imbalance we selected batches of size B = 12
on-the-fly during training according to the following scheme: 1) we uniformly sample a class from
the label set {W, N1, N2, N3, R}, 2) we select a random sleep period corresponding to the chosen
class from a random PSG record in the dataset, 3) we shift the chosen sleep segment to a random
position within the T = 35 width window of sleep segments. This scheme does not fully balance the
batches, as the 34 remaining segments of the input window are still subject to class imbalance.

Training of U-Time was stopped after 150 consecutive epochs of no validation loss improvement (see
also Cross-validation below). We defined one epoch as dL/T/Be gradient steps, where L is the total
number of sleep segments in the dataset, T is the number of fixed-length connected segments input to
the model and B is the batch size. Note that we found applying regularization unnecessary when
optimizing U-Time as overfitting was negligible even on the smallest of datasets considered here (see
Sleep Staging Datasets 3 below).

Model specification and hyperparameter selection The encoder and decoder parts of the U-Time
architecture are 1D variants of the 2D U-Net type model that we have found to perform excellent
across medical image segmentation problems (described in [Koch et al., 2019b, Perslev et al., 2019]).
However, U-Time uses larger max-pooling windows and dilated convolution kernels. These changes
were introduced in order to increase the theoretical receptive field of U-Time and were made based
on our physiological understand of sleep staging rather than hyperparameter tuning. The only choice
we made based on data was the loss function, where we compared dice loss and cross entropy using
5-fold cross-validation on the Sleep-EDF-39 dataset (see below). We did not modify the architecture
or any hyperparameters (e.g., learning rates) after observing results on any of the remaining datasets.
Our minimal hyperparameter search minimizes the risk of unintentional method-level overfitting.

U-Time as applied here has a total of ⇡ 1.2 million trainable parameters. Note that this is at least one
order of magnitude lower than typical CNN-LSTM architectures such as DeepSleepNet [Supratak
et al., 2017]. We refer to Table S.2 and Figure S.2 in the Supplementary Material for a detailed
model specification as well as to Table S.3 in the Supplementary Material for a detailed list of
hyperparameters.

Cross-validation We evaluated U-Time on 7 sleep EEG datasets (see below) with no task-specific
architectural modifications. For a fair comparison with published results, we adopted the evaluation
setting that was most frequent in the literature for each dataset. In particular, we adopted the number
of cross-validation (CV) splits, which are given in the results Table 2 below. All reported CV scores
result from single, non-repeated CV experiments.

It is important to stress that CV was always performed on a per-subject basis. The entire EEG record
(or multiple records, if one subject was recorded multiple times) were considered a single entity in
the CV split process.1 On all datasets except SVUH-UCD, d5%e of the training records of each split
were used for validation to implement early-stopping based on the validation F1 score [Sørensen,

1Not doing so leads to data from the same subject being in both training and test sets and, accordingly, to
overoptimistic results. This effect is very pronounced. Therefore, we do not discuss published results where
training and test set were not split on a per-subject basis.
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1948, Dice, 1945]. For SVUH-UCD, a fixed number of training epochs (800) was used in all splits,
because the dataset is too small to provide a representative validation set.

Evaluation & metrics In Table 2 we report the per-class F1/dice scores computed over raw
confusion matrices summed across all records and splits. This procedure was chosen to be comparable
to the relevant literature. The table summarizes our results and published results for which the
evaluation strategy was described clearly. Specifically, we only compare to studies in which CV has
been performed on a subject-level and not segment level. In addition, we only compare to studies that
either report F1 scores directly or provide other metrics or confusion matrices from which we could
derive the F1 score. We only compare to EEG based methods.

LSTM comparison We re-implemented the successful DeepSleepNet CNN-LSTM model
[Supratak et al., 2017] for two purposes. First, we tried to push the performance of this model
to the level of U-Time on the Sleep-EDF-39 and DCSM datasets (see below) through a series of
hyperparameter experiments summarized in Table S.13 & Table S.14 in the Supplementary Ma-
terial. Second, we used DeepSleepNet to establish a unified, state-of-the-art baseline. Because
the DeepSleepNet system as introduced in Supratak et al. [2017] was trained for a fixed number
of epochs without early stopping, we argue that direct application of the original implementation
to new data would favour our U-Time model. Therefore, we re-implemented DeepSleepNet and
plugged it into our U-Time training pipeline. This ensures that the models use the same early stopping
mechanisms, class-balancing sampling schemes, and TensorFlow implementations. We employed
pre- and finetune training of the CNN and CNN-LSTM subnetworks, respectively, as in Supratak
et al. [2017]. We observed overfitting using the original settings, which we mitigated by reducing the
default pre-training learning rate by a factor 10. For Sleep-EDF-39 and DCSM, DeepSleepNet was
manually tuned in an attempt to reach maximum performance (see Supplementary Material). We did
not evaluate DeepSleepNet on SVUH-UCD because of the small dataset size.

