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ABSTRACT

Designing neural networks for continuous-time stochastic processes is challenging,
especially when observations are made irregularly. In this article, we analyze neural
networks from a frame theoretic perspective to identify the sufficient conditions that
enable smoothly recoverable representations of signals in L2(R). Moreover, we
show that, under certain assumptions, these properties hold even when signals are
irregularly observed. As we obtain a family of (convolutional) neural networks that
satisfy these conditions, we show that we can optimize our convolution filters while
constraining them so that they effectively compute a Discrete Wavelet Transform.
Such a neural network can efficiently divide the time-axis of a signal into orthogonal
sub-spaces of different temporal scale and localization. We evaluate the resulting
neural network on an assortment of synthetic and real-world tasks: parsimonious
auto-encoding, video classification, and financial forecasting.

INTRODUCTION

The predominant assumption made in deep learning for time series analysis is that observations
are made regularly, with the same duration of time separating each successive timestamps (Cho
et al., 2014; Graves et al., 2013; Sutskever et al., 2014; LeCun & Bengio, 1995; van den Oord et al.,
2016; Bakshi & Stephanopoulos, 1993). However, this assumption is often inappropriate, as many
real-world time series are observed irregularly and are, occasionally, event-driven (e.g., financial data,
social networks, internet-of-things).

One common approach in working with irregularly observed time series is to interpolate the observa-
tions to realign them to a regular time-grid. However, interpolation schemes may result in spurious
statistical artifacts, as shown in (Huth & Abergel, 2014; Belletti et al., 2017). Fortunately, procedures
for working with irregularly observed time series in their unaltered form have been devised, notably
in the field of Gaussian-processes and kernel-learning (Huth & Abergel, 2014; Belletti et al., 2017)
and more recently in deep learning (Neil et al., 2016).

In this article, we investigate the underlying representation of time series data as it is processed by
a neural network. Our objective is to identify a class of neural networks that provably guarantee
information preservation for certain irregularly observed signals. In doing so, we must analyze neural
networks from a frame theoretic perspective, which has enabled a clear understanding of the impact
discrete sampling has on representations of continuous-time signals (Benedetto & Heller, 1990;
Benedetto, 1992; Benedetto & Ferreira, 2003; Feichtinger & Gröchenig, 1994; Gröchenig, 1992;
Mallat, 2008).

Although frame theory has historically been studied in the linear setting, recent work by Sun & Tang
(2017) has related frames with non-linear operators in Banach space, to what can be interpreted as
non-linear frames. Here, we extend this generalization of frames to characterize entire families of
neural networks. In doing so, we can show that the composition of certain non-linear neural layers
(i.e., convolutions and fully-connected layers) form non-linear frames in L2(R), while others do not
(i.e., recurrent layers).

Moreover, frame theory can be used to analyze randomly-observed time series. In particular, when
observations are made according to a family of self-exciting point processes known as Hawkes
processes (Daley & Vere-Jones, 2007). We prove that such processes, under certain assumptions of
stability, almost surely yield non-linear frames on a class of band-limited functions. That is to say,
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that despite having discrete and irregular observations, the signal of interest can still be smoothly
recovered.

As we obtain a family of convolutional neural networks that constitute non-linear frames, we show
that under certain conditions, such networks can efficiently divide the time-axis of a time series
into orthogonal sub-spaces of different temporal scale and localization. Namely, we optimize the
weights of our convolution filters while constraining them so that they effectively compute a Discrete
Wavelet Transform (Mallat, 1989). Our numerical experiments on synthetic data highlight this unique
capacity that allows neural networks to learn sparse representations of signals in L2(R), and how
such a property is particularly powerful when training parsimoniously parameterized auto-encoders.
Such auto-encoders learn optimal ways of compressing certain classes of input signals.

Finally, we show that the ability of these networks to divide time series into a set sub-spaces,
corresponding to different temporal scales and localization, can be composed with existing predictive
frameworks to improve both accuracy and efficiency. This is demonstrated on real-world video
classification and financial forecasting tasks.

CONTRIBUTIONS & ORGANIZATION

1. Neural representations of L2(R): We introduce the article with a theoretical analysis of
the sufficient conditions on neural networks that enable smoothly recoverable representations
of signals in L2(R) and prove that, under certain assumptions, this property holds true in
the irregularly observed setting.

2. Orthogonal representations in time: We proceed to show that by enforcing certain con-
straints on convolutional filters, we can guarantee that the representation that the neural
network produces only depends on the coordinates of the input signal in an learned orthonor-
mal basis.

3. Numerical experiments: Finally, we evaluate the resulting constrained convolutional neural
network on an assortment of synthetic and real-world tasks: parsimonious auto-encoding,
video classification, and financial forecasting.

NOTATION

• L2(R) is the space of square-integrable real-valued functions defined on R and equipped
with the norm induced by the inner product f, g ∈ L2(R)→ ∫t∈R f(t)g(t)dt.

• L2
d(R) is the space of square-integrable d-dimensional vector-valued functions defined on R

and equipped with the norm induced by the inner product f, g ∈ L2
d(R)→ ∫t∈R f(t)

T g(t)dt.

• l2(Z) is the space of square-integrable real-valued sequences indexed by Z and equipped
with the norm induced by the inner product (x), (y) ∈ l2(Z)→ ∑n∈Z xnyn.

• l2d(Z) is the space of square-integrable d-dimensional vector-valued sequences indexed by Z
and equipped with the norm induced by the inner product (x), (y) ∈ l2d(Z)→ ∑n∈Z xTnyn.

Note that the inner products of the spaces we consider are Hilbert spaces on the classes of equivalent
functions for the Lebesgue measure.

• FT [⋅] denotes the Fourier transform and z denotes the complex conjugate of z ∈ C. Recall
the Fourier transform of a sequence (xn) ∈ Z is given at any frequency ω by FT [(xn)](ω) =
∑n∈Z e−2πiωnxn.

