
Online Continual Learning with Maximally
Interfered Retrieval

Rahaf Aljundi∗
KU Leuven

rahaf.aljundi@gmail.com

Lucas Caccia∗
Mila

lucas.page-caccia@mail.mcgill.ca

Eugene Belilovsky∗
Mila

eugene.belilovsky@umontreal.ca

Massimo Caccia∗
Mila

massimo.p.caccia@gmail.com

Min Lin
Mila

mavenlin@gmail.com

Laurent Charlin
Mila

lcharlin@gmail.com

Tinne Tuytelaars
KU Leuven

tinne.tuytelaars@esat.kuleuven.be

Abstract

Continual learning, the setting where a learning agent is faced with a never ending
stream of data, continues to be a great challenge for modern machine learning
systems. In particular the online or "single-pass through the data" setting has
gained attention recently as a natural setting that is difficult to tackle. Methods
based on replay, either generative or from a stored memory, have been shown to
be effective approaches for continual learning, matching or exceeding the state
of the art in a number of standard benchmarks. These approaches typically rely
on randomly selecting samples from the replay memory or from a generative
model, which is suboptimal. In this work we consider a controlled sampling
of memories for replay. We retrieve the samples which are most interfered, i.e.
whose prediction will be most negatively impacted by the foreseen parameters
update. We show a formulation for this sampling criterion in both the generative
replay and the experience replay setting, producing consistent gains in performance
and greatly reduced forgetting. We release an implementation of our method at
https://github.com/optimass/Maximally_Interfered_Retrieval.

1 Introduction

Artificial neural networks have exceeded human-level performance in accomplishing individual
narrow tasks [19]. However, such success remains limited compared to human intelligence that
can continually learn and perform an unlimited number of tasks. Humans’ ability of learning and
accumulating knowledge over their lifetime has been challenging for modern machine learning
algorithms and particularly neural networks. In that perspective, continual learning aims for a higher
level of machine intelligence by providing the artificial agents with the ability to learn online from a
non-stationary and never-ending stream of data. A key component for such never-ending learning
∗Authors contributed equally

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/optimass/Maximally_Interfered_Retrieval

process is to overcome the catastrophic forgetting of previously seen data, a problem that neural
networks are well known to suffer from [13]. The solutions developed so far often relax the problem
of continual learning to the easier task-incremental setting, where the data stream can be divided into
tasks with clear boundaries and each task is learned offline. One task here can be recognizing hand
written digits while another different types of vehicles (see [24] for example).

Existing approaches can be categorized into three major families based on how the information
regarding previous task data is stored and used to mitigate forgetting and potentially support the
learning of new tasks. These include replay-based [8, 30] methods which store prior samples,
dynamic architectures [35, 39] which add and remove components and prior-focused [18, 41, 9, 7]
methods that rely on regularization.

In this work, we consider an online continual setting where a stream of samples is seen only once
and is not-iid. This is a much harder and more realistic setting than the milder incremental task
assumption[4] and can be encountered in practice e.g. social media applications. We focus on
the replay-based approach [26, 36] which has been shown to be successful in the online continual
learning setting compared to other approaches [26]. In this family of methods, previous knowledge is
stored either directly in a replay buffer, or compressed in a generative model. When learning from
new data, old examples are reproduced from a replay buffer or a generative model.

In this work, assuming a replay buffer or a generative model, we direct our attention towards answering
the question of what samples should be replayed from the previous history when new samples are
received. We opt for retrieving samples that suffer from an increase in loss given the estimated
parameters update of the model. This approach also takes some motivation from neuroscience where
replay of previous memories is hypothesized to be present in the mammalian brain [27, 34], but
likely not random. For example it is hypothesized in [15, 25] similar mechanisms might occur to
accommodate recent events while preserving old memories.

We denote our approach Maximally Interfered Retrieval (MIR) and propose variants using stored
memories and generative models. The rest of the text is divided as follows: we discuss closely related
work in Sec. 2. We then present our approach based on a replay buffer or a generative model in Sec. 3
and show the effectiveness of our approach compared to random sampling and strong baselines in
Sec. 4.

2 Related work

The major challenge of continual learning is the catastrophic forgetting of previous knowledge once
new knowledge is acquired [12, 32] which is closely related to the stability/plasticity dilemma [14]
that is present in both biological and artificial neural networks. While these problems have been
studied in early research works [10, 11, 20, 21, 37], they are receiving increased attention since the
revival of neural networks.

Several families of methods have been developed to prevent or mitigate the catastrophic forgetting
phenomenon. Under the fixed architecture setting, one can identify two main streams of works: i)
methods that rely on replaying samples or virtual (generated) samples from the previous history while
learning new ones and ii) methods that encode the knowledge of the previous tasks in a prior that is
used to regularize the training of the new task [17, 40, 1, 28]. While the prior-focused family might
be effective in the task incremental setting with a small number of disjoint tasks, this family often
shows poor performance when tasks are similar and training models are faced with long sequences as
shown in Farquhar and Gal [9].