Implementation U-Time is publicly available at https://github.com/perslev/U-Time. The
software includes a command-line-interface for initializing, training and evaluating models through
CV experiments automatically distributed and controlled over multiple GPUs. The code is based on
TensorFlow [Abadi et al., 2015]. We ran all experiments on a NVIDIA DGX-1 GPU cluster using
1 GPU for each CV split experiment. However, U-Time can be trained on a conventional 8-12 GB
memory GPU. Because U-Time can score a full PSG in a single forward-pass, segmenting 10+ hours
of signal takes only seconds on a laptop CPU.

Sleep Staging Datasets We evaluated U-Time on several public and non-public datasets covering
many real-life sleep-staging scenarios. The PSG records considered in our experiments have been
collected over multiple decades at multiple sites using various instruments and recording protocols to
study sleep in both healthy and diseased individuals. We briefly describe each dataset and refer to the
original papers for details. Please refer to Table 1 for an overview and a list of used EEG channels.

Sleep-EDF A public PhysioNet database [Kemp et al., 2000, Goldberger et al., 2000] often used for
benchmarking automatic sleep stage classification algorithms. As of 2019, the sleep-cassette subset
of the database consists of 153 whole-night polysomnographic sleep recordings of healthy Caucasians
age 25-101 taking no sleep-related medication. We utilze both the full Sleep-EDF database (referred
to as Sleep-EDF-153) as well as a subset of 39 samples (referred to as Sleep-EDF-39) that correspond
to an earlier version of the Sleep-EDF database that has been extensively studied in the literature.
Note that for these two datasets specifically, we only considered the PSGs starting from 30 minutes
before to 30 minutes after the first and last non-wake sleep stage as determined by the ground truth
labels in order to stay comparable with literature such as Supratak et al. [2017].

Physionet 2018 The objective of the 2018 Physionet challenge [Ghassemi et al., 2018, Goldberger
et al., 2000] was to detect arousal during sleep from PSG data contributed by the Massachusetts
General Hospital’s Computational Clinical Neurophysiology Laboratory. Sleep stages were also
provided for the training set. We evaluated U-Time on splits of the 994 subjects in the training set.

DCSM A non-public database provided by Danish Center for Sleep Medicine (DCSM), Rigshospi-
talet, Glostrup, Denmark comprising 255 whole-night PSG recordings of patients visiting the center
for diagnosis of non-specific sleep related disorders. Subjects vary in demographic characteristics,
diagnostic background and sleep/non-sleep related medication usage.
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Table 1: Datasets overview. The Scoring column reports the annotation protocol (R&K = Rechtschaf-
fen and Kales, AASM = American Academy of Sleep Medicine), Sample Rate lists the original rate
(in Hz), and Size gives the number of subjects included in our study after exclusions.

Dataset Size Sample Rate Channel Scoring Disorders

S-EDF-39 39 100 Fpz-Cz R&K None
S-EDF-153 153 100 Fpz-Cz R&K None
Physio-2018 994 200 C3-A2 AASM Non-specific sleep disorders
DCSM 255 256 C3-A2 AASM Non-specific sleep disorders
ISRUC 99 200 C3-A2 AASM Non-specific sleep disorders
CAP 101 100-512 C4-A1/C3-A2 R&K 7 types of sleep disorders
SVUH-UCD 25 128 C3-A2 R&K Sleep apnea, primary snoring

ISRUC Sub-group 1 of this public database [Khalighi et al., 2016] comprises all-night PSG record-
ings of 100 adult, sleep disordered individuals, some of which were under the effect of sleep
medication. Recordings were independently scored by two human experts allowing performance
comparison between the algorithmic solution and human expert raters. We excluded subject 40 due
to a missing channel.

CAP A public database [Terzano et al., 2002] storing 108 PSG recordings of 16 healthy subjects
and 92 pathological patients diagnosed with one of bruxism, insomnia, narcolepsy, nocturnal frontal
lobe epilepsy, periodic leg movements, REM behavior disorder, or sleep-disordered breathing. We
excluded subjects brux1, nfle6, nfle25, nfle27, nfle33, n12 and n16 due to missing C4-A1 and C3-A2
channels or due to inconsistent meta-data information.