• For a function f ∶ t ∈ R→ f(t) ∈ Rd, f( ⋅ −h) is short-hand to denote f ∶ t ∈ R→ f(t−h) ∈
Rd, likewise, f( ⋅/σ) is used to denote f ∶ t ∈ R→ f(t/σ) ∈ Rd.

• For a set A, (ξ) denotes the sequence (ξn) ∈ AZ.

• (ξ)[∶∶ 2] denotes (ξ2n)n∈Z. That is, the dilation of a sequence by a factor of 2.

• For two vectors (w0,w1) ∈ Rd1 ×Rd2 , their concatenation is denoted by [w0,w1] ∈ Rd1+d2 .
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1 HOMEOMORPHIC NON-LINEAR ENCODINGS OF CONTINUOUS-TIME SIGNALS

We begin by investigating sufficient conditions on composite functions that guarantee such functions
produce discretized representations of continuous-time signals that can be smoothly reconstructed.

1.1 FRAMES

To do so, we must leverage frame theory (Benedetto & Ferreira, 2003), a theory developed to
precisely to characterize the suitable properties for linear representations of irregularly observed
signals. Intuitively, a frame is a representation of a signal that enables signal recovery in a smooth
manner (i.e., suitable for the representation to be homeomorphic).

Formally (Benedetto & Ferreira, 2003), we define a frame as an operator from L2(R) to l2(Z) that is
characterized by a family of functions (Sn)n∈Z in L2(R) (i.e., the atoms of the frame).

Definition 1.1 Linear frame of L2(R): A linear operator corresponding to the family (S) ∈
L2(R)Z,

F(S) ∶ f ∈ L2(R)→ (< f,Sn >)n∈Z ∈ l2(Z)
is a frame of L2(R) if and only if there exist two real-valued constants 0 < A ≤ B such that

∀f ∈ L2(R), A∣∣f ∣∣22 ≤ ∣∣F(S)(f)∣∣22 ≤ B∣∣f ∣∣22.

Representations provided by frames depend smoothly on their inputs. Moreover, a direct consequence
of the definition above is that a frame is invertible in a smooth manner on its image.

There are many examples of frames. For now, we provide two concrete examples from (Benedetto
& Ferreira, 2003; Mallat, 2008). Recall the definition of the Haar function as t ∈ R →WHaar(t) =
1 if t ∈ [0,1/2), −1 if t ∈ [1/2,1), 0 otherwise, the set of dilations and translations of WHaar, namely
(WHaar ( ⋅−2lt

2l ))
t,l∈Z

constitutes a frame of L2(R). Shannon’s sampling theorem shows that, with

sampling frequency 1
∆t

, the set of translated functions (
√

∆t sin(π(t−n)/∆t)
πt

)n∈Z is also a frame for
the set of functions in L2(R) whose Fourier transforms are supported on the interval [− 1

∆t
, 1

∆t
]. In

both cases, the atoms of the frame are orthonormal families of functions – it is trivial to prove that
A = B = 1. While the first frame works for the entire space of square integrable functions, the second
only applies to the sub-space of band-limited signals.

Proposition 1.1 Left inverses of Frames: If F(S) is a frame of L2(R) then F(S) has a left inverse
F+ = (F∗(S)F(S))−1F∗(S) that is 1√

A
Lipschitz, where F∗(S) is the adjoint of F(S).

This fundamental proposition is proven in (Benedetto & Ferreira, 2003; Mallat, 2008). As our goal is
to find the conditions for non-linear representations of L2(R) to be homeomorphic, we unfortunately
can not leverage properties in the linear setting. Therefore, we must adopt an alternative definition.
Let a non-linear frame be an operator from L2(R) to l2(Z) that is characterized by a family of
functions (Sn)n∈Z in L2(R) and a family of non-linear real valued functions (ψn)n∈Z defined over
R (or Rd as a trivial extension).

Definition 1.2 Non-linear frame of L2(R): A non-linear discrete representation scheme

F(S),(ψ) ∶ f ∈ L2(R)→ (ψn(< f,Sn >))n ∈ l2(Z)

is a non-linear frame of L2(R) if there exist two real-valued constants 0 < A ≤ B such that

∀f, g ∈ L2(R), A∣∣f − g∣∣22 ≤ ∣∣F(S),(ψ)(f) −F(S),(ψ)(g)∣∣22 ≤ B∣∣f − g∣∣22.

It is worth noting that a linear frame (in the standard definition of the term) is still a frame in this
non-linear setting.

Proposition 1.2 Smoothness of signal recovery: A non-linear frame is invertible on its image of
L2(R) and the inverse is 1√

A
Lipschitz.
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Proof 1.1 Consider f, g ∈ L2(R) such that F(S),(ψ)(f) = F(S),(ψ)(g), then, as A > 0, ∣∣f − g∣∣2 = 0

and therefore f and g are in same equivalence class in L2(R). Therefore, F(S),(ψ) is injective and
if we consider (x), (y) ∈ F(S),(ψ)(L2(R)) and if we denote by fx the only element in L2(R) such
that F(S),(ψ)(fx) = (x), and fy the only element in L2(R) such that F(S),(ψ)(fy) = (y) then, by
definition of a non-linear frame, ∣∣fx − fy ∣∣22 ≤ 1

A
∣∣x − y∣∣22. ∎

In a later section, we will show that smooth signal recovery is crucial for non-linear signal approxima-
tions (consisting of a finite number of coefficients) to remain stable during reconstruction. However in
order to show this, we must first explore the sufficient conditions on non-linear operators to produce
non-linear frames. We start by introducing several definitions on multivariate real-valued functions.

Definition 1.3 Bi-Lipschitz-Invertible (BLI) operators: An operator Φ ∶ l2(Z)→ l2(Z) such that

∃ 0 < A < B s.t. ∀(xn), (yn) ∈ L2(Z), A∣∣x − y∣∣22 ≤ ∣∣Φ(x) −Φ(y)∣∣22 ≤ B∣∣x − y∣∣22,
is a BLI operator and we refer to (A,B) as some framing constants of Φ.

