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ABSTRACT

In this paper, we adopt distributionally robust optimization (DRO) (Ben-Tal et al.,
2013) in hope to achieve a better generalization in deep learning tasks. We estab-
lish the generalization guarantees and analyze the localized Rademacher complex-
ity for DRO, and conduct experiments to show that DRO obtains a better perfor-
mance. We reveal the profound connection between SGD and DRO, i.e., selecting
a batch can be viewed as choosing a distribution over the training set. From this
perspective, we prove that SGD is prone to escape from bad stationary points and
small batch SGD outperforms large batch SGD. We give an upper bound for the
robust loss when SGD converges and keeps stable. We propose a novel Weighted
SGD (WSGD) algorithm framework, which assigns high-variance weights to the
data of the current batch. We devise a practical implement of WSGD that can
directly optimize the robust loss. We test our algorithm on CIFAR-10 and CIFAR-
100, and WSGD achieves significant improvements over the conventional SGD.

1 INTRODUCTION

In recent years, supervised learning based on deep neural networks (DNNs) has achieved state-of-
the-art performances in various tasks of different domains, such as computer vision and natural
language processing (Goodfellow et al., 2016). However, theoretical explanations for the general-
ization ability of deep learning remain challenging. Roughly speaking, supervised learning aims to
learn a model from the training data. Let Θ denote the parameter space of the model, and Z denote
the sample space. Let `(z, θ) : Z ×Θ→ R+ denote the loss function related to the parameter θ and
the instance z. In the general setting of supervised learning, there is a fixed but unknown distribution
over Z (denoted P ). We attempt to find a θ ∈ Θ, which gives a small generalization error. That is,
we address the following optimization problem:

min
θ∈Θ

R(θ) , EP `(z, θ). (1)

However, the real distribution P is unknown, so we consider an empirical distribution. Given
the training samples S = (z1, z2, · · · , zm), the empirical distribution is defined as P̂m(z) =
1
m

∑m
i=1 I[z=zi], where I is the indicator function. The loss related to this distribution is called

the empirical loss, which is

R̂(θ) , EP̂m`(z, θ) =
1

m

m∑
i=1

`(zi, θ), (2)

and we minimize the empirical loss instead. This procedure is referred to as Empirical Risk Mini-
mization (ERM).

The overwhelming capacity and the paucity of data make deep learning architectures susceptible to
over-fitting. This urges us to propose a better approach to the minimization problem (1). Suppose
there is a distribution familyM = {Pλ : λ ∈ Λ} parametrized by λ, and the underlying distribution
P = Pλ0

∈ M, where λ0 is fixed but unknown. It is a common case in deep learning tasks that
the structure of the data is complicated while the amount of data is small. Hence, when we use
an estimator λ̂ to estimate the parameter λ0, the variance of λ̂ would be quite large. Thus, rather
than directly minimizing the true expected loss R(θ) = EPλ0 `(z, θ), we minimize a distributionally
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robust loss alternatively, which can ensure the true expected loss to be small with high probability.
The distributionally robust loss is defined as:

R(θ,K) , sup
λ∈K

EPλ`(z, θ),

where K ⊂ Λ is a neighbourhood of the estimator λ̂. This procedure is called Distributionally
Robust Optimization (DRO). Because we only have access to the given training dataset, we construct
an unbiased1 estimation of the expected loss EPλ`(z, θ):

1

m

m∑
i=1

Pλ(zi)

Pλ0
(zi)

`(zi, θ).

This can be viewed as the expected loss with respect to a perturbed empirical generalized distribu-
tion2 P̂λ = 1

m

∑m
i=1

Pλ(z)
Pλ0 (z) I[z=zi], so the DRO problem becomes minimizing the empirical distri-

butionally robust loss:

R̂(θ,K) , sup
λ∈K

EP̂λ`(z, θ) = sup
λ∈K

m∑
i=1

Pλ(zi)

mPλ0
(zi)

`(zi, θ).

Keeping the motivations above in mind, we focus our attention on the robust loss, defined as the
maximal possible weighted loss over a pre-specified weight set P for simplicity:

R̂S,P(θ) , sup
p∈P

m∑
i=1

pi`(zi, θ).

In deep learning, the high capacity of the model and the non-convexity of the objective function
lead to an extremely complicated landscape and induce a lot of minima, and different minima have
different generalization performances. In this case, an optimization algorithm is both an optimizer
and a minimum selector, and the minimum preference of the optimization algorithm is crucial in
deep learning. Stochastic Gradient Descent (SGD) and its variants are widely used to minimize the
empirical loss (2). The simplest mini-batch SGD consists of iterative sampling of a batch of data
and then updating the parameter:

θt+1 = θt − ηt
( 1

|Bt|
∑
zi∈Bt

∇θ`(zi, θt)
)
,

where Bt ⊂ S is the sampled mini-batch, ηt is the learning rate, and |Bt| denotes the batch size.
We interpret SGD from another perspective: at each iteration, SGD randomly chooses an empirical
distribution over the data and performs a gradient descent update w.r.t. the corresponding loss. This
interpretation shows a profound connection between SGD and DRO. Motivated by the connection,
we develop a brand new version of SGD that can achieve a better generalization performance. The
main contribution of this paper is summarized as follows:

• We clarify the connection between mini-batch SGD and DRO. We show that SGD helps
escape from bad stationary points and the robust loss of local minima where SGD converges
is not large.

• We analyze the generalization property of robust loss and show the trade off: the robust
loss generalizes well when P is relatively small, but a larger P is beneficial to reducing the
localized Rademacher complexity.

• We propose a framework of improved SGD algorithm, which enables the algorithm to
explore more empirical distributions over the data. We give a practical improved SGD
algorithm that can directly optimize the robust loss.