SVUH-UCD The St. Vincent’s University Hospital / University College Dublin Sleep Apnea
Database [Goldberger et al., 2000] contains 25 full overnight PSG records of randomly selected
individuals under diagnosis for either obstructive sleep apnea, central sleep apnea or primary snoring.

4 Results

We applied U-Time with fixed architecture and hyperparameters to 7 PSG datasets. Table 2 lists the
class-wise F1 scores computed globally (i.e., on the summed confusion matrices over all records)
for U-Time applied to a single EEG channel (see Table 1), our re-implemented DeepSleepNet
(CNN-LSTM) baseline and alternative models from literature. Table S.12 in the Supplementary
material further reports a small number of preliminary multi-channel U-Time experiments, which we
discuss below. Table S.5 to Table S.11 in the Supplementary Material display raw confusion matrices
corresponding to the scores of Table 2. In Table S.4 in the Supplementary Material, we report the
mean, standard deviation, minimum and maximum per-class F1 scores computed across individual
EEG records, which may be more relevant from a practical perspective.

Even without task-specific modifications, U-Time reached high performance scores for large and
small datasets (such as Physionet-18 and Sleep-EDF-39), healthy and diseased populations (such as
Sleep-EDF-153 and DCSM), and across different EEG channels, sample rates, accusation protocols
and sites etc. On all datasets, U-Time performed, to our knowledge, at least as well as any automated
method from the literature that allows for a fair comparison – even if the method was tailored towards
the individual dataset. In all cases, U-Time performed similar or better than the CNN-LSTM baseline.

We attempted to push the performance of the CNN-LSTM architecture of our re-implemented
DeepSleepNet [Supratak et al., 2017] to the performance of U-Time on both the Sleep-EDF-39 and
DCSM datasets. These hyperparameter experiments are given in Table S.13 and Table S.14 in the
Supplementary Material. However, across 13 different architectural changes to the DeepSleepNet
model, we did not observe any improvement over the published baseline version on the Sleep-EDF-39
dataset, indicating that the model architecture is already highly optimized for the particular study
cohort. We found that relatively modest changes to the DeepSleepNet architecture can lead to large
changes in performance, especially for the N1 and REM sleep stages. On the DCSM dataset, a smaller
version of the DeepSleepNet (smaller CNN filters, specifically) improved performance slightly over
the DeepSleepNet baseline.
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Table 2: U-Time results across 7 datasets. U-Time and our CNN-LSTM baseline process single-
channel EEG data. Referenced models process single- or multi-channel EEG data. References: [1]
[Supratak et al., 2017], [2] [Vilamala et al., 2017], [3] [Phan et al., 2018], [4] [Tsinalis et al., 2016],
[5] [Andreotti et al., 2018].

.
Eval Global F1 scores

Dataset Model Records CV W N1 N2 N3 REM mean

S-EDF-39 U-Time 39 20 0.87 0.52 0.86 0.84 0.84 0.79
CNN-LSTM1 39 20 0.85 0.47 0.86 0.85 0.82 0.77
VGGNet2 39 20 0.81 0.47 0.85 0.83 0.82 0.76
CNN3 39 20 0.77 0.41 0.87 0.86 0.82 0.75
Autoenc.4 39 20 0.72 0.47 0.85 0.84 0.81 0.74

S-EDF-153 U-Time 153 10 0.92 0.51 0.84 0.75 0.80 0.76
CNN-LSTM 153 10 0.91 0.47 0.81 0.69 0.79 0.73

Physio-18 U-Time 994 5 0.83 0.59 0.83 0.79 0.84 0.77
CNN-LSTM 994 5 0.82 0.58 0.83 0.78 0.85 0.77

DCSM U-Time 255 5 0.97 0.49 0.84 0.83 0.82 0.79
CNN-LSTM 255 5 0.96 0.39 0.82 0.80 0.82 0.76

ISRUC U-Time 99 10 0.87 0.55 0.79 0.87 0.78 0.77
CNN-LSTM 99 10 0.84 0.46 0.70 0.83 0.72 0.71
Human obs. 99 - 0.92 0.54 0.80 0.85 0.90 0.80

CAP U-Time 101 5 0.78 0.29 0.76 0.80 0.76 0.68
CNN5 104 5 0.77 0.35 0.76 0.78 0.76 0.68
CNN-LSTM 101 5 0.77 0.28 0.69 0.77 0.75 0.65

SVUH-UCD U-Time 25 25 0.75 0.51 0.79 0.86 0.73 0.73

5 Discussion and Conclusions

U-Time is a novel approach to time-series segmentation that leverages the power of fully convolutional
encoder-decoder structures. It first implicitly segments the input sequence at every time point and
then applies an aggregation function to produce the desired output.