Replayed samples from previous history can be either used to constrain the parameters update based
on the new sample, to stay in the feasible region of the previous ones [26, 6, 5] or for rehearsal [30, 33].
Here, we consider a rehearsal approach on samples played from previous history as it is a cheaper and
effective alternative to the constraint optimization approach [8, 5]. Rehearsal methods usually play
random samples from a buffer, or pseudo samples from a generative model trained on the previous
data Shin et al. [36]. These works showed promising results in the offline incremental tasks setting
and recently been extended to the online setting [8, 5], where a sequence of tasks forming a non
i.i.d. stream of training data is considered with one or few samples at a time. However, in the online
setting and given a limited computational budget, one can’t replay all buffer samples each time and it

2

Incoming Batch

Find Likely
Interfered
Samples

Estimate
Update

Update on Augmented Batch

Randomly Select
Memories

Stored
Memories

Generative
Model

OR

Update on Augmented Batch

Stream of Non-iid Samples

Cat v Dog

Orange v AppleWolf vs Car

Lion vs Zebra Dog vs. Horse

Naive Approach Maximally Interfered

Figure 1: High-level illustration of a standard rehearsal method (left) such as generative replay or
experience replay which selects samples randomly. This is contrasted with selecting samples based
on interferences with the estimated update (right).

becomes crucial to select the best candidates to be replayed. Here, we propose a better strategy than
random sampling in improving the learning behaviour and reducing the interference.

Continual learning has also been studied recently for the case of learning generative models [29, 22].
Riemer et al. [31] used an autoencoder to store compressed representation instead of raw samples. In
this work we will leverage this line of research and will consider for the first time generative modeling
in the online continual learning setting.

3 Methods

We consider a (potentially infinite) stream of data where at each time step, t, the system receives a
new set of samples Xt,Yt drawn non i.i.d from a current distribution Dt that could itself experience
sudden changes corresponding to task switching from Dt to Dt+1.

We aim to learn a classifier f parameterized by θ that minimizes a predefined loss L on new sample(s)
from the data stream without interfering, or increasing the loss, on previously observed samples.
One way to encourage this is by performing updates on old samples from a stored history, or from a
generative model trained on the previous data. The principle idea of our proposal is that instead of
using randomly selected or generated samples from the previous history [6, 36], we find samples that
would be (maximally) interfered by the new incoming sample(s), had they been learned in isolation
(Figure 1). This is motivated by the observation that the loss of some previous samples may be
unaffected or even improved, thus retraining on them is wasteful. We formulate this first in the
context of a small storage of past samples and subsequently using a latent variable generative model.

3.1 Maximally Interfered Sampling from a Replay Memory

We first instantiate our method in the context of experience replay (ER), a recent and successful
rehearsal method [8], which stores a small subset of previous samples and uses them to augment the
incoming data. In this approach the learner is allocated a memoryM of finite size, which is updated
by the use of reservoir sampling [3, 8] as the stream of samples arrives. Typically samples are drawn
randomly from memory and concatenated with the incoming batch.

Given a standard objective min
θ
L(fθ(Xt),Yt), when receiving sample(s) Xt we estimate the would-

be parameters update from the incoming batch as θv = θ − α∇L(fθ(Xt),Yt), with learning rate
α. We can now search for the top-k values x ∈ M using the criterion sMI-1(x) = l(fθv (x), y) −
l(fθ(x), y), where l is the sample loss. We may also augment the memory to additionally store the
best l(fθ(x), y) observed so far for that sample, denoted l(fθ∗(x), y). Thus instead we can evaluate
sMI-2(x) = l(fθv (x), y) −min

(
l(fθ(x), y), l(fθ∗(x), y)

)
. We will consider both versions of this

criterion in the sequel.

3

We denote the budget of samples to retrieve, B. To encourage diversity we apply a simple strategy of
performing an initial random sampling of the memory, selecting C samples where C > B before
applying the search criterion. This also reduces the compute cost of the search. The ER algorithm
with MIR is shown in Algorithm 1. We note that for the case of sMI-2 the loss of the C selected
samples at line 7 is tracked and stored as well.

3.2 Maximally Interfered Sampling from a Generative Model

We now consider the case of replay from a generative model. Assume a function f parameterized by
θ (e.g. a classifier) and an encoder qφ and decoder gγ model parameterized by φ and γ, respectively.
We can compute the would-be parameter update θv as in the previous section. We want to find in the
given feature space data points that maximize the difference between their loss before and after the
estimated parameters update:

max
Z
L
(
fθv (gγ(Z)),Y ∗

)
− L

(
fθ′ (gγ(Z)),Y ∗

)
s.t. ||zi − zj ||22 > ε∀zi, zj ∈ Z with zi 6= zj

(1)
with Z ∈ RB×K, K the feature space dimension, and ε a threshold to encourage the diversity of the
retrieved points. Here θ

′
can correspond to the current model parameters or a historical model as in

Shin et al. [36]. Furthermore, y∗ denotes the true label i.e. the one given to the generated sample
by the real data distribution. We will explain how to approximate this value shortly. We convert the
constraint into a regularizer and optimize the Equation 1 with stochastic gradient descent denoting
the strength of the diversity term as λ. From these points we reconstruct the full corresponding input
samples X

′
= gγ(Z) and use them to estimate the new parameters update min

θ
L(fθ(Xt ∪X

′
)).