Theorem 1.1 BLI operators and linear frames: Let (Φl)l=1...L be a collection of BLI operators
with framing constants ((Al,Bl))l=1...L and F a frame on L2(R) with framing constants A0 and
B0. The composite operator φL ○ ⋅ ⋅ ⋅ ○ φ1 ○F is a non-linear frame of L2(R) with framing constants
∏Ll=0A0 and∏Ll=0B0.

Proof 1.2 The proof of the theorem is immediate but we use it to expose how our careful choice of
the definition of non-linear frames is leveraged. First let us recall that injectivity is preserved by
composition. Then, we initiate an immediate proof by induction with a simple remark: consider two
functions f, g ∈ L2(R)

A1A0∣∣f − g∣∣22 ≤ A1∣∣F(f) −F(g)∣∣2

≤ B1∣∣F(f) −F(g)∣∣22
≤ B1B0∣∣f − g∣∣22

To conclude the proof, a similar statement can then be made if we compose Φ1 ○F by Φ2, . . .ΦL. ∎

This proof allows us to make guarantees about operator pipelines while relying on conditions that
are simple to verify. We can now use the theory we have established to analyze the representational
properties of neural networks; in particular, convolutional neural networks (CNN) and recurrent
neural networks (RNN).

1.2 SUFFICIENT CONDITIONS ON CNNS TO PRODUCE NON-LINEAR FRAMES

Here, we study representational properties of recent CNN architectures (Chollet, 2016; Kaiser et al.,
2017; Lebedev et al., 2014) that rely on depth-wise separable convolutions. We show that by
enforcing certain constraints on the structure of temporal filters, we obtain a network that is, provably,
a non-linear frame. Here we trade off expressiveness for representational guarantees as we impose
constraints on network parameters.

In depth-wise separated convolution stacks (Chollet, 2016; Kaiser et al., 2017) a temporal convolution
is applied before a depth-wise linear transform and finally a leaky ReLU layer. We assume that the
depth-wise linear operators being learned are all full rank (or full column rank if they increase the
number of dimensions of the representation). Such an assumption makes sense for CNNs being
trained by a stochastic optimization method with non-pathological data-sets.

Inspired by the multi-scale parsing enabled by the discrete wavelet transform or dyadic wavelet
transform we employ time domain convolutions that are conjugate mirror filters (Mallat, 2008). Such
time domain filters constitute a decomposition filter bank consisting of cascading convolutions. The
decomposition filter bank admits a dual reconstruction filter bank thereby guaranteeing injectivity.

Definition 1.4 Element-wise Leaky ReLU (LReLU): Consider 0 < α << 1, LReLU applies a piece-
wise linear function element-wise as

LReLUα ∶ (xn) ∈ l2d(Z)→ (max(αxn, xn))n∈Z ∈ l2d(Z).
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Definition 1.5 Depth-wise fully connected layer (DFC): Consider two integers di and do, A ∈
Rdo,di and b ∈ Rdo

DFCA,b ∶ (xn) ∈ l2di(Z)→ (LReLU(A × xn + b))n∈Z ∈ l2do(Z).

Lemma 1.1 Full column rank DFC (FDFC) layers are BLI: The function

w ∈ Rdi → LReLU(Aw + b) ∈ Rdo

with di ≤ do and A is full column rank is left invertible. Also, the left inverse is Lipschitz as
∃0 <m ≤M ∈ R such that

∀w ∈ Rdi , m∣∣w −w′∣∣2 ≤ ∣∣LReLU(Aw + b) −LReLU(Aw′ + b)∣∣2 ≤M ∣∣w −w′∣∣2.

Proof 1.3 As LReLU is strictly increasing and continuous therefore it is invertible and as A is full
column rank it admits a left inverse which proves the first part of the lemma. We finish the proof by
using the fact that linear functions in vector spaces of finite dimensions are Lipschitz, the fact that
LReLU and its inverse are Lipschitz, and the fact that Lipschitz-ness is preserved by composition. ∎

Let us now study the representational properties of time domain convolution layers whose filters are
constrained in the Frequency domain.

Definition 1.6 Reconstructible convolution layer (RConv): Consider two convolution filters h, g ∈
l2(Z) such that there exist h̃, g̃ ∈ l2(Z) and

∀ω ∈ R, FT [h̃] × FT [h](ω) + FT [g̃] × FT [g]](ω) = 2. (1)

The following convolution is a Reconstructible convolution layer:

RConvl,h,g ∶ (xn) ∈ l2d(Z)→ ([h ∗ xn, g ∗ xn])n∈Z ∈ l22×d(Z).

Later on, we show that entire families of such h̃, g̃ ∈ l2(Z) exist under some conditions on h, g. In
particular Eq. (4) will provide simple sufficient conditions on h and g for Eq. (1) to hold.

Lemma 1.2 Temporal convolutions allowing reconstruction: Consider four temporal convolution
filters h, h̃, g, g̃ such that their Fourier transforms satisfy (1). If x0

l+1 = h ∗ xl and x1
l+1 = g ∗ xl then

xl = 1
2
(h̃[∶∶ −1] ∗ x0

l+1 + g̃[∶∶ −1] ∗ x1
l+1) (where [∶∶ −1] means that we iterate in reverse order on the

filter weights) which proves the pair of convolution filters constitutes an invertible operator. Also,
∃ 0 <m ≤M such that

m∣∣xl∣∣22 ≤ ∣∣x0
l+1∣∣22 + ∣∣x1

l+1∣∣22 ≤M ∣∣xl∣∣22.