1To make the fraction reasonable, we assume Pλ0(z) > 0 whenever Pλ(z) > 0.
2Strictly speaking, this is not a distribution because P̂λ(Z) may not equals to 1, but its expectation is 1 (the

expectation is taken over the sample S). Nonetheless, we can view P̂λ as a measure over Z .
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2 RELATED WORK

SGD is widely used in large-scale machine learning problems. The convergence theory of SGD in
convex cases is solid (Ghadimi & Lan, 2013; Shamir & Zhang, 2013). However, due to the non-
convexity of deep learning models, the behaviour of SGD is more complicated. Dauphin et al. (2014)
argued that it is the prevalence of saddle points rather than local minima that causes the difficulty
in high dimensional non-convex optimization. Ge et al. (2015) analyzed the property of perturbed
GD (i.e., gradient descent with an isotropic noise injected). They showed that perturbed GD has the
ability to escape from saddle points in a polynomial number of iterations, and then converges to a
second-order stationary point.

It is also well known that adding perturbation and noise at different levels of the training processes
helps generalization, such as dropout (Srivastava et al., 2014), and random noise injection to the
input data (Chapelle et al., 2001). The good performance of SGD might benefit from the noise.
Keskar et al. (2016) discovered that large-batch training will incur a degradation in the generalization
performance of the model. They explained this phenomenon with the concept of sharp minima,
and carried out numerical experiments to support the idea that SGD with large batch size tends to
converge to sharp minima, which leads to a bad generalization ability. However, Dinh et al. (2017)
provided theoretical results indicating that most existing definitions of sharpness and flatness of
minima can not be applied to some commonly used non-negative homogeneous activation functions
such as ReLU.

DRO was originally applied to decision making under uncertainty. Namkoong & Duchi (2017)
introduced DRO to machine learning, and viewed it as a variance-based regularization that allows
us to automatically trade-off between bias and variance. They proved an O( 1

m ) approximation to
the generalization errorR(θ), in contrast to the generalO( 1√

m
) approximation of the empirical risk.

Recently, DRO is used to achieve fairness without demographic information in fair machine learning
(Hashimoto et al., 2018).

In learning theory, Rademacher complexity is widely used to measure the complexity of a hypothesis
set (Bartlett & Mendelson, 2002). Different from the general Rademacher complexity which con-
siders the entire hypothesis set, localized Rademacher complexity only cares about the near optimal
hypothesis (Bartlett et al., 2002). In fact, the hypothesis selected by a learning algorithm usually has
better performance than the worst hypothesis. Thus, localized Rademacher complexity is usually
much smaller than the general Rademacher complexity.

3 NOTATION AND PRELIMINARIES

In our work, we assume the loss function `(z, θ) is bounded between 0 and 1, and is continu-
ously differentiable. Let Σ denote the hyperplane {p :

∑m
i=1 pi = 1} and Σ+ denote the simplex

{p :
∑m
i=1 pi = 1,p ≥ 0}. Denote p0 = ( 1

m , . . . ,
1
m )>. For p = (p1, p2, . . . , pm)

> ∈ Σ, let
R̂S,p(θ) denote

∑m
i=1 pi`(zi, θ). Then the ERM loss can be written as R̂S,p0(θ), and the robust loss

w.r.t. the weight set P can be viewed as:

R̂S,P(θ) = sup
p∈P

R̂S,p(θ).

Let conv(P) denote the convex hull of P . Given a v ∈ Σ, let σ(v) be the set of all the vectors whose
entries are permutations of v’s. Let P(v) denote the convex hull of σ(v).

We define P(k) as the set of all the vectors that have k 1
k ’s and (m− k) 0’s:

P(k) =
{
p =

1

k
v : v ∈ {0, 1}m ,

m∑
i=1

vi = k
}
.

Clearly, P(k) has a natural connection to SGD with batch size k: for any batch sampled from the
dataset, there is a corresponding p ∈ P(k), where pi = 1

k if the i-th instance is in the batch.

In the remainder of the paper, we assume that P is symmetric, i.e., if p ∈ P , then σ(p) ⊂ P . This
follows that p0 ∈ conv(P). And we assume that P is a compact set. We assume the entries of
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p ∈ P sums to 1, but we relax the restrict that each entry of p ∈ P is non-negative, i.e., we assume
P ⊂ Σ.

To describe the properties of the set P , we use the notation RADp(P) to denote the minimum
radius of the Lp ball centered at p0 that contains P , and we use radp(P) to denote the maximum
radius of the Lp ball centered at p0 whose intersection with Σ is contained within P . We denote
‖P‖p = supp∈P ‖p‖p, and ‖P‖0 as the maximum number of non-zero entries of p ∈ P .
Definition 1. A function f : Θ→ R is L-Lipschitz, if:

|f(θ1)− f(θ2)| ≤ L‖θ1 − θ2‖,∀θ1, θ2 ∈ Θ.

Definition 2. A function f : Θ→ R is µ-strongly convex if f(θ)− µ
2 ‖θ‖

2 is convex.

Some basic properties of the robust loss R̂S,P(θ) are summarized in Appendix A.

4 CONNECTION BETWEEN SGD AND DRO

SGD has long been regarded as an excellent optimizer. It is generally believed that the good per-
formance of SGD is due to the noise introduced by stochastic gradient. But the existing results
commonly view stochastic gradient as an oracle that provides an unbiased estimation of the true
gradient, ignoring the fact that the noise is data-dependent. In this section, we directly analyze the
good properties of mini-batch SGD from the distributionally robust perspective.

At each iteration, SGD calculates the gradient of R̂S,p(θ), where p is the weight vector correspond-
ing to the current batch, and performs the update θ ← θ − η∇R̂S,p(θ). This can be viewed as
changing the distribution over the data. Thus SGD can improve the distributional robustness of the
model. The following theorem shows that changing the distribution helps mini-batch SGD escape
from some bad stationary points, which is characterized by the heterogeneity of gradients of each
individual instance.
Theorem 1. Let S be a fixed sample of size m. For a fixed θ ∈ Θ, define a matrix G =
(∇θ`(z1, θ), · · · ,∇θ`(zm, θ)), whose i-th column is the gradient of the i-th loss function w.r.t. θ.
For SGD with batch size k, denote p as the random weight vector uniformly sampled from P(k).
Then the expected squared update amount can be calculated by:

E
p
‖∇R̂S,p(θ)‖22 = ‖∇R̂S,p0(θ)‖22 +

m− k
k(m− 1)

(
tr(G>G)

m
− ‖∇R̂S,p0(θ)‖22

)
.