Using the encoder encourages a better representation of the input samples where similar samples
lie close. Our intuition is that the most interfered samples share features with new one(s) but have
different labels. For example, in handwritten digit recognition, the digit 9 might be written similarly
to some examples from digits {4,7}, hence learning 9 alone may result in confusing similar 4(s)
and 7(s) with 9 (Fig. 2). The retrieval is initialized with Z ∼ qφ(Xt) and limited to a few gradient
updates, limiting its footprint.

Figure 2: Most interfered retrieval from
VAE on MNIST. Top row shows in-
coming data from a final task (8 v 9).
The next rows show the samples caus-
ing most interference for the classifier
(Eq. 1)

To estimate the loss in Eq. 1 we also need an estimate of
y∗ i.e. the label when using a generator. A straightforward
approach for is based on the generative replay ideas [36] of
storing the predictions of a prior model. We thus suggest
to use the predicted labels given by fθ′ as pseudo labels
to estimate y∗. Denoting ypre = fθ′ (gγ(z)) and ŷ =
fθv (gγ(z)) we compute the KL divergence, DKL(ypre ‖
ŷ), as a proxy for the interference.

Generative models such as VAEs [16] are known to gen-
erate blurry images and images with mix of categories. To
avoid such a source of noise in the optimization, we mini-
mize an entropy penalty to encourage generating points for
which the previous model is confident. The final objective
of the generator based retrieval is

max
Z

∑
z∈Z

[DKL(ypre ‖ ŷ)− αH(ypre)] s.t. ||zi − zj ||22 > ε ∀zi, zj ∈ Z with zi 6= zj , (2)

with the entropy H and a hyperparameter α to weight the contribution of each term.

So far we have assumed having a perfect encoder/decoder that we use to retrieve the interfered
samples from the previous history for the function being learned. Since we assume an online continual
learning setting, we need to address learning the encoder/decoder continually as well.

We could use a variational autoencoder (VAE) with pγ(X | z) = N (X | gγ(z), σ2I) with mean
gγ(z) and covariance σ2I .

As for the classifier we can also update the VAE based on incoming samples and the replayed samples.
In Eq. 1 we only retrieve samples that are going to be interfered given the classifier update, assuming

4

a good feature representation. We can also use the same strategy to mitigate catastrophic forgetting in
the generator by retrieving the most interfered samples given an estimated update of both parameters
(φ, γ). In this case, the intereference is with respect to the VAE’s loss, the evidence lower bound
(ELBO). Let us denote γv, φv the virtual updates for the encoder and decoder given the incoming
batch. We consider the following criterion for retrieving samples for the generator:

max
Zgen

E
z∼qφv

[−log(pγv (gγv (Zgen)|z))]− E
z∼qφ′

[−log(pγ′(gγ′(Zgen)|z))]

+DKL(qφv (z|gγv (Zgen))||p(z))−DKL(qφ′(z|gγ′(Zgen))||p(z)) (3)

s.t. ||zi − zj ||22 > ε ∀zi, zj ∈ Zgen s.t. zi 6= zj

Here (φ′, γ′) can be the current VAE or stored from the end of the previous task. Similar to Z, Zgen
is initialized with Zgen ∼ qφ(Xt) and limited to few gradient updates. A complete view of the MIR
based generative replay is shown in Algorithm 2

3.3 A Hybrid Approach

Training generative models in the continual learning setting on more challenging datasets like CIFAR-
10 remains an open research problem [23]. Storing samples for replay is also problematic as it is
constrained by storage costs and very-large memories can become difficult to search. To leverage
the benefits of both worlds while avoiding training the complication of noisy generation, Similar to
Riemer et al. [31] we use a hybrid approach where an autoencoder is first trained offline to store and
compress incoming memories. Differently, in our approach, we perform MIR search in the latent
space of the autoencoder using Eq. 1. We then select nearest neighbors from stored compressed
memories to ensure realistic samples. Our strategy has several benefits: by storing lightweight
representations, the buffer can store more data for the same fixed amount of memory. Moreover, the
feature space in which encoded samples lie is fully differentiable. This enables the use of gradient
methods to search for most interfered samples. We note that this is not the case for the discrete
autoencoder proposed in [31]. Finally, the autoencoder with its simpler objective is easier to train in
the online setting than a variational autoencoder. The method is summarized in Algorithm 3 in the
Appendix.

Algorithm 1: Experience MIR (ER-MIR)
Input: Learning rate α, Subset size C; Budget B

1 Initialize: MemoryM; θ
2 for t ∈ 1..T do
3 for Bn ∼ Dt do
4 %%Virtual Update
5 θv ← SGD(Bn, α)
6 %Select C samples
7 BC ∼M
8 %Select based on score
9 S ← sort(sMI(BC))

10 BMC ← {Si}Bi=1

11 θ ← SGD(Bn ∪BMC , α)
12 %Add samples to memory
13 M← UpdateMemory(Bn);
14 end
15 end

Algorithm 2: Generative-MIR (GEN-MIR)
Input: Learning rate α

1 Initialize: MemoryM; θ, φ,γ
2 for t ∈ 1..T do
3 θ

′
, φ
′
, γ
′
← θ, φ, γ

4 for Bn ∼ Dt do
5 %Virtual Update
6 θv ← SGD(Bn, α)
7 BC ← Retrieve samples as per Eq (2)
8 BG ← Retrieve samples as per Eq (3)
9 %Update Classifier

10 θ ← SGD(Bn ∪BC , α)
11 %Update Generative Model
12 φ, γ ← SGD(Bn ∪BG, α)
13 end
14 end

4 Experiments

We now evaluate the proposed method under the generative and experience replay settings. We will
use three standard datasets and the shared classifier setting described below.