Proof 1.4 By definition h̃[∶∶ −1]∗x0
l+1+ g̃[∶∶ −1]∗x1

l+1 = h̃[∶∶ −1]∗h∗xl+ g̃[∶∶ −1]∗g∗xl, therefore,
if we recall that the Fourier Transform diagonalizes convolutions and turns time reversal into complex
conjugacy, we have

FT [h̃[∶∶ −1] ∗ x0
l+1 + g̃[∶∶ −1] ∗ x1

l+1] = (FT [h̃] × FT [h] + FT [g̃] × FT [g])×FT [xl] = 2FT [xl]

with condition (1). Also with the Plancherel formula ∣∣h ∗ xl∣∣22 = ∣∣FT [h ∗ xl]∣∣22 ≤ ∣∣FT [h]∣∣22 ×
∣∣FT [xl]∣∣22 = ∣∣h∣∣22∣∣xl∣∣22. And finally, ∣∣FT [xl]∣∣22 = 1

4
∣∣FT [h̃[∶∶ −1] ∗ x0

l+1 + g̃[∶∶ −1] ∗ x1
l+1]∣∣22 ≤

1
4
(∣∣FT [h̃[∶∶ −1] ∗ x0

l+1∣∣22 + ∣∣FT [g̃[∶∶ −1] ∗ x1
l+1]∣∣22) which concludes the proof with

m = ∣∣̃h∣∣22 + ∣∣g̃∣∣22
4

and M = ∣∣h∣∣22 + ∣∣g∣∣22.∎

We represent the recomposition operation introduced in Lemma 1.2 in . The next proposition shows
how the convolutions RConv and non-linearity LReLU can be interleaved to produce non-linear
frames.

Proposition 1.3 Compositions of FDFC and RConv layers are BLI: The composite function from
l2di(Z) onto l2do(Z)

FDFCAL,bL ○RConvL,hl,gl ○ ⋅ ⋅ ⋅ ○ FDFCA1,b1 ○RConv1,h1,g1

is BLI.
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Figure 1: Decomposition and recomposition principle for depth-wise separable convolutions. We
denote the Moore-Penrose inverse of the full column rank matrix A by A+.

Proof 1.5 Let us recall again that injectivity is stable by composition of operators. It is also clear that
non-linear framing conditions remain true as composite bi-Lipschitz functions are also bi-Lipschitz.
∎

With the proposition above it is now trivial to prove the theorem below.

Theorem 1.2 Compositions of FDFC and dilated RConv layers are non-linear frame: If F is a
frame of L2(R) then the composite function from L2

di
(R) onto l2do(Z)

FDFCAL,bL ○RConvL,hL,gL ○ ⋅ ⋅ ⋅ ○ FDFCA1,b1 ○RConv1,h1,g1 ○F

is a non-linear frame.

Now, we expose the framing properties of RNNs (for an introduction on RNNs we refer the reader
to (Bengio et al., 1994)). For the vast majority of popular recurrent architectures (for instance, LSTMs,
GRUs (Hochreiter & Schmidhuber, 1997; Cho et al., 2014)) the use of bounded output layers leads to
saturation and vanishing gradients. With such vanishing gradients Bengio et al. (1993), it is possible
to find series of input sequences that diverge in l2(Z) while their outputs through the RNN are a
Cauchy sequence.

Proposition 1.4 Saturating RNNs do not provide non-linear frames: Let us consider a RNN

F(S),(ψ) ∶ f ∈ L2(R)→ (ψn((< f,Sn′ >)n′∈Z))n ∈ l2(Z)

where F(S) is a given linear frame of L2(R). If there exists a sequence (vk)k∈Z ∈ F(S)(L2(R))Z

such that ((ψn(vk))n∈Z)k∈N is a Cauchy sequence in l2(Z) while ∣∣vk ∣∣2 → +∞, then F(S),(ψ) is not
a linear frame.

Proof 1.6 With the assumption on (vk)k∈Z ∈ F(S)(L2(R))Z, there cannot exist A > 0 such that

∀k0, k1 ∈ Z, A∣∣vk0 − vk1 ∣∣22 ≤ ∣∣(ψn((< vk0 , Sn′ >)n′∈Z))n∈Z − (ψn((< vk1 , Sn′ >)n′∈Z))n∈Z∣∣22
as the sequence (vk) would then be Cauchy and therefore converge as l2(Z) is complete for the l2
norm. ∎

Such a proposition highlights a key difference between the representational ability of RNNs and
CNNs. We explore representations of irregularly sampled data through the lens of non-linear frames.

1.3 IRREGULAR SAMPLING

We now show that even when signals are irregularly observed by a random sampling process, that
particular neural networks can still, almost surely produce a homeomorphic representation.

Sampling by Hawkes processes is a common assumption in finance, seismology, and social media
analytics (Ogata, 1988; Bacry et al., 2015; Belletti et al., 2017; Yang & Zha, 2013; Li & Zha, 2013;
Zhao et al., 2015). We use (INt ) to denote the canonical filtration associated with the stochastic
process (Nt)t∈R. We recommend (Daley & Vere-Jones, 2007) for a more thorough introduction to
this concept. As a simplification, we denote INt to be the information generated by (Ns)s<t.
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Definition 1.7 Random sampling Hawkes process: A stochastic point process (Nt) (Daley & Vere-
Jones, 2007) defines a random measure over the axis of time and is defined by stochastic local Poisson
intensities for (Nt)

λt = limdt→0+
E [N(t + dt) −N(t)∣INt ]

dt
.

For a Hawkes process characterized by φ ∶ t ∈ R→ φ(t) ≥ 0, ∀t < 0, φ(t) = 0, µ ≥ 0, we assume

λt = µ + φ ∗ dNt. (2)

In other words, λt is the number of observations per unit of time expected given the events that
occurred until time t. Intuitively, if λt is higher, then it is more likely for observations to be available
shortly after the time t.

As in (Belletti et al., 2017; Bacry et al., 2015), Hawkes processes can be used to model the random
observation time of a continuous-time series in a setting where information is observed asynchronously
in an event-driven manner across multiple channels (the extension to multi-variate point processes is
immediate).