When tr(G>G)
m � ‖∇R̂S,p0

(θ)‖22, the gradient of the ERM loss is relatively small, but the average
squared length of the gradients g1, · · · , gm is large. This happens only if those gradients lie in some
opposite directions and cancel with each other. In this case, if we leave out the instance with the
largest gradient norm, then the average gradient of the rest of the sample would be almost as large as
the 1

m of the largest gradient norm, and the local landscape of the average loss function would shift
dramatically. This indicates the model pays too much attention to this specific instance and fails to
learn the intrinsic structure of the data, which can be viewed as a signal of over-fitting. We call this
a bad stationary point. So the scale of tr(G>G)

m and ‖∇R̂S,p0
(θ)‖22 captures the over-fitting tendency

of a model by measuring the heterogeneity of gradients of the individual instance.

Furthermore, we can know from Theorem 1 that for any fixed θ, E
p
‖∇R̂S,p0(θ)‖22 decreases mono-

tonically when k becomes larger, indicating the update amount of small batch SGD is larger than
that of large batch SGD in expectation. Therefore, small batch SGD has a stronger ability to capture
the non-uniformity of gradients and escape from bad stationary points.

Intuitively, if SGD converges and keeps stable when the distribution changes, the weighted average
loss R̂S,p will not be too large, otherwise SGD has the tendency to escape. To theoretically prove
it, we need to focus our attention to some simple case. If SGD has escaped from bad stationary
points and the deep learning model really captures some intrinsic structure of the data, then it is
conceivable that a batch of the instances Bt is able to reflect some common features of the entire
sample S, so the local landscape of the average loss function will not shift too much when we only
consider a batch of the data. In this case, we have the following theorem.
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Theorem 2. Assume the loss function is L-Lipschitz. Suppose the SGD algorithm with constant
learning rate η converges to and stays in B, where B = {θ : ‖θ− θ0‖2 ≤ B} is a ball that contains
a minimum of ERM loss R̂S,p0 . Suppose that ∀p ∈ P(k), B contains a local minimum of R̂S,p and
R̂S,p is µ-strongly convex on B. Further assume that the minimum value of the batch average loss
R̂S,p in B is not too large, i.e., min

θ∈B
R̂S,p(θ) ≤ min

θ∈B
R̂S,p0

(θ) + δ. Then the robust loss R̂S,P(k)(θ)

can be bounded by:

R̂S,P(k)(θ) ≤ min
θ′∈B

R̂S,p0
(θ′) +

2B2

µη2
+ 2LB + δ, ∀θ ∈ B.

5 THEORETICAL ANALYSIS

5.1 GENERALIZATION GUARANTEE OF DRO

In this subsection, we introduce the concept of Robust Rademacher Complexity and use it to derive
the generalization guarantee for robust loss, which provides justifications for DRO. We bound the
expectation of robust loss by empirical robust loss plus a complexity term with high probability.
Then we utilize the notion of covering number to show that the generalization of robust loss is not
too hard compared to that of ERM loss.

Definition 3 (Empirical Robust Rademacher Complexity). Let S = (z1, · · · , zm) be a fixed sample
of size m. The empirical robust Rademacher complexity of the parameter space Θ and the weight
set P w.r.t. the sample S is:

R̂S(Θ,P) = E
σ

[
sup
θ∈Θ

sup
p∈P

m∑
i=1

σipi`(zi, θ)

]
,

where σ = (σ1, . . . , σm)> is a random vector with independent entries uniformly from {−1, 1}.
Theorem 3. For any δ > 0, with probability at least 1− δ, the following holds for all θ ∈ Θ:

E
S′
R̂S′,P(θ) ≤ R̂S,P(θ) + 2R̂S(Θ,P) + 3m‖P‖∞

√
1

2m
log

2

δ
.

For a fixed sample S of size m, denote Θ(S) =
{

(`(z1, θ), · · · , `(zm, θ))> : θ ∈ Θ
}

and

Θ(S,P) =
{

(mp1`(z1, θ), · · · ,mpm`(zm, θ))> : θ ∈ Θ,p ∈ P
}

. For a norm ‖ · ‖ in Rm, de-
note the dual norm by ‖ · ‖∗. For ε > 0, let N (A, ‖ · ‖, ε) denote the covering number of the set
A ∈ Rm, which is the minimum cardinality of the ε-net w.r.t. the norm ‖ · ‖. Denote by d∗(m) an
upper bound of ‖σ‖∗ = ‖(σ1, · · · , σm)>‖∗.
Theorem 4. For any ε > 0, the empirical Rademacher complexity and the empirical robust
Rademacher complexity can be respectively bounded by:

R̂S(Θ) ≤
√

2 logN (Θ(S), ‖ · ‖, ε)
m

+
εd∗(m)

m
, (3)

and

R̂S(Θ,P) ≤ (1 + RAD2(P))

√
2 logN (Θ(S,P), ‖ · ‖, ε)

m
+
εd∗(m)

m
. (4)

Notice that Θ(S,P) is generated from Θ(S) by having all the points perturbed a little bit, so it is con-
ceivable that these two sets are close, implying that their covering numbers are close. Specifically,
if we define

d̃ = sup
x∈Θ(S,P)

inf
y∈Θ(S)

‖x− y‖

as the maximum distance of a point in Θ(S,P) deviating from the set Θ(S), then it follows that an
ε-net of Θ(S) is also an (ε + d̃)-net of Θ(S,P). To compare the right-hand sides of the covering
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number guarantees (3) and (4), we change ε to ε+ d̃ in (4), and we have:

(1 + RAD2(P))

√
2 logN (Θ(S,P), ‖ · ‖, ε+ d̃)

m
+

(ε+ d̃)d∗(m)

m

≤ (1 + RAD2(P))

√
2 logN (Θ(S), ‖ · ‖, ε)

m
+
εd∗(m)

m
+
d̃d∗(m)

m
.

When we use the Lp norm, one can easily show that d̃ ≤ mRADp(P), and ‖σ‖∗ can also be

bounded as ‖σ‖∗ ≤ m
1
q = m

p−1
p , so d∗(m) = m

p−1
p . Then the extra term d̃d∗(m)

m can be bounded
by m1− 1

pRADp(P).