• MNIST Split splits MNIST data to create 5 different tasks with non-overlapping classes.
We consider the setting with 1000 samples per task as in [2, 26].
• Permuted MNIST permutes MNIST to create 10 different tasks. We consider the setting

with 1000 samples per task as in [2, 26].

5

• CIFAR-10 Split splits CIFAR-10 dataset into 5 disjoint tasks as in Aljundi et al. [3].
However, we use a more challenging setting, with all 9,750 samples per task and 250
retained for validation.

• MiniImagenet Split splits MiniImagenet [38] dataset into 20 disjoint tasks as in Chaudhry
et al. [8] with 5 classes each.

In our evaluations we will focus the comparisons of MIR to random sampling in the experience replay
(ER) [3, 8] and generative replay [36, 22] approaches which our method directly modifies. We also
consider the following reference baselines:

• fine-tuning trains continuously upon arrival of new tasks without any forgetting avoidance
strategy.

• iid online (upper-bound) considers training the model with a single-pass through the data
on the same set of samples, but sampled iid.

• iid offline (upper-bound) evaluates the model using multiple passes through the data, sam-
pled iid. We use 5 epochs in all the experiments for this baseline.

• GEM [26] is another method that relies on storing samples and has been shown to be a
strong baseline in the online setting. It gives similar results to the recent A-GEM [6].

We do not consider prior-based baselines such as Kirkpatrick et al. [18] as they have been shown to
work poorly in the online setting as compared to GEM and ER [8, 26]. For evaluation we primarily
use the accuracy as well as forgetting [8].

Shared Classifier A common setting for continual learning applies a separate classifier for each
task. This does not cover some of the potentially more interesting continual learning scenarios where
task metadata is not available at inference time and the model must decide which classes correspond
to the input from all possible outputs. As in Aljundi et al. [3] we adopt a shared-classifier setup for
our experiments where the model can potentially predict all classes from all tasks. This sort of setup
is more challenging, yet can apply to many realistic scenarios.

Multiple Updates for Incoming Samples In the one-pass through the data continual learning setup,
previous work has been largely restricted to performing only a single gradient update on incoming
samples. However, as in [3] we argue this is not a necessary constraint as the prescribed scenario
should permit maximally using the current sample. In particular for replay methods, performing
additional gradient updates with additional replay samples can improve performance. In the sequel
we will refer to this as performing more iterations.

Comparisons to Reported Results Note comparing reported results in Continual Learning re-
quires great diligence because of the plethora of experimental settings. We remind the reviewer that
our setting, i.e. shared-classifier, online and (in some cases) lower amount of training data, is more
challenging than many of the other reported continual learning settings.

4.1 Experience Replay

Here we evaluate experience replay with MIR comparing it to vanilla experience replay [8, 3] on a
number of shared classifier settings. In all cases we use a single update for each incoming batch,
multiple iterations/updates are evaluated in a final ablation study. We restrict ourselves to the use
of reservoir sampling for deciding which samples to store. We first evaluate using the MNIST Split
and Permuted MNIST (Table 1). We use the same learning rate, 0.05, used in Aljundi et al. [3].
The number of samples from the replay buffer is always fixed to the same amount as the incoming
samples, 10, as in [8]. For MIR we select by validation C = 50 and the sMI-2 criterion for both
MNIST datasets. ER-MIR performs well and improves over (standard) ER in both accuracy and
forgetting. We also show the accuracy on seen tasks after each task sequence is completed in Figure 7.

We now consider the more complex setting of CIFAR-10 and use a larger number of samples than in
prior work [3]. We study the performance for different memory sizes (Table 2). For MIR we select
by validation at M = 50, C = 50 and the sMI-1 criterion. We observe that the performance gap
increases when more memories are used. We find that the GEM method does not perform well in this

6

Accuracy ↑ Forgetting ↓
iid online 86.8± 1.1 N/A
iid offline 92.3± 0.5 N/A
fine-tuning 19.0± 0.2 97.8± 0.2

GEN 79.3± 0.6 19.5± 0.8
GEN-MIR 82.1± 0.3 17.0± 0.4
GEM [26] 86.3± 1.4 11.2± 1.2

ER 82.1± 1.5 15.0± 2.1
ER-MIR 87.6± 0.7 7.0± 0.9

Accuracy ↑ Forgetting ↓
iid online 73.8± 1.2 N/A
iid offline 86.6± 0.5 N/A

fine-tuning 64.6± 1.7 15.2± 1.9
GEN 79.7± 0.1 5.8± 0.2

GEN-MIR 80.4± 0.2 4.8± 0.2
GEM [26] 78.8± 0.4 3.1 ± 0.5

ER 78.9± 0.6 3.8± 0.6
ER-MIR 80.1± 0.4 3.9± 0.3

Table 1: Results for MNIST SPLIT (left) and Permuted MNIST (right). We report the Average
Accuracy (higher is better) and Average Forgetting (lower is better) after the final task. We split
results into priveleged baselines, methods that don’t use a memory storage, and those that store
memories. For the ER methods, 50 memories per class are allowed. Each approach is run 20 times.