Proposition 1.5 Sampling density of stable Hawkes processes: If the Hawkes process (2) is stable
(i.e. ∫t∈R φ(t)dt < 1), then almost surely

lim
t→+∞

Nt
t

= µ

1 − ∫t∈R φ(t)dt
.

A complete proof of the ergodic behavior of stable Hawkes processes is provided in (Daley &
Vere-Jones, 2007). Now, given an asymptotic Nyquist sampling rate for a random sampling scheme,
the following lemma delineates which frames can still be used for signal recovery. In particular, we
can no longer recover all signals in an unambiguous manner. Hence, exact recovery is only possible
for band-limited functions (i.e. functions whose Fourier transform has bounded support).

Theorem 1.3 Irregular sampling frames: If a sequence of time-stamps have the property that

lim
n→±∞

tn = ±∞ and lim
n→+∞

n

tn
> 2R1,

then (e−2itn⋅) is a frame F of L2[−R,R] (where the real axis represents sampling frequencies) with
left inverse F+. Considering R < R1 and S ∈ L2(R) such that

∣∣FT [S]∣∣∞ < +∞, support(FT [S]) ⊂ [−R1,R1] and ∀ω ∈ [−R,R], FT [S](ω) = 1, (3)

then
∀f ∈ L2(R) s.t. support(FT [f]) ⊂ [−R,R], f =∑xn(f)S(⋅ − tn)

where xn(f) = ∫
R1

ω=−R1
F+(FT [f]1[−R1,R1])(ω)e2itnωdω.

Complete proof is given in (Benedetto & Heller, 1990; Benedetto, 1992); the theorem is regarded as
the fundamental theorem of frame analysis for irregularly observed signals. We now leverage the
fundamental properties that were obtained in the deterministic setting and extend them to provide
guarantees under random sampling schemes.

Proposition 1.6 Under Hawkes process random sampling, framing is preserved almost surely:
Let (tn)n∈Z be a family of sampling time-stamps generated by a stable Hawkes process whose
intensity follows the dynamics described in (2), denote

R = 1

2

µ

1 − ∫t∈R φ(t)dt
,

and let S be a frame operator abiding by conditions (3), then almost surely the frame is injective on
{f ∈ L2(R) s.t. support(FT [f]) ⊂ [−R,R]} when translated by the irregular time-stamps (tn)n∈Z.

Proof 1.7 The proposition is a direct consequence of Prop. 1.5 and Theorem 1.3. ∎
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Theorem 1.4 Recovery of randomly observed band-limited signals: Let (tn)n∈Z be a family of
sampling time-stamps generated by a stable Hawkes process whose intensity follows the dynamics
described in (2) Consider R = 1

2
µ

1−∫t∈R φ(t)dt
, let F(S) be a frame operator with atoms (S(⋅ − tn))n∈Z

given by (3). A composite function from L2
di
(R) onto l2do(Z)

FDFCAL,bL ○RConvL,hL,gL ○ ⋅ ⋅ ⋅ ○ FDFCA1,b1 ○RConv1,h1,g1 ○F(S(⋅−tn))n∈Z

is almost surely a non-linear frame over the set of functions in L2(R) whose Fourier Transform has
its support included in [−R,R]. In particular such a representation is invertible on its image by a
Lipschitz inverse.

Proof 1.8 Previously, we proved Theorem 1.2 on the preservation of framing properties by composi-
tion with FDFC and RConv layers. In Prop. 1.6 we proved that F(S(⋅−tn))n∈Z is almost surely a frame
of the subset of L2(R) of functions with band-limit [−R,R]. ∎

One concern, however, is that the theorems we developed assumed observations on the entire real axis
are available as well as infinite representations indexed by Z. In particular, a theory of framing for
band-limited functions is useful but only applies to periodic functions. Bounded support function of
L2(R) are part of the many examples that are not band-limited Mallat (2008); Benedetto & Ferreira
(2003).

1.4 FINITE APPROXIMATIONS OF NON BAND-LIMITED SIGNALS

In our objective to develop theoretical statements that can be leveraged in practice (i.e., when
computing with finite time and memory), we must now extend our analysis to (1) functions observed
on compact intervals and (2) finite approximations of signals. The following statements show
how the requirements of Lipschitz-ness in non-linear frames provide guarantees on the impact of
approximation errors associated with finite representation of continuous-time signals.

The theorems above can be employed for irregularly observed functions that are periodic and
band-limited (Benedetto & Ferreira, 2003; Benedetto, 1992; Mallat, 2008). However, since we
hope to develop a representational theory that is applicable to non-stationary signals, we must also
consider non-periodic functions. In the appendix, we show how wavelet decomposition can efficiently
approximate certain classes of functions that are smooth and not band-limited.

With ⌊log2(N)⌋ scales of decomposition and O(N) scalars representing the approximation of f as
P⌊log2(N)⌋
W (f) the Wavelet approximation error is O(2−Nα) in L2 norm for the space of α Lipschitz

functions (see Definition 4.1 in appendix). As we employ functions that are BLI the impact of the
approximation error remains controlled.

Proposition 1.7 Approximate representation: Let ΦL ○ ⋅ ⋅ ⋅ ○Φ1 be a BLI function from l2(Z) onto
l2(Z). Let PlW be the projection operator from L2([0,1]) onto a Wavelet basis of l scales,

∣∣ΦL ○ ⋅ ⋅ ⋅ ○Φ1 ○ P⌊log2(N)⌋
W (f) −ΦL ○ ⋅ ⋅ ⋅ ○Φ1P+∞W (f)∣∣22 = O(2−N2α).

In other words, the numerical representation can be arbitrarily close to the true representation of
smooth, continuous-time functions with compact support. Indeed, if W is a wavelet basis, then
Proj+∞W (f) = f . The argument stresses the critical role of our assumption of the Lipschitz-ness of
frames and the BLI functions which guarantees that representations based on approximations can be
arbitrarily accurate.