Those bounds quantify how the size of P will influence the generalization ability, and give a suffi-
cient condition on the size of P to ensure that the covering number bounds are close. Conceivably,
when P is sufficiently small, the generalization of robust loss is not too difficult. It is worth noticing
that the inequality N (Θ(S,P), ‖ · ‖, ε+ d̃) ≤ N (Θ(S), ‖ · ‖, ε) is quite loose when the set Θ(S) is
some sort of “solid,” and this is often the case in deep neural networks, whose capacities are thought
to be very high. In one word, it is completely feasible to consider DRO when using DNNs.

5.2 LOCALIZED RADEMACHER COMPLEXITY

Next, we analyze the localized Rademacher complexity based on robust loss. Localized Rademacher
complexity measures the complexity of near optimal hypotheses, which is much smaller than the
entire hypothesis space. Here we assume the hypothesis set is restricted to a L2 norm ball.3

DRO can be viewed as a variance-based regularization technique (Namkoong & Duchi, 2017). A
low robust loss means a low variance of the losses (`(z1, θ), · · · , `(zm, θ)), since otherwise one
can choose a p ∈ P that puts more weight on the instances with a large loss, and obtains a high
robust loss. A larger size of P means a more radical way to assign weights, indicating that DRO
with large P renders a stricter regularization on the variance of the losses. Rademacher complexity
measures the ability of a hypothesis set to fit high variance random noises, and naturally a low
variance of the losses means a small Rademacher complexity. The following theorem reveals the
connection between Rademacher complexity and DRO, and provides a model-free bound on the
localized empirical Rademacher complexity.
Theorem 5. Assume the loss function is L-Lipschitz w.r.t. θ for all z. Consider the following hy-
pothesis set:

Θc =
{
θ : ESR̂S,P(θ) ≤ c, ||θ||2 < r

}
.

For any ε > 0, let N (Θc, ε) denote the covering number of Θc. Then for all 0 < δ < 1, with
probability ≥ 1− δ, the localized empirical Rademacher complexity can be bounded as:

R̂S(Θc) ≤
1√
m

(
1 +

4√
mrad∞(conv(P))

)(
c+ ε‖P‖0‖P‖∞L+‖P‖∞

√
m

2
log
N (Θc, ε)

δ

)
.

Conceivably, whenm and c are fixed, increasing the size of P reduces the set Θc. This bound shows
that increasing the size of P also reduces the complexity of Θc under certain conditions. For exam-
ple, let P be the intersection of Σ and a L∞ ball with radius ρ centered at p0. When ρ is relatively
small compared to 1

m , increasing ρ does not change ‖P‖∞ too much, but 1
rad∞(conv(P)) is inversely

proportional to ρ. Therefore, increasing ρ can reduce the scale of ‖P‖∞
rad∞(conv(P)) dramatically.

6 WEIGHTED SGD

Motivated by the DRO and the previous theoretical analyses, we propose a new variant of SGD
algorithms in Algorithm 1. We will see that this variant is simple and practical for applications.

3 When we train models with a constant weight decay λwd, generally the L2 norm of final parameters will
not excess

√
f(0)/λwd, where f is the loss function. This is because when the algorithm minimizing L(θ) =

f(θ) + λwd‖θ‖22 outputs θ′, we generally haveL(θ′) ≤ L(0), hence, λwd‖θ′‖22 ≤ f(θ′) + λwd‖θ′‖22 ≤ f(0).
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We have emphasized the significance of distributional robustness before. The critical factors that
influence distributional robustness are the size of P and the value of the corresponding robust loss
R̂S,P(θ). In order to obtain a more distributionally robust model, a direct approach is to increase the
size of P . In the conventional SGD, the weight of the data in the current batch is 1

k , and the other is
0. Due to the limited computational resources, we still only have access to one mini-batch at each
iteration, but we can assign high-variance weights to the instances of the mini-batch. This implies
that our algorithm enjoys the idea behind importance sampling. Therefore, our algorithm explores a
wider region of empirical distributions, yielding a more distributionally robust solution.

Algorithm 1 Weighted Stochastic Gradient Descent (WSGD)
Require: Initial parameter: θ0, Weight Generator: G, Learning Rate: ηt, Total Iteration: T , Train-

ing Data: S = {z1, z2, . . . , zm}.
1: for t = 1 to T do
2: Select a mini-batch: Bt = {zj1 , zj2 , . . . , zj|Bt|}
3: Generate weight: (w1, w2, . . . , w|Bt|)← G

4: Calculate normalization factor: W =
∑|Bt|
i=1 wi

5: Calculate stochastic gradient: gt = 1
W

∑|Bt|
i=1 wi∇θ`(zji , θt−1)

6: Update parameter: θt = θt−1 − ηtgt
7: end for
8: return θT

We turn to the choices of the weight generator. In particular, we recommend two approaches:

• G1(q, r): wi = r if `(zji , θt−1) is among the q|Bt| smallest elements of the losses
(`(zj1 , θt−1), · · · , `(zjBt , θt−1)), otherwise wi = 1;

• G2(q, r): Randomly select q|Bt| of the indices {ji} and set their weights to r. Set the
others to 1,

where q ∈ [0, 1] is the proportion of the instances whose weight is set to r, and r is a pre-specified
constant. Notice that r is not necessarily non-negative.

We have conducted experiments to show that Algorithm 1 with generator G1 achieves a better per-
formance on classification tasks than the conventional SGD (see Section 7). We refer to Algorithm
1 with weight generator G1(q, r) as WSGD(q, r).

Different from the conventional SGD, WSGD(q, r) directly optimizes a robust loss. It is easy to
prove that there exists a vector v(q, r) ∈ Σ such that the stochastic gradient in WSGD(q, r) is an
unbiased estimation of the gradient of R̂S,P(v(q,r))(θ) at differentiable points (see Appendix C for
details). Furthermore, the stochastic gradient in WSGD(q, r) is bounded by the Lipshitz constant
of ` when r is non-negative. Taking advantages of previous work, we can give the convergence
guarantee for WSGD(q, r) with a non-negative r in the strongly convex case:

Corollary 1 (Shamir & Zhang 2013). Suppose the loss function `(z, θ) is µ-strongly convex and
L-Lipshitz. Consider WSGD(q, r) with step size ηt = 1

µt and r is non-negative. Let R̂∗S,P(v(q,r)) be

the optimal value of R̂S,P(v(q,r))(θ). Then for all T > 1, it holds that:

E[R̂S,P(v(q,r))(θT )− R̂∗S,P(v(q,r))] ≤
17L2(1 + log(T ))

µT
.