Accuracy ↑
M = 20 M = 50 M = 100

iid online 60.8± 1.0 60.8± 1.0 60.8± 1.0
iid offline 79.2± 0.4 79.2± 0.4 79.2± 0.4
GEM [26] 16.8± 1.1 17.1± 1.0 17.5± 1.6

iCarl (5 iter) [30] 28.6± 1.2 33.7± 1.6 32.4± 2.1
fine-tuning 18.4± 0.3 18.4± 0.3 18.4± 0.3

ER 27.5± 1.2 33.1± 1.7 41.3± 1.9
ER-MIR 29.8±1.1 40.0± 1.1 47.6± 1.1

Forgetting ↓
M = 20 M = 50 M = 100

N/A N/A N/A
N/A N/A N/A

73.5± 1.7 70.7± 4.5 71.7± 1.3
49± 2.4 40.6± 1.1 40± 1.8
85.4± 0.7 85.4± 0.7 85.4± 0.7
50.5± 2.4 35.4± 2.0 23.3± 2.9
50.2± 2.0 30.2± 2.3 17.4± 2.1

Table 2: CIFAR-10 results. Memories per class M , we report (a) Accuracy, (b) Forgetting (lower
is better). For larger sizes of memory ER-MIR has better accuracy and improved forgetting metric.
Each approach is run 15 times.

setting. We also consider another baseline iCarl [30]. Here we boost the iCarl method permitting it to
perform 5 iterations for each incoming sample to maximize its performance. Even in this setting it is
only able to match the experience replay baseline and is outperformed by ER-MIR for larger buffers.

Number of iterations
1 5

iid online 60.8± 1.0 62.0± 0.9
ER 41.3± 1.9 42.4± 1.1

ER-MIR 47.6± 1.1 49.3± 0.1

Table 3: CIFAR-10 accuracy (↑) results for in-
creased iterations and 100 memories per class.
Each approach is run 15 times.

Accuracy ↑ Forgetting ↓
ER 24.7± 0.7 23.5± 1.0

ER-MIR 25.2±0.6 18.0±0.8

Table 4: MinImagenet results. 100 memories
per class and using 3 updates per incoming
batch, accuracy is slightly better and forget-
ting is greatly improved. Each approach is
run 15 times

Increased iterations We evaluate the use of additional iterations on incoming batches by comparing
the 1 iteration results above to running 5 iterations. Results are shown in Table 3 We use ER an and at
each iteration we either re-sample randomly or using the MIR criterion. We observe that increasing
the number of updates for an incoming sample can improve results on both methods.

Longer Tasks Sequence we want to test how our strategy performs on longer sequences of tasks.
For this we consider the 20 tasks sequence of MiniImagenet Split. Note that this dataset is very
challenging in our setting given the shared classifier and the online training. A naive experience
replay with 100 memories per class obtains only 17% accuracy at the end of the task sequence. To
overcome this difficulty, we allow more iterations per incoming batch. Table 4 compares ER and
ER-MIR accuracy and forgetting at the end of the sequence. It can be seen how our strategy continues
to outperform, in particular we achieve over 5% decrease in forgetting.

7

(a) Generation with the best VAE baseline.
Complications arising from both properties
leave the VAE generating blurry and/or fad-
ing digits.

(b) Most interfered samples while learning
the last task (8 vs 9). Top row is the incoming
batch. Rows 2 and 3 show the most interfered
samples for the classifier, Row 4 and 5 for
the VAE. We observe retrieved samples look
similar but belong to different category.

Figure 3: Online and low data regime MNIST Split generation. Qualitatively speaking, most interfered
samples are superior to baseline’s.

4.2 Generative Replay

We now study the effect of our proposed retrieval mechanism in the generative replay setting (Alg. 2).
Recall that online continual generative modeling is particularly challenging and to the best of our
knowledge has never been attempted. This is further exacerbated by the low data regime we consider.

Results for the MNIST datasets are presented in Table 1. To maximally use the incoming samples,
we (hyper)-parameter searched the amount of additional iterations for both GEN and GEN-MIR. In
that way, both methodologies are allowed their optimal performance. More hyperarameter details are
provided in Appendix B.2. On MNIST Split, MIR outperforms the baseline by 2.8% and 2.5% on
accuracy and forgetting respectively. Methods using stored memory show improved performance,
but with greater storage overhead. We provide further insight into theses results with a generation
comparison (Figure 3). Complications arising from online generative modeling combined with the
low data regime cause blurry and/or fading digits (Figure 3a) in the VAE baseline (GEN). In line with
the reported results, the most interfered retrievals seem qualitatively superior (see Figure 3b where
the GEN-MIR generation retrievals is demonstrated). We note that the quality of the samples causing
most interference on the VAE seems higher than those on the classifier.

For the Permuted MNIST dataset, GEN-MIR not only outperforms the its baselines, but it achieves
the best performance over all models. This result is quite interesting, as generative replay methods
can’t store past data and require much more tuning.