We developed U-Time for sleep staging, and this study evaluated it on seven different sleep PSG
datasets. For all tasks, we used the same U-Time network architecture and hyperparameter settings.
This does not only rule out overfitting by parameter or structure tweaking, but also shows that U-Time
is robust enough to be used by non-experts – which is of key importance for clinical practice. In
all cases, the model reached or surpassed state-of-the-art models from the literature as well as our
CNN-LSTM baseline. In our experience, CNN-LSTM models require careful optimization, which
indicates that they may not generalize well to other cohorts. This is supported by the observed drop
in CNN-LSTM baseline performance when transferred to, for example, the ISRUC dataset. We
further found that the CNN-LSTM baseline shows large F1 score variations, in particular for sleep
stage N1, for small changes of the architecture (see Table S.13 in the Supplementary Material). In
contrast, U-Time reached state-of-the-art performance across the datasets without being tuned for
each task. Our results show that U-Time can learn sleep staging based on various input channels
across both healthy and diseased subjects. We attribute the general robustness of U-Time to its fully
convolutional, feed-forward only architecture.

Readers not familiar with sleep staging should be aware that even human experts from the same
clinical site may disagree when segmenting a PSG.2 While human performance varies between
datasets, the mean F1 overlap between typical expert annotators is at or slightly above 0.8 [Stephansen
et al., 2018]. This is also the case on the ISRUC dataset as seen in Table 2. U-Time performs at the
level of the human experts on the three non-REM sleep stages of the ISRUC dataset, while inferior

2This is true in particular for the N1 sleep stage, which is difficult to detect due to its transitional nature and
non-strict separation from the awake and deep sleep stages.
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Figure 3: Visualization of the class confidence scores of U-Time trained on C = 3 input channels
on the Sleep-EDF-153 dataset when the segmentation frequency e is set to match the input signal
frequency. Here, U-Time outputs 100 sleep stage scores per second. The top, colored letters give the
ground truth labels for each 30 second segment. The height of the colored bars in the bottom frame
gives the softmax (probability-like) scores for each sleep stage at each point in time.

on the REM sleep stage and slightly below on the wake stage. However, human annotators have
the advantage of being able to inspect several channels including the EOG (eye movement), which
often provides important information in separating wake and REM sleep stages. This is because the
EEG activity in wake and REM stages is similar, while – as the name suggests – characteristic eye
movements are indicative of REM sleep (see Table S.1 in the Supplementary Material). In this study
we chose to use only a single EEG channel to compare to other single-channel studies in literature. It
is highly likely that U-Time for sleep staging would benefit from receiving multiple input channels.
This is supported by our preliminary multi-channel results reported in Supplementary Table S.12.
On ISRUC and other datasets, the inclusion of an EOG channel improved classification of the REM
sleep stage.

We observed the lowest U-Time performance on the CAP dataset, although on par with the model of
Andreotti et al. [2018], which requires multiple input channels. The CAP dataset is difficult because
it contains recordings from patients suffering from seven different sleep related disorders, each of
which are represented by only few subjects, and because of the need for learning both the C4-A1 and
C3-A2 channels simultaneously.

Besides its accuracy, robustness, and flexibility, U-Time has a couple of other advantageous properties.
Being fully feed-forward, it is fast in practice as computations may be distributed efficiently on GPUs.
The input window T can be dynamically adjusted, making it possible to score an entire PSG record
in a single forward pass and to obtain full-night sleep stage classifications almost instantaneously
in clinical practice. Because of its special architecture, U-Time can output sleep stages at a higher
temporal resolution than provided by the training labels. This may be of importance in a clinical
setting for explaining the system’s predictions as well as in sleep research, where sleep stage dynamics
on shorter time scales are of great interest [Koch et al., 2019a]. Figure 3 shows an example.

While U-Time was developed for sleep staging, we expect its basic design to be readily applicable
to other time series segmentation tasks as well. Based on our results, we conclude that fully
convolutional, feed-forward architectures such as U-Time are a promising alternative to recurrent
architectures for times series segmentation, reaching similar or higher performance scores while
being much more robust with respect to the choice of hyperparameters.
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