It is worth pointing out that G2 usually yields a lower test loss in our trial. Strictly speaking, this
means G2 has a stronger generalization ability. However, the loss we choose in classification tasks
is different from the true loss (0-1 loss), thus the algorithm with a low test loss not always has a low
prediction error. We still recommendG2 because it may achieve a good performance on tasks which
we can deal with the true loss directly.
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7 EXPERIMENTS

In this section, we compare WSGD with the conventional stochastic gradient descent, which is
regarded as the optimizer with the best generalization. We carry out the experiment on the CIFAR-
10 and CIFAR-100 datasets (Krizhevsky & Hinton, 2009), which both have 50k training data and
10k test data. On CIFAR-10, we apply our algorithm and SGD to two small networks and two large
networks: ResNet-44, ResNet-56, VGG-16 and ResNet-34 (He et al., 2016; Simonyan & Zisserman,
2014). On CIFAR-100, we apply our algorithm and SGD to three large networks: VGG-16, ResNet-
34 and DenseNet-121 (Huang et al., 2017). We train the networks following the data augmentation
in Lee et al. (2015): 4 pixels are padded on each side, and a 32 × 32 crop is randomly sampled
from the padded image or its horizontal flip. We only do evaluation on the original 32 × 32 image
while testing. In order to compare the generalization ability of optimization algorithms, we train
the models for 600 epochs to ensure convergence. We set the initial learning rate to 0.1, and divide
it by 10 at 300 and 450 epochs. The choice of hyper-parameters in WSGD(q, r) is listed in the
experiment results. Empirically speaking, the hyper-parameters are mainly related to the dataset and
network architecture, and a smaller r is suitable for larger networks.

We summarize the experiment results on CIFAR-10 and CIFAR-100 in Table 1. For each network
and algorithm, we report the test accuracy, the L2 ball and L∞ ball robust loss. Lp ball robust loss is
the robust loss with P as the intersection of Σ+ and the Lp ball centered at p0 with radius radp(Σ+).
In other words, we consider the largest Lp ball in Σ centered p0 that has positive entries.

From table 1 we can see that WSGD outperforms SGD in all experiments. On CIFAR-10, WSGD
decreases the misclassification rate by≈ 5‰ except VGG-16. On CIFAR-100, WSGD decreases the
misclassification rate by 5‰ to 15‰ . Moreover, the models trained by WSGD have a lower L2 ball
and L∞ ball robust loss than SGD. The good performance shows WSGD improves the distributional
robustness of the models.

Table 1: Top 1 accuracy(%) and robust loss(×10−3) on CIFAR 10 and CIFAR 100

Network Params Acc L2-ball L∞-ball Method Dataset
ResNet-44 0.66M 93.60 0.5902 1.116 SGD CIFAR-10
ResNet-44 0.66M 94.24 0.4892 0.9507 WSGD(0.5,0.3) CIFAR-10
ResNet-56 0.86M 93.86 0.3762 0.6745 SGD CIFAR-10
ResNet-56 0.86M 94.33 0.3070 0.5835 WSGD(0.5,0.4) CIFAR-10
VGG-16 14.74M 94.05 0.9617 1.112 SGD CIFAR-10
VGG-16 14.74M 94.30 0.8807 1.004 WSGD(0.5,0.2) CIFAR-10
ResNet-34 21.30M 95.13 0.7113 0.9379 SGD CIFAR-10
ResNet-34 21.30M 95.65 0.6422 0.8381 WSGD(0.5,0) CIFAR-10
VGG-16 14.78M 72.13 1.535 2.942 SGD CIFAR-100
VGG-16 14.78M 73.60 1.209 2.346 WSGD(0.5,0) CIFAR-100
ResNet-34 21.35M 77.89 1.473 2.562 SGD CIFAR-100
ResNet-34 21.35M 78.43 0.9876 1.871 WSGD(0.5,0) CIFAR-100
DenseNet-121 7.13M 79.31 3.359 4.614 SGD CIAFR-100
DenseNet-121 7.13M 80.35 1.196 2.152 WSGD(0.5,-0.1) CIAFR-100

8 DISCUSSION AND CONCLUSION

In this paper we have theoretically analyzed the good property of DRO, and revealed the pro-
found connection between SGD and DRO. Accordingly we have proposed a practical algorithm
that can utilize the non-isotropic noise of the stochastic gradient. We have tested WSGD algorithm
on CIFAR-10 and CIFAR-100, achieving significant improvements compared to SGD.

We hope this paper can inspire works that theoretically study the generalization ability of optimiza-
tion algorithms. We think one should pay attention to the loss of each individual instance, rather than
the average of the entire sample. We expect future works on SGD without simplification to isotropic
noise, and algorithms that take advantage of the non-isotropic noise of the stochastic gradient.
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A SOME PROPERTIES OF ROBUST LOSS

Lemma 1. Let `1, · · · , `m be arbitrary real numbers. Let conv(P) denote the convex hull of P ,
then

sup
p∈P

m∑
i=1

pi`i = sup
p∈conv(P)

m∑
i=1

pi`i.

Lemma 2. Let `1, · · · , `m be arbitrary positive numbers. Assume P ∈ Σ and is symmetric. Then
the following holds for all p ⊂ P:

|
m∑
i=1

pi`i| ≤ sup
p′∈P

m∑
i=1

p′i`i.

Lemma 3. Assume the loss function `(z, θ) is L-Lipschitz with respect to θ for all z, then for any
fixed sample S of size m, R̂S,P(θ) is ‖P‖0‖P‖∞L-Lipschitz

Proof.

|R̂S,P(θ)− R̂S,P(θ′)|

= | sup
p∈P

∑
pi`(zi, θ)− sup

p∈P

∑
pi`(zi, θ

′)|

≤ max

{
sup
p∈P

∑
pi (` (zi, θ)− `(zi, θ′)) , sup

p∈P

∑
pi (` (zi, θ

′)− `(zi, θ))
}
.