The results discussed thus far concern classification. Nevertheless, GEN-MIR alleviates catastrophic
forgetting in the generator as well. Table 5 shows results for the online continual generative modeling.
The loss of the generator is significantly lower on both datasets when it rehearses on maximally
interfered samples versus on random samples. This result suggest that our method is not only viable
in supervised learning, but in generative modeling as well.

MNIST Split Permuted MNIST
GEN 107.2± 0.2 196.7± 0.7

GEN-MIR 102.5± 0.2 193.7± 1.0

Table 5: Generator’s loss (↓), i.e. negative ELBO,
on the MNIST datasets. Our methodology outper-
forms the baseline in online continual generative
modeling as well.

Our last generative replay experiment is an ab-
lation study. The results are presented in Table
6. All facets of our proposed methodology
seem to help in achieving the best possible re-
sults. It seems however that the minimization
of the label entropy, i.e. H(ypre), which en-
sures that the previous classifier is confident
about the retrieved sample’s class, is most im-
portant and is essential to outperform the base-
line.

As noted in [23], training generative models
in the continual learning setting on more chal-
lenging datasets remains an open research problem. [23] found that generative replay is not yet a
viable strategy for CIFAR-10 given the current state of the generative modeling. We too arrived at the
same conclusion, which led us to design the hybrid approach presented next.

8

Accuracy
GEN-MIR 83.0
ablate MIR on generator 82.7
ablate MIR on classifier 81.7
ablate DKL(ypre ‖ ŷ) 80.7
ablate H(ypre) 78.3
ablate diversity constraint 80.7
GEN 80.0

Table 6: Ablation study of GEN-MIR on the
MNIST Split dataset. The H(ypre) term in the
MIR loss function seems to play an important role
in the success of our method.

2 4 6 8 10
Task

74

76

78

80

82

Te
st

 A
cc

ur
ac

y

ER
ER-MIR

Table 7: Permuted MNIST test accuracy on
tasks seen so far for rehearsal methods.

4.3 Hybrid Approach

100 / 1k 500 / 5k 1k / 10k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Accuracy ()

100 / 1k 500 / 5k 1k / 10k
0.0

0.1

0.2

0.3

0.4

0.5

Forgetting ()
AE-Random
AE-MIR

Real Memory Slots / Compressed Memory Slots

Figure 4: Results for the Hybrid Approach

In this section, we evaluate the hybrid approach pro-
posed in Sec 3.3 on the CIFAR-10 dataset. We use an
autoencoder to compress the data stream and simplify
MIR search.

We first identify an important failure mode arising
from the use of reconstructions which may also apply
to generative replay. During training, the classifier
sees real images, from the current task, from the data
stream, along with reconstructions from the buffer,
which belong to old tasks. In the shared classifier
setting, this discrepancy can be leveraged by the clas-
sifier as a discriminative feature. The classifier will
tend to classify all real samples as belonging to the
classes of the last task, yielding low test accuracy. To
address this problem, we first autoencode the incom-
ing data with the generator before passing it to the
classifier. This way, the classifier cannot leverage the distribution shift. We found that this simple
correction led to a significant performance increase. We perform an ablation experiment to validate
this claim, which can be found in Appendix C, along with further details about the training procedure.

In practice, we store a latent representation of size 4× 4× 20 = 320, giving us a compression factor
of 32×32×3

320 = 9.6 (putting aside the size of the autoencoder, which is less than 2% of total parameters
for large buffer size). We therefore look at buffer size which are 10 times as big i.e. which can
contain 1k, 5k, 10k compressed images, while holding memory equivalent to storing 100 / 5000 / 1k
real images. Results are shown in Figure 4. We first note that as the number of compressed samples
increases we continue to see performance improvement, suggesting the increased storage capacity
gained from the autoencoder can be leveraged. We next observe that even though AE-MIR obtains
almost the same average accuracies as AE-Random, it achieved a big decrease in the forgetting metric,
indicating a better trade-offs in the performance of the learned tasks. Finally we note a gap still exists
between the performance of reconstructions from incrementally learned AE or VAE models and real
images, further work is needed to close it.

5 Conclusion

We have proposed and studied a criterion for retrieving relevant memories in an online continual
learning setting. We have shown in a number of settings that retrieving interfered samples reduces
forgetting and significantly improves on random sampling and standard baselines. Our results and
analysis also shed light on the feasibility and challenges of using generative modeling in the online
continual learning setting. We have also shown a first result in leveraging encoded memories for
more compact memory and more efficient retrieval.

9

Acknowledgements

We would like to thank Kyle Kastner and Puneet Dokania for helpful discussion. Eugene Belilvosky
is funded by IVADO and Rahaf Aljundi is funded by FWO.

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-

laars. Memory aware synapses: Learning what (not) to forget. In ECCV 2018, .

[2] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In
CVPR 2019, .

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Online continual learning with
no task boundaries. In arXiv, .

[4] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning
with a network of experts. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[5] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Online continual learning with
no task boundaries. arXiv preprint arXiv:1903.08671, 2019.

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In ICLR 2019.

[7] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. arXiv preprint
arXiv:1801.10112, 2018.

[8] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. Continual learning with tiny episodic
memories. arXiv preprint arXiv:1902.10486, 2019.

[9] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv
preprint arXiv:1805.09733, 2018.