2 ORTHOGONAL MULTI-RESOLUTION CONVOLUTIONS IN TIME

So far, we have focused on sufficient conditions to make accurate representation of continuous-time
signals possible as they are observed randomly and as the corresponding observation are processed
non-linearly. We now show that additional conditions on time-domain convolutional filter banks
further guarantee that the representation is minimal (i.e., produces orthogonal outputs).
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2.1 MULTI-RESOLUTION REPRESENTATION

As our goal is to obtain different representations of a time series while avoiding redundancy, let us
introduce multi-resolution approximations (Mallat, 2008).

Definition 2.1 Multi-resolution approximation: A family (Hl)l∈Z of closed sub-spaces of L2(R)
is a multi-resolution approximation if the family is nested (∀l ∈ Z, Hl+1 ⊂ Hl); dense (∪l∈ZHl =
L2(R)); separated (∩l∈ZHl = {0}); causal (∀l ∈ Z, g(⋅) ∈ Hl ⇒ g(⋅/2) ∈ Hl+1); stable by trans-
lation (∀(t, l) ∈ Z, g(⋅) ∈ Hl ⇒ g(⋅ − 2lt) ∈ Hl). In addition we require that (H0) there exists an
orthonormal family (S(⋅ − n))n∈Z such that span((S(⋅)n∈Z)) =Hl, i.e. S(⋅ − n) is a Riesz basis of
H0 with scaling function S.

Such Riesz basis is proven to exist in (Mallat, 2008); the family of Haar wavelets is merely an
example. General conditions for a function S ∈ L2(R) to be a scaling function are given by the
following theorem.

Theorem 2.1 Conjugate mirror temporal convolution layer (CMConv): (Mallat, 1989) Let κS and
κW in l2(Z) be two convolution filters such that

FT [κS](0) =
√

2, (4)

∀ω ∈ [−1/2,1/2], ∣FT [κS](ω)∣2 + ∣FT [κS](ω + 1/2)∣2 = 2, (5)

κWn = (−1)1−nκS−n. (6)

We further assume that inff∈[− 1
4 ,

1
4 ] FT [κS](f) > 0. The inverse Fourier Transform of ω →

∏+∞
p=1

FT [κS](2−pω)√
2

is a scaling function S of L2(R) for a multi-resolution approximation. Moreover,

the Wavelet function W defined as the inverse Fourier transform of 1√
2
FT [κW ]FT [S] is such that

for any scale l {Wl,n = 1√
2l
W ( ⋅−2ln

2l ) ∣n ∈ Z} is an orthonormal basis Wl defined as the orthogonal
complement of Hl in Hl+1. In particular, (Wl,n)l∈Z,n∈Z is an orthonormal basis of L2(R).

2.2 DEPTH-WISE SEPARABLE CONVOLUTIONS AND MULTI-RESOLUTION APPROXIMATIONS

We now show how depth-wise separable convolutions with scaling and wavelet filters quickly come
with guarantees of orthogonality.

In the following we consider an input space with d input channels and a series of affine operators
with increasing output dimensions (dl)Ll=1. We denote FS(⋅−tn)n∈Z by F to simplify notations.

Theorem 2.2 Conjugate mirror convolutions and FDFC: Consider two convolution filters κS
and κW , if κS , κW respect the conditions Eq. (4) and infω∈[− 1

4 ,
1
4 ] FT [κS](ω) > 0, then κS , κW

constitute a pair of RConv filters. Consider the function which to f ∈ L2
d(R) associates (θl(f))l=1...L:

f → (< f,S( ⋅ − n) >)n∈Z
(κW ∗⋅)[∶∶2]
→ BLI→ . . . . . .

BLI→ (θ1(f)n)n∈Z
↘

(κS∗⋅)[∶∶2]

(κW ∗⋅)[∶∶2]
→ BLI→ . . .

BLI→ (θ2(f)n)n∈Z
↘

(κS∗⋅)[∶∶2]
. . . ⋮

⋱
BLI→ (θL(f)n)n∈Z

The representation (θl(f))l=1...L is a non-linear frame that only depends on the coordinates of f in
an orthonormal basis of L2(R).

Proof 2.1 We start the proof by showing that (xn) ∈ l2(Z)→ ([(κW ∗ x)2n, (κS ∗ x)2n]) ∈ l2(Z)
is a RConv reconstructible convolution layer. Based on Eq. (4), as κWn = (−1)1−nκS−n we have
FT [κW ](ω) = eiπωFT [κS](ω + 1

2
) and then as ∀ω ∈ [−1/2,1/2], ∣FT [κS](ω)∣2 + ∣FT [κS](ω +

9



Under review as a conference paper at ICLR 2018

1/2)∣2 = 2 the first part of the proof is concluded. The second part of the proof utilizes
the fact that the cascading convolutions above compute a Discrete Wavelet Transform Mallat
(2008). Therefore, (θ1(f)n)n∈Z = (θ1(< f,W1,n >)n)n∈Z, (θ2(f)n)n∈Z = (θ2(< f,W2,n >
)n)n∈Z, . . . , (θL−1(f)n)n∈Z = (θL−1(< f,WL−1,n >)n)n∈Z and (θ1(f)n)n∈Z = (θL(< f,SL−1,n >
)n)n∈Z where {Sl,n = 1√

2l
S ( ⋅−2ln

2l ) ∣n ∈ Z}. ∎

The cascaded time domain convolutions being computed yield the coordinates of f in an orthonormal
basis. Therefore, as the orthogonal CNN grows deeper it can only yield novel orthogonal information
about the input signal that is informative of its properties on a particular temporal scale. Such is the
nature of our efficiency claim for the neural networks we consider. A key point here is that the 1x1
convolutions operate in depth and not along the axis of time which preserves the temporal scaling
properties of the Discrete Wavelet Transform.