Notice that |`(zi, θ)− `(zi, θ′)| ≤ L‖θ − θ′‖ for all zi, we have:

|
∑

pi (` (zi, θ)− `(zi, θ′)) |

≤
∑
|pi|L‖θ − θ′‖

≤ ‖P‖0‖P‖∞L‖θ − θ′‖.
One can develop various bounds on the Lipschitz constant of R̂S,P(θ).

Lemma 4 (Convexity). Assume that all entries of p ∈ P is non-negative. Futher assume that `(z, θ)
is convex with respect to θ for all z, then for a fix sample of sizem, the robust loss R̂S,P(θ) is convex.

And denote p∗ = arg sup
p∈P

R̂S,p(θ), then for any gi ∈ ∂θ`(zi, θ),
m∑
i=1

p∗i gi is in the subgradient of

R̂S,P(θ) at point θ.

Proof. For any p ∈ P , R̂S,p(θ) is a convex combination of convex functions, thus it is convex.
R̂S,P is supremum over a family of convex functions, thus it is also convex. To complete the proof,
by the definition of subgradient, we have the following holds for all i = 1, · · · ,m:

`(zi, θ
′) ≥ `(zi, θ) + 〈gi, θ′ − θ〉.

Then,

R̂S,p∗(θ
′) =

m∑
i=1

p∗i `(zi, θ
′)

≥
m∑
i=1

p∗i `(zi, θ) + 〈
m∑
i=1

p∗i gi, θ
′ − θ〉.

So,
R̂S,P(θ′) ≥ R̂S,p∗(θ′)

≥
m∑
i=1

p∗i `(zi, θ) + 〈
m∑
i=1

p∗i gi, θ
′ − θ〉

= R̂S,P(θ) + 〈
m∑
i=1

p∗i gi, θ
′ − θ〉.
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Lemma 5. Assume the loss function `(z, θ) is µ-strongly convex (convex), then for any P ⊂ Σ+,
R̂S,P is µ-strongly convex (convex).

Lemma 6. Assume the loss function `(z, θ) takes values in [0, 1], then the robust loss R̂S,P is
bounded by 1+‖P‖1

2

B PROOF OF THE THEOREMS

Theorem 1. Let S be a fixed sample of size m. For a fixed θ ∈ Θ, define a matrix G =
(∇θ`(z1, θ), · · · ,∇θ`(zm, θ)), whose i-th column is the gradient of the i-th loss function w.r.t. θ.
For SGD with batch size k, denote p as the random weight vector uniformly sampled from P(k).
Then the expected squared update amount can be calculated by:

E
p
‖∇R̂S,p(θ)‖22 = ‖∇R̂S,p0

(θ)‖22 +
m− k
k(m− 1)

(
tr(G>G)

m
− ‖∇R̂S,p0

(θ)‖22
)
.

Proof.

E
p
‖∇R̂S,p(θ)‖22 = E

p
‖Gp‖22

= E
p
‖G(p− p0)‖22 + ‖Gp0‖22

= E
p

(p− p0)>G>G(p− p0) + ‖Gp0‖22

= E
p

tr
[
(p− p0)>G>G(p− p0)

]
+ ‖Gp0‖22

= E
p

tr
[
(p− p0)(p− p0)>G>G

]
+ ‖Gp0‖22

= tr
[
E
p

(p− p0)(p− p0)>G>G

]
+ ‖Gp0‖22

E
p

(p− p0)(p− p0)> = E
p

[
pp> + p0p

>
0 − pp>0 − p0p

>]
= E
p

[
pp>

]
− p0p

>
0

One can easily calculate that

E
p

[
pp>

]
=


1
mk

k−1
m(m−1)k · · · k−1

m(m−1)k
k−1

m(m−1)k
1
mk · · · k−1

m(m−1)k

...
. . .

...
k−1

m(m−1)k · · · k−1
m(m−1)k

1
mk

 ,

when p is sampled from P(k), namely k entries of p are randomly set to 1
k , while other entries are

0. And

p0p
>
0 =


1
m2

1
m2 · · · 1

m2

1
m2

1
m2 · · · 1

m2

...
. . .

...
1
m2 · · · 1

m2
1
m2

 ,
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Then

tr
[
E
p

(p− p0)(p− p0)>G>G

]
=

(
1

mk
− 1

m2

)
tr(G>G) +

(
k − 1

m(m− 1)k
− 1

m2

)(
1>G>G1− tr(G>G)

)
=

(
1

mk
− 1

m2

)(
tr(G>G)− 1>G>G1

m

)
+(

k − 1

m(m− 1)k
− 1

m2

)(
1>G>G1

m
− tr(G>G)

)
=

m− k
k(m− 1)

(
tr(G>G)

m
− p>0 G>Gp0

)

Theorem 2. Assume the loss function is L-Lipschitz. Suppose the SGD algorithm with constant
learning rate η converges to and stays in B, where B = {θ : ‖θ− θ0‖2 ≤ B} is a ball that contains
a minimum of ERM loss R̂S,p0 . Suppose that ∀p ∈ P(k), B contains a local minimum of R̂S,p and
R̂S,p is µ-strongly convex on B. Further assume that the minimum value of the batch average loss
R̂S,p in B is not too large, i.e., min

θ∈B
R̂S,p(θ) ≤ min

θ∈B
R̂S,p0

(θ) + δ. Then the robust loss R̂S,P(k)(θ)

can be bounded by:

R̂S,P(k)(θ) ≤ min
θ′∈B

R̂S,p0
(θ′) +

2B2

µη2
+ 2LB + δ, ∀θ ∈ B.

Proof. We count the iteration after SGD converges to B and stays in B. We denote θt the parameter
at iteration t and p(t) the weight at iteration t.

Due to the µ-strongly convexity of R̂S,p(θ),∀p ∈ P(k) we have:

1

2µ
‖∇R̂S,p(t)(θt)‖22 ≥ R̂S,p(t)(θt)− min

θ′∈B
R̂S,p(t)(θ′)

≥ R̂S,p(t)(θt)− min
θ′∈B

R̂S,p0
(θ′)− δ.