[10] Robert M French. Semi-distributed representations and catastrophic forgetting in connectionist
networks. Connection Science, 4(3-4):365–377, 1992.

[11] Robert M French. Dynamically constraining connectionist networks to produce distributed,
orthogonal representations to reduce catastrophic interference. network, 1111:00001, 1994.

[12] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[13] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[14] Stephen Grossberg. Studies of mind and brain : neural principles of learning, perception,
development, cognition, and motor control. Boston studies in the philosophy of science 70.
Reidel, Dordrecht, 1982. ISBN 9027713596.

[15] Christopher J Honey, Ehren L Newman, and Anna C Schapiro. Switching between internal and
external modes: a multiscale learning principle. Network Neuroscience, 1(4):339–356, 2017.

[16] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. arXiv preprint arXiv:1612.00796,
2016.

10

[18] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, page 201611835, 2017.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[20] John K Kruschke. Alcove: an exemplar-based connectionist model of category learning.
Psychological review, 99(1):22, 1992.

[21] John K Kruschke. Human category learning: Implications for backpropagation models. Con-
nection Science, 5(1):3–36, 1993.

[22] Frantzeska Lavda, Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Continual
classification learning using generative models, 2018.

[23] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat.
Generative models from the perspective of continual learning. arXiv preprint arXiv:1812.09111,
2018.

[24] Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on
Computer Vision, pages 614–629. Springer, 2016.

[25] Kuhl BA Long NM. Decoding the tradeoff between encoding and retrieval to predict memory
for overlapping events. In SSRN 3265727. 2018 Oct 13.

[26] David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pages 6467–6476, 2017.

[27] JAMES L McCLELLAND. Complementary learning systems in the brain: A connectionist
approach to explicit and implicit cognition and memory. Annals of the New York Academy of
Sciences, 843(1):153–169, 1998.

[28] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[29] Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative modeling.
arXiv preprint arXiv:1705.09847, 2017.

[30] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proc. CVPR, 2017.

[31] Matthew Riemer, Tim Klinger, Djallel Bouneffouf, and Michele Franceschini. Scalable recol-
lections for continual lifelong learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 1352–1359, 2019.

[32] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7
(2):123–146, 1995.

[33] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne.
Experience replay for continual learning. CoRR, abs/1811.11682, 2018. URL http:
//arxiv.org/abs/1811.11682.

[34] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experi-
ence replay for continual learning, 2018.

[35] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[36] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in Neural Information Processing Systems, pages 2990–2999,
2017.

11

http://arxiv.org/abs/1811.11682
http://arxiv.org/abs/1811.11682

[37] Steven A Sloman and David E Rumelhart. Reducing interference in distributed memories
through episodic gating. Essays in honor of WK Estes, 1:227–248, 1992.

[38] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

[39] Ju Xu and Zhanxing Zhu. Reinforced continual learning. arXiv preprint arXiv:1805.12369,
2018.

[40] Friedemann Zenke, Ben Poole, and Surya Ganguli. Improved multitask learning through
synaptic intelligence. In Proceedings of the International Conference on Machine Learning
(ICML), 2017.

[41] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. arXiv preprint arXiv:1703.04200, 2017.

12

M=20 M=50 M=100
iid online 86.8± 1.1 86.8± 1.1 86.8± 1.1
iid offline 86.8± 1.1 86.8± 1.1 86.8± 1.1
fine-tuning 19± 0.2 19± 0.2 19± 0.2

ER 78.9± 1.5 82.6± 1.0 81.3± 1.9
ER-MIR 81.5± 1.9 87.4± 0.8 87.4± 1.2

M=20 M=50 M=100
N/A N/A N/A
N/A N/A N/A

97.8± 0.2 97.8± 0.2 97.8± 0.2
19.1± 2.0 14.0± 1.1 15.8± 2.7
15.9± 2.5 7.2± 0.9 6.7± 1.4

Table 8: MNIST results. Memories per class M , we report the (a) Accuracy (b) Forgetting (lower
is better). For larger sizes of memory ER-MIR has better accuracy and improved forgetting metric.
Each approach is run 20 times

M=20 M=50 M=100
iid online 73.8± 1.2 73.8± 1.2 73.8± 1.2
iid offline 86.6± 0.5 86.6± 0.5 86.6± 0.5
fine-tuning 64.6± 1.7 64.6± 1.7 64.6± 1.7

ER 76.3± 0.6 78.4± 0.6 79.9± 0.3
ER-MIR 76.3± 0.5 80.1± 0.4 82.3± 0.2

M=20 M=50 M=100
N/A N/A N/A
N/A N/A N/A

15.2± 1.9 15.2± 1.9 15.2± 1.9
5.6± 0.6 3.7± 0.5 2.48± 0.5
6.5± 0.5 3.4± 0.3 1.89± 0.3

Table 9: Permuted MNIST results. Memories per class M , we report the (a) Accuracy (b) Forgetting
(lower is better). For larger sizes of memory ER-MIR has better accuracy and improved forgetting
metric. Each approach is run 10 times

A Full Results on ER-MIR

In this section we show full results on the ER-MIR for different settings of the buffer size for Permuted
MNIST and MNIST Split. We also include results for CIFAR-10 with 1000 samples per task as
studied in [3]. We note that the margins of gain for ER-MIR is lower here than in the full CIFAR-10
setting (using 9750 samples per task) suggesting ER-MIR is more effective in the more challenging
settings.