2.3 TRAINING OF RCONV LAYERS BY ALTERNATING SGD STEPS AND DC PROGRAMMING:

As noted in Mallat (2008) the constraint infω∈[− 1
4 ,

1
4 ], ∣FT [κS](ω)∣ > 0 is always met in practice,

which our numerical experiments confirm. The two critical constraints on the design of the temporal
convolution filters is (1) that κW = (−1)1−nκS[∶∶ −1] and FT [κS](0) =

√
2, which is trivial to

enforce, and (2) that ∀ω ∈ R, ∣FT [κS](ω)∣2 + ∣FT [κS](ω + 1
2
)∣2 = 2.

In our implementation we approximate the constraint by computing the Fast Fourier Transform of
the filter, since it is defined discretely in time by a finite set of weights. Therefore, we interleave the
normal training step of κS with solving the following following minimization problem

min
κS∈RH

1

∑
ω=0, 1

N−1

∣∣FT [κS](ω)∣2 + ∣FT [κS](ω +
1

2
)∣2 − 2∣

where H is the number of free parameters we allow in our temporal convolution filter. Such an
optimization problem can be rewritten as a difference of convex (DC) functions (as ∣x∣ = max(0, x)−
min(0, x), κs → ∣FT [κS](ω)∣2 + ∣FT [κS](ω + 1

2
)∣2 − 2 is clearly convex and convexity is stable by

composition by a non-decreasing function) and an adapted solver (Tao & An, 1998) can then take
advantage of the particular structure of the problem to find an optimal solution rapidly.

3 NUMERICAL EXPERIMENTS

Here, we show that the sufficient conditions for neural networks to yield non-linear frames are
computationally tractable. The following experiments explore the empirical properties of such neural
networks compared to various baselines.

3.1 SYNTHETIC COMPRESSION EXPERIMENT

In our first numerical experiment, we generate regularly sampled non-stationary stochastic processes,
characterized by a random mixture of Gabor functions (Mallat, 2008) and step functions. As shown
in Figure 2, the resulting signals are highly irregular, lack permanent seasonality, and have compact
support. The objective here is to devise a procedure to train conjugate mirror (convolutional) filters
with stochastic optimization methods to progressively improve representational power.

We train a 16 parameter filter κS to optimally conduct the following compression (i.e., auto-encoding)
task. The pair of filters specified in Eq. (4) are employed as in Theorem 2.2 to produce the coordinates
of the input signal in the wavelet basis corresponding to the (learned) filters κS and κW . The input
signals are uni-variate with 128 observations each.The encoding, therefore, initially consists of 128
scalar values, of which, only the 64 with higher magnitude are selected – all other values are set to 0.

An inverse Discrete Wavelet Transform is then employed to reconstruct the input signal. The quality
of this reconstruction is measured by the squared L2 loss, which penalizes discrepancies between the
input signal and its reconstruction. To train this model, we use a stochastic optimization algorithm,
RMSProp, to minimize the aforementioned loss. We train for 2,500 iterations with a learning rate of
10−3. This optimization is interleaved with a constraint enforcing program that enforces Eq. (4) every

10
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Figure 2: For a ratio of compression of 2, the learned wavelet basis auto-encoder outperforms an
LSTM-based auto-encoder with the same number of parameters.

100 iterations. Figure 2 shows that this procedure progressively improves the randomly-initialized
filters and significantly out-performs an LSTM-based auto-encoder model.

3.2 MULTI-SCALE VIDEO CLASSIFICATION

We further show that a wavelet representation can be composed with classical recurrent architecture
(in regularly observed settings) to mitigate the effect of noisy data. This is particularly useful for
LSTM networks Hochreiter & Schmidhuber (1997), since hyperbolic tangent layers tend to saturate
in the presence of high-magnitude perturbations.

The YouTube-8M data-set contains millions of YouTube videos and their associated genres (Abu-
El-Haija et al., 2016). Because the frames in each video are pre-featurized (i.e., a time series of
featurized frames), models designed for this data-set must solely leverage the temporal structure in
the data. In particular, the raw video feed is not available. A thorough description of the baselines
we employ is available in Abu-El-Haija et al. (2016). This has enabled the authors of the paper to
achieve state-of-the-art results in video classifications using a 2-layer LSTM model.

In our experiment, we train a similar model to learn on a multi-scale wavelet representation of data.
This representation separates the original time series into d scales, varying from fine to coarse. Each
of the d time series in this multi-scale representation are fed into a similar 2-layer LSTMs with d2

times fewer parameters which results in a decrease of the total number of parameters in the recurrent
layers by a factor of d. The outputs of each LSTM, are then concatenated before the final soft-max
layer. We provide a model diagram detailing these components in the appendix. Our experimental
results in Figure 3 indicate that this multi-scale representation greatly improves the performance of
recurrent neural networks while using far fewer parameters.

3.3 MULTI-SCALE FINANCIAL FORECASTING

In 2015, an astounding medium volume of 40 million shares of AAPL (Apple Inc.) were traded
each day. With the price of each share at approximately 100 USD, each 15-minute trading period
represents an exchange of 142 million USD. Trades are highly irregular events characterized by an
instantaneous exchange of shares between actors. Forecasting trade volume at a very fine resolution
is essential in leveraging arbitrage opportunities. However, the noisy nature of financial markets
makes this task incredibly challenging (Abergel et al., 2012).

Using AAPL price data from 2015, we train two neural networks: a standard LSTM and a wavelet
transform network, to predict the next 15 minutes of trading given the 15 minutes that have just

11
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Model Hit@1 Precision at equal recall
Baseline LSTM 0.645 0.573

LSTM on 4 Wavelets 0.798 0.648

Figure 3: Top: An LSTM model trained on a wavelet-transformed YouTube-8M data-set achieves
comparable results against the baseline while using half the number of parameters. Bottom: Table
evaluating the wavelet-transformed LSTM model against the results from Abu-El-Haija et al. (2016)
on held-out data.
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Figure 4: Predicting trade volume of a 15 minute window given the previous 15 minutes of observa-
tions. We evaluate the performance of neural networks against a simple averaging model. Even with
L1 regularization, the LSTM does not have the same predictive power as the neural network specified
in Theorem 2.2 with L = 2 or L = 4.

elapsed. On average, the duration between time-stamps was 907ms (25th percentile: 200ms, median:
220ms, 75th percentile: 1800ms).