Since the algorithm stays in B, the norm of the stochastic gradient can be bounded by 2B
η . Thus:

R̂S,p(t)(θt) ≤ min
θ′∈B

R̂S,p0
(θ′) +

2B2

µη2
+ δ.

Plus, the weighted average loss R̂S,p(t) is L-Lipschitz, so R̂S,p(t)(θ) can be bounded by:

R̂S,p(t)(θ) ≤ min
θ′∈B

R̂S,p0
(θ′) +

2B2

µη2
+ 2LB + δ, ∀θ ∈ B.

As SGD algorithm keeps stable in B, the above equality holds for all p(t) ∈ P(k). Finally we have:

R̂S,P(k)(θ) ≤ min
θ′∈B

R̂S,p0
(θ′) +

2B2

µη2
+ 2LB + δ, ∀θ ∈ B.

Definition 1 (Robust Rademacher Complexity). For any m ≥ 1, the robust Rademacher complexity
of the parameter space Θ and the weight set P is defined as:

Rm(Θ,P) = E
S

[
R̂S(Θ,P)

]
.

Theorem 3. For any δ > 0, with probability at least 1− δ, the following holds for all θ ∈ Θ:

E
S′
R̂S′,P(θ) ≤ R̂S,P(θ) + 2R̂S(Θ,P) + 3m‖P‖∞

√
1

2m
log

2

δ
.
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Proof. For simplicity, let Rm,P(θ) = E
S′

[
R̂S′,P(θ)

]
, where S′ is m examples i.i.d. drawn from the

underlying distribution. For a sample S = (z1, · · · , zm) of size m, denote

Φ(S) = sup
θ∈Θ

[
Rm,P(θ)− R̂S,P(θ)

]
.

If we change zi to z̃i and get S̃ = (z1, · · · , z̃i, · · · , zm), then

Φ(S)− Φ(S̃) ≤ sup
θ∈Θ

[
R̂S̃,P(θ)− R̂S,P(θ)

]
≤ sup
θ∈Θ

sup
p∈P

pi(`(zi, θ)− `(z̃i, θ))

≤ ‖P‖∞.

Similarly we have |Φ(S) − Φ(S̃)| ≤ ‖P‖∞. Then by McDiarmid’s inequality(McDiarmid, 1989),
for any δ > 0, the following holds with probability at least 1− δ

2 :

Φ(S) ≤ E
S

[Φ(S)] +m‖P‖∞

√
1

2m
log

2

δ
.

Next we are to bound E
S

[Φ(S)]. By symmetrization, we have:

E
S

[Φ(S)] = E
S

sup
θ∈Θ

[
Rm,P(θ)− R̂S,P(θ)

]
= E

S
sup
θ∈Θ

[
E
S′
R̂S′,P(θ)− R̂S,P(θ)

]
≤ E
S,S′

sup
θ∈Θ

[
R̂S′,P(θ)− R̂S,P(θ)

]
≤ E
S,S′

sup
θ∈Θ

sup
p∈P

[
m∑
i=0

pi(`(zi, θ)− `(z′i, θ))

]

= E
σ,S,S′

sup
θ∈Θ

sup
p∈P

[
m∑
i=0

σipi(`(zi, θ)− `(z′i, θ))

]

≤ E
σ,S,S′

sup
θ∈Θ

sup
p∈P

[
m∑
i=0

σipi`(zi, θ)

]
+ E
σ,S,S′

sup
θ∈Θ

sup
p∈P

[
m∑
i=0

−σipi`(z′i, θ)

]
= 2Rm(Θ,P).

This shows that

sup
θ∈Θ

[
Rm,P − R̂S,P(θ)

]
≤ 2Rm(Θ,P) +m‖P‖∞

√
1

2m
log

2

δ

holds with probability at least 1− δ
2 .

To complete the proof, next we show that

Rm(Θ,P) ≤ R̂S(Θ,P) +m‖P‖∞

√
1

2m
log

2

δ

holds with probability at least 1− δ
2 .

If the sample S and S̃ differs only at the j-th instance, i.e., zi = z̃i for all i 6= j, then

R̂S(Θ,P)− R̂S̃(Θ,P) = E
σ

sup
θ∈Θ

sup
p∈P

[
m∑
i=0

σipi`(zi, θ)

]
− E
σ

sup
θ∈Θ

sup
p∈P

[
m∑
i=0

σipi`(z̃i, θ)

]
≤ E
σ

sup
θ∈Θ

sup
p∈P

[σjpj(`(zj , θ)− `(z̃j , θ))]

≤ ‖P‖∞.

Similarly, we have |R̂S(Θ,P) − R̂S̃(Θ,P)| ≤ ‖P‖∞. Then the result holds immediately from
McDiarmid’s inequality.
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Theorem 4. For any ε > 0, the empirical Rademacher complexity and the empirical robust
Rademacher complexity can be respectively bounded by:

R̂S(Θ) ≤
√

2 logN (Θ(S), ‖ · ‖, ε)
m

+
εd∗(m)

m
,

and

R̂S(Θ,P) ≤ (1 + RAD2(P))

√
2 logN (Θ(S,P), ‖ · ‖, ε)

m
+
εd∗(m)

m
.

Proof. First, we introduce a lemma.

Lemma 7 (Massart 2000). Let A be a finite set in Rm, with r = maxx∈A ‖x‖2, then the following
holds:

E
σ

[
sup
x∈A

m∑
i=1

σixi
m

]
≤
r
√

2 log |A|
m

.

Denote N as the ε-net of Θ(S) where |N | = N (Θ(S), ‖ · ‖, ε). Notice that `(zi, θ) ∈ [0, 1], then
r ≤
√
m. Applying Massart’s lemma to N , we get:

E
σ

[
sup
x∈N

m∑
i=1

σixi
m

]
≤
√

2 logN (Θ(S), ‖ · ‖, ε)
m

.

For any x ∈ Θ(S), there exists a x′ ∈ N , such that ‖x− x′‖ ≤ ε. Then

m∑
i=1

σixi
m

=

m∑
i=1

σix
′
i

m
+

m∑
i=1

σi(xi − x′i)
m

≤
m∑
i=1

σix
′
i

m
+
εd∗(m)

m
.