B Details of Hyperparameters

The code to reproduce all results can be found at https://github.com/optimass/Maximally_
Interfered_Retrieval.

B.1 Experience Replay Experiments

For ER and ER-MIR we use the same base settings as in [3, 8]. Specifically the batch size is 10 for
the incoming samples and 10 for the buffered samples. As in that work we use a learning rate of 0.05
for our MNIST experiments. For CIFAR-10 we select by validation 0.1. ER-reservoir-MIR we also
add the hyperparameter of the initial sampling size, C, which is chosen from 30, 50, 100, 150 to be
50.

For MNIST we use a 2 layer MLP with 400 hidden nodes. For CIFAR-10 experiments we use a
standard Resnet-18 used in [26, 6].

B.2 Generative Modeling Experiments

For the Generative Replay experiments, we kept the same classifier as in the Experience Replay
experiments to facilitate comparison (2-layer MLP with 400 hidden nodes). Again, the batch size
for the incoming data is is kept at 10. The VAE is also a MLP. We searched for the following
hyperparameters: learning rate (5e-1, 1e-1, 1e-2), number of updates per incoming datapoints (2,5,10,
15, 20), generator dropout weight (0.0, 0.1, 0.2, 0.3, 0.4), the weight of the KL(q(z|x)||p(z)) in the
generator loss (0.2, 0.5, 1.0, 1.0), KL cost annealing schedule in terms of number of samples before
reaching final value (1, 250, 500, 1000), number of replayed memories (1,2,4,10), coefficient of the
replay loss (1, 2, 3, 5), size of latent space of the generator (50, 100), depth of generator (2,3,4),
number of hidden dimension for the generator (218, 256). Next, for GEN-MIR, we searched the
coefficient of the losses (0.0, 0.1, 1.0, 2.0) and the number of iterations (2,3,5,10). The baseline
and our method was allowed an equal number or runs and the hyperpameters were chosen in such a

13

https://github.com/optimass/Maximally_Interfered_Retrieval
https://github.com/optimass/Maximally_Interfered_Retrieval

way that more computation (number of memories and number of iterations) doesn’t lead to better
performance (remember that more training equals more forgetting).

C Further Description of Hybrid Approach

We give the algorithm block fully describing the method of Sec. 3.3.

Algorithm 3: AE-MIR
Input: Learning rate α, Subset size C; Budget B, Gen.

Epochs Ngen
1 Initialize: MemoryM; θ, θae
2 for t ∈ 1..T do
3 %%Offline Generator Training
4 for epoch ∈ 1...Ngen do
5 for Bn ∼ Dt do
6 h← Encode(θae;Bn)
7 B̃n ← Decode(θae;h)
8 lossae←MSE(B̃n, Bn)
9 Adam (lossae, θae)

10 end
11 end
12 for Bn ∼ Dt do
13 %%Virtual Update
14 θv ← SGD(Bn, α)

15 %%Autoencode batch
16 h← Encode(θae;Bn)
17 B̃n ← Decode(θae;h)

18 %Select C samples
19 BC ∼M
20 BG ← Retrieve samples acc. to Eq 1

21 %%Store compressed rep.
22 M← UpdateMemory(h,Ln)

23 %% Train the Classifier
24 θ ← SGD(B̃n ∪BMC , α)
25 end
26 end

For all experiments, we train the generator offline for 5 epochs, but still in the incremental setting. As
in the replay experiments, the batch size is 10. All results are averaged over 5 runs.

Ablation Study Here we provide results for the AE hybrid approach. We first change the test set
evaluation, by feeding the real images, instead of autoencoded ones. We denote this model as “-
test AE". We also look at additionally feeding real images from the current data stream, instead of
reconstructed ones (i.e. replacing line 24 θ ← SGD(B̃n ∪BMC , α) as θ ← SGD(Bn ∪BMC , α)).
We call this model “- train & test AE".

From these results we see that never training the classifier on real images is essential to obtain good
results, as “- train & test AE" performs badly. Moreover, we notice that also autoencoding the data at
test time is also responsible for some performance gain. This is denoted by the small but noticeable
performance increase from “- test AE" to “AE-Random"

14

100 / 1k 500 / 5k 1k / 10k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Accuracy ()
- test AE
- train & test AE

100 / 1k 500 / 5k 1k / 10k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Forgetting ()

Real Memory Slots / Compressed Memory Slots

Figure 5: Ablation results

100 / 1k 500 / 5k 1k / 10k
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Accuracy ()

100 / 1k 500 / 5k 1k / 10k
0.0

0.1

0.2

0.3

0.4

0.5

Forgetting ()
AE-Random
AE-MIR

Real Memory Slots / Compressed Memory Slots

Figure 6: Reference Performance

15

	Introduction
	Related work
	Methods
	Maximally Interfered Sampling from a Replay Memory
	Maximally Interfered Sampling from a Generative Model
	A Hybrid Approach

	Experiments
	Experience Replay
	Generative Replay
	Hybrid Approach

	Conclusion
	Full Results on ER-MIR
	Details of Hyperparameters
	Experience Replay Experiments
	Generative Modeling Experiments

	Further Description of Hybrid Approach