After the first scale projection onto a Haar wavelet basis (Mallat, 2008) is produced (with a character-
istic resolution τ = 8 seconds), both the wavelet transform network (withM = 8) and the LSTM make
predictions with this first scale as input. Each model is evaluated by the L2 loss against a baseline
predicting a constant trading volume equal to the average over the previous 15 observed minutes.
Notice that in Figure 4, the LSTM struggles with the noisiness of the data, whereas the wavelet
transform network is robust, and manages to improve the prediction performance by a half-percent.
This half-percent represents 50 thousand USD of exchanged volume over a 15 minute period.

4 CONCLUSION

In this article, we analyze neural networks from a frame theoretic perspective. In doing so, we
come to the conclusion that by considering time series as an irregularly observed continuous-time
stochastic processes, we are better able to devise robust and efficient convolutional neural networks.
By leveraging recent contributions to frame theory, we prove properties about non-linear frames
that allow us to make guarantees over an entire class of convolutional neural networks. Particularly
regarding their capacity to produce discrete representations of continuous time signals that are both
injective and bi-Lipschitz. Moreover, we show that, under certain conditions, these properties almost
certainly hold, even when the signal is irregularly observed in an event-driven manner. Finally, we
show that bounded-output recurrent neural networks do not satisfy the sufficient conditions to yield
non-linear frames.

This article is not limited to the theoretical statements it makes. In particular, we show that we can
build a convolutional neural network that effectively computes a Discrete Wavelet Transform. The
network’s filters are dynamically learned while being constrained to produce outputs that preserve
both orthogonality and the properties associated with non-linear frames. Our numerical experiments
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on real-world prediction tasks further demonstrate the benefits of such neural networks. Notably, their
ability to produce compact representations that allow for efficient learning on latent continuous-time
stochastic processes.
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CONVERGENCE OF WAVELET APPROXIMATIONS IN HOLDER FUNCTIONAL
SPACES

We rely on Wavelet approximations (Mallat, 2008) to represent signals that are not band-limited.
Given a certain Wavelet function W ∈ L2(R) and Wl,τ = 1√

2l
W ( ⋅−τ

2l ) a series of dilated and
translated versions of W , a Wavelet approximation expresses a function f ∈ L2(R) as

f ≃ PLW (f)
L−1

∑
l=0

∑
τ∈Z

< f,Wl,τ >Wl,τ .

Under some conditions on W (Mallat, 2008), the family Wl,τ = 1√
2l
W ( ⋅−τ

2l ) can be orthonormal
and every function f ∈ L2(R) can be written in the limit as f = ∑l∈Z∑τ∈Z < f,Wl,τ > Wl,τ . A
Wavelet function is defined as the high frequency mirror of a low frequency Scale function whose
unit translations constitute a set of orthonormal atoms for a frame of L2(R) (i.e. a Riesz basis of
L2(R)).

In the following we consider functions with bounded support and restrict our study to functions
defined on the interval [0,1] to simplify notations. A change of variable can immediately be employed
to generalize the statements below to any bounded support function.

Definition 4.1 Holder space of α Lipschitz functions: A function f ∈ L2([0,1]) is uniformly α
Lipschitz if there exists M > 0 such that for all s in [0,1] there exists a polynomial pv of degree ⌊α⌋
such that

∀t ∈ [0,1], ∣f(t) − pv(t)∣ ≤K ∣t − s∣α.

In other words we consider functions defined on compacts that can be well approximated by polyno-
mial splines and therefore have a certain degree of smoothness.

Proposition 4.1 Wavelet approximation of smooth functions with compact support: If f ∈
L2([0,1]) is α Lipschitz there exist 0 < m ≤ M such that the approximation error of the wavelet
decomposition with wavelet function W and scale function S is

RRRRRRRRRRRR

RRRRRRRRRRRR
f −

⎛
⎝

⌊log2(N)⌋
∑
l=L+1

2l−1

∑
τ=0

< f,Wl,τ >Wl,τ +
⌊log2(N)⌋−1

∑
τ=0

< f,S⌊log2(N)⌋,τ > S⌊log2(N)⌋,τ
⎞
⎠

RRRRRRRRRRRR

RRRRRRRRRRRR

2

2

= O(2−N2α)

The proposition above, proven in (Mallat, 2008) helps us examine how such an approximation affects
the representations we employ.
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NEURAL ARCHITECTURES EMPLOYED IN THE VIDEO CLASSIFICATION
EXPERIMENT

The present section of the appendix describes in detail the architectures employed in our Youtube8
video classification experiments. In Figure 5 we present the baseline architecture in the form of a
block-diagram. In Figure 6 we expose our architectural choices which split the input into independent
sub-spaces of representation that all correspond to different characteristic scales of variation of the
input signal.

t
Sequence 
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Pre-trained 
Inception
network

1024 
features

Computed by 
Abu-El-Haija 
et al. (2016)

Input data

Channel wise time domain dyadic wavelet transform 
(cascaded dilated convolutions by Daubechies 4 Scale and Wavelet filters)

1024 
features

2 layer stacked LSTM with 1024 hidden units in each layer

Weighted sum along time axis (linearly increasing from 1/T to T)

Softmax layer

Label

1024 
features

Figure 5: Baseline architecture from (Abu-El-Haija et al., 2016).
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Figure 6: The architecture we propose for the Youtube video classification task that leverages a
multi-resolution approximation computed by a wavelet convolution stack.
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