Then

R̂S(Θ) = E
σ

[
sup

x∈Θ(S)

m∑
i=1

σixi
m

]

≤ E
σ

[
sup

x∈Θ(S)

m∑
i=1

σix
′
i

m
+
εd∗(m)

m

]

≤ E
σ

[
sup
x′∈N

m∑
i=1

σix
′
i

m

]
+
εd∗(m)

m

≤
√

2 logN (Θ(S), ‖ · ‖, ε)
m

+
εd∗(m)

m
,

which completes the first part of the theorem. The second part is similar, but one should notice that
in this case r = max

x∈Θ(S,P)
‖x‖2 ≤

√
m‖P‖2 =

√
m(1 + RAD2(P)).

Theorem 5. Assume the loss function is L-Lipschitz w.r.t. θ for all z. Consider the following hy-
pothesis set:

Θc =
{
θ : ESR̂S,P(θ) ≤ c, ||θ||2 < r

}
.

For any ε > 0, let N (Θc, ε) denote the covering number of Θc. Then for all 0 < δ < 1, with
probability ≥ 1− δ, the localized empirical Rademacher complexity can be bounded as:

R̂S(Θc) ≤
1√
m

(
1 +

4√
mrad∞(conv(P))

)(
c+ ε‖P‖0‖P‖∞L+‖P‖∞

√
m

2
log
N (Θc, ε)

δ

)
.
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Proof. Notice that `(z, θ) ∈ [0, 1] for all z and θ, then if we change a single sample zi of S =
(z1, · · · , zi, · · · , zm) to form S′ = (z1, · · · , z′i, · · · , zm), we have

R̂S,P(θ)− R̂S′,P(θ)

= sup
p∈P

R̂S,p(θ)− sup
p∈P

R̂S′,p(θ)

≤ sup
p∈P

(R̂S,p(θ)− R̂S′,p(θ))

= sup
p∈P

pi(`(zi, θ)− `(z′i, θ))

≤ ||P||∞.

By the same argument, we can get |R̂S,P(θ) − R̂S′,P(θ)| ≤ ||P||∞. By McDiarmid’s inequal-
ity(McDiarmid, 1989), we have:

P
{
R̂S,P(θ) ≥ ER̂S,P(θ) + t

}
≤ exp

{
−2t2

m||P||2∞

}
.

Let N denotes the minimum ε-net of Θc, where |N | = N (Θc, ε). Then we have

P
{
∃θ0 ∈ N, R̂S,P(θ0) ≥ c+ t

}
≤ N (Θc, ε)P

{
R̂S,P(θ) ≥ c+ t

}
≤ N (Θc, ε)P

{
R̂S,P(θ) ≥ ESR̂S,P(θ) + t

}
≤ N (Θc, ε) exp

{
−2t2

m||P||2∞

}
.

In other words, with probability larger than 1−N (Θc, ε) exp

{
−2t2

m||P||2∞

}
, we have

sup
θ∈N

R̂S,P(θ) < c+ t.

By the definition of ε-net, for any θ ∈ Θc, there exists a θ′ ∈ N , such that ||θ − θ′|| < ε. Let LS

denotes an upper bound of the Lipschitz constant of R̂S(θ), then we have

sup
θ∈Θc

R̂S,P(θ) < c+ t+ εLS , (5)

with probability larger than 1−N (Θc, ε) exp

{
−2t2

m||P||2∞

}
.

Recall that assuming the loss function `(z, θ) is L-Lipschitz with respect to θ for all z, then the
Lipschitz constant of R̂S(θ) can be bounded by ‖P‖0‖P‖∞L.

For those samples S = (z1, · · · , zm) satisfying the universal bound (5), the empirical Rademacher
complexity can be bounded as well. The idea of the proof involves the representation of σ as a
convex combination of several vectors in P .

R̂S(Θc) = E
σ

[
sup
θ∈Θc

∑ σi`(zi, θ)

m

]
∆
= E
σ

[
sup
θ∈Θc

σ · `(S, θ)
m

]
.

Recall that p0 =

(
1

m
, · · · , 1

m

)>
and by our assumption of the symmetry of P , we have p0 ∈

conv(P). We hope that
σ

m
= ap0 + b(p1 − p0),
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where p1 ∈ conv(P). Summing up all the coordinates of both sides of the equation, we have:∑
σi
m

= a1 · p0 + b (1 · p1 − 1 · p0) = a.

Define σ̄ =

∑
σi
m

, Then

b(p1 − p0) =
(σ1

m
− σ̄

m
, · · · , σm

m
− σ̄

m

)>
. (6)

To derive the optimal bound, take the L∞ norm of both sides of (6), we get

|b|‖p1 − p0‖∞ = max
{
|σ1

m
− σ̄

m
|, · · · , |σm

m
− σ̄

m
|
}
≤ 2

m
.

Notice that ‖p1 − p0‖∞ ≥ rad∞(conv(P)), so |b| ≤ 2

mrad∞(conv(P))
.

Summarizing our result, we have:
σ

m
· `(S, θ) = [σ̄p0 + b(p1 − p0)] · `(S, θ)

≤ |σ̄ − b||p0 · `(S, θ)|+ |b||p1 · `(S, θ)|
≤ (|σ̄|+ 2|b|)R̂S,P(Θc).

Then

R̂S(Θc) ≤ E
σ

(|σ̄|+ 2|b|) R̂S,P(Θc)

≤
(√

E
σ
|σ̄|2 +

4

mrad∞(conv(P))

)
R̂S,P(Θc)

=
1√
m

(
1 +

4√
mrad∞(conv(P))

)
R̂S,P(Θc).

C THE DETAILS OF WSGD

We denote the vector v(q, r) = (v1, v2, . . . , vm):

vi =
1

W̃

r ∑
q|Bt|>j≥0

Cjm−iC
|Bt|−j−1
i−1 +

∑
|Bt|>j≥q|Bt|

Cjm−iC
|Bt|−j−1
i−1


where W̃ is the normalizer s.t.

∑m
i=1 vi = 1. Then the stochastic gradient calculated in WSGD(q, r)

is an unbiased estimation of the gradient of R̂S,P(v(q,r))(θ) at differentiable point. Recall that σ(v)
is the set of all the vectors whose entries are permutations of v’s and P(v) denote the convex hull
of σ(v).
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