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ABSTRACT

We establish the relation between Distributional RL and the Upper Confidence
Bound (UCB) approach to exploration. In this paper we show that the density of
the Q function estimated by Distributional RL can be successfully used for the
estimation of UCB. This approach does not require counting and, therefore, gen-
eralizes well to the Deep RL. We also point to the asymmetry of the empirical
densities estimated by the Distributional RL algorithms like QR-DQN. This ob-
servation leads to the reexamination of the variance’s performance in the UCB
type approach to exploration. We introduce truncated variance as an alternative
estimator of the UCB and a novel algorithm based on it. We empirically show that
newly introduced algorithm achieves better performance in multi-armed bandits
setting. Finally, we extend this approach to high-dimensional setting and test it on
the Atari 2600 games. New approach achieves better performance compared to
QR-DQN in 26 of games, 13 ties out of 49 games.

1 INTRODUCTION

Exploration is a long standing problem in Reinforcement Learning (RL). It’s been the main focus of
the multi-armed bandits literature. Here the algorithms are easier to design and analyze. However,
these solutions are quite unfeasible for high dimensional Deep RL setting, where the complication
comes from the presence of the function approximator.

The multi-armed bandit can be represented by a slot machine with several arms. Each arms’ expected
reward is unknown to the gambler. Her/his goal is to maximize cumulative reward by pulling bandit’s
arms. If the true expected rewards are known, then the best strategy is to pull the arm with the
highest value. However, gambler only observes stochastic reward after the arm is pulled. One
possible solution described by Sutton et al. (1998) is to initialize values of arms’ estimated means
optimistically and then improve the estimates by pulling the same arm again. Arm with a lower true
mean will get its estimate decreased over time. Eventually, the best arm will be discovered. The
drawback is that the set of the arms has to be enumerated and every arm has to be pulled infinitely
many times. In the RL setting an arm corresponds to a state-action pair, which implies that both
assumptions are too strong for the Deep RL.

Another line of reasoning is Upper Confidence Bound (UCB) type algorithms, e.g. UCB-1, intro-
duce by Kocsis & Szepesvári (2006). The essence of the approach is nicely summarized by Audibert
et al. (2009): ’optimism in the face of uncertainty principle’. The idea is statistically intuitive: pull
the arm which has the highest upper confidence bound, hoping for a better mean. Estimation of the
arm’s UCB is performed via Hoeffdings Inequality1 which is entirely based on counting the number
of times the arm was pulled. UCB extends to the tree search case in the form of UCT developed
by Kocsis & Szepesvári (2006). Although this idea was successfully applied to the problem when
perfect model is accessible, i.e. AlphaGo by Silver et al. (2016), it does not generalize in a straight-
forward fashion to the general Deep RL setting without perfect model. The main obstacle is the
requirement of counting of the state-action pairs. Another popular variation is UCB-V introduced
by Audibert et al. (2009). It estimates UCB via the empirical variance, which again involves count-
ing. Therefore, the requirement of counting prevents UCB ideas from successful generalization to
the high dimensional setting of Deep RL.

1Proved by Hoeffding (1963)
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The generalization of exploration ideas from multi-armed bandits to Deep RL is challenging. There-
fore, one the most popular exploration approaches in Deep RL is the annealed epsilon greedy ap-
proach popularized by Mnih et al. (2015). However, epsilon greedy approach is not very efficient,
especially in Deep RL. It does not take into account the underlying structure of the environment.
Therefore, researchers have been looking for other more efficient ways of exploration in Deep RL
setting. For example the idea of parametric noise was explored by Fortunato et al. (2017). Posterior
sampling for reinforcement learning (Osband et al. (2013)) in Deep RL setting was developed by
Osband et al. (2016). Uncertainty Bellman Equation proposed by O’Donoghue et al. (2017), gener-
alizes Bellman equation to the uncertainty measure. The closest UCB type approach was developed
by Chen et al. (2017). In order to avoid counting authors estimate UCB based on the empirical
distribution of the Q function produced by Bootstrapped DQN (Osband et al. (2016)). The approach
reduces to estimating an ensemble of randomly initialized Q functions. According to the averaged
human normalized learning curve the performance improvement was insignificant. Currently, there
is a much better approach to estimating empirical distributions of Q function, i.e. distributional RL
(Bellemare et al. (2017), Dabney et al. (2017)). The results in the distributional RL are both theo-
retically sound and achieve state of the art performance in Deep RL environments, like Atari 2600.
However, we should note that Distributional RL does not use the whole distribution, but only the
mean.

Another important characteristic of Distributional RL is that both C51 (Bellemare et al. (2017)) and
Quantile Regression DQN (QR-DQN) (Dabney et al. (2017)) are non parametric in the sense that
the estimated distribution is not assumed to belong to any specific parametric family. Hence, it is not
assumed to be symmetric or even unimodal 2. We argue that in the case of asymmetric distributions,
variance might become less sensitive in estimating UCB. This problem seems to be overseen by
the existing literature. However, this issue might become more important in a more general setting,
when symmetric assumption is not simply relaxed but is a very rare case. We empirically show in
the Section 4 that symmetry is in fact rare in Distributional RL.

In this paper we build upon generic UCB idea. We generalize it to the asymmetric distributions
and high-dimensional setting. In order to extend UCB approach to asymmetric distributions, we
introduce truncated variability measure and show empirically that it achieves higher performance
than variance in bandits setting. Extension of this measure to rich visual environments provided by
Atari 2600 platform is based on recent advances in Distributional RL.

2 BACKGROUND

2.1 UCB

As it was mentioned in the introduction UCB is based on the statistical relation between the num-
ber of observations of a random variable and the tightness of the mean estimates based on these
observations. More formally the connection is provided the inequality proved by Hoeffding (1963):

Theorem 1 (Hoeffdings Inequality) Let X1, . . . Xt be independent random variables bounded by
[0, 1]. Let X̄ = 1

t

∑t
i=1Xi, µ = E[X̄]. Then for u ∈ [0, 1− µ]:

Pr(X̄ ≥ µ+ u) ≤ e−2tu
2

(1)

Therefore, Theorem 1 quantifies the relation between upper confidence bound for X̄ and the number
of realizations of X . On the other hand if the estimate of the probability density function (PDF) is
available, then UCB can be estimated directly:

X̄ ≤ µ+ c
√
σ̂2 (2)

where σ̂2 is the variance computer from P̂ (X) and c is a constant reflecting the confidence level.
Now the question is how to estimate the empirical PDF. Bayes-UCB introduced by Kaufmann et al.
(2012) uses restricted family of distributions which allows for the closed form Bayesian update.
On the other hand it is possible to model P [X] in a more expressive way using Neural Networks
as it is done in the Distributional RL. We lose closed form solutions, but gain more realistic esti-
mates of the underlying distribution. In this paper we explore Quantile Regression approach towards
Distributional RL, which we introduce next.

2See analysis by Bellemare et al. (2017).
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2.2 DISTRIBUTIONAL RL

The core idea behind QR-DQN is the Quantile Regression introduced by Koenker & Bassett Jr
(1978). Let us first describe QR in the supervised machine learning setting. Given data {(yi, xi)}i,
τ -th linear quantile regression loss is defined as:

L(β) =
∑
i

ρτ (yi − xiβ) (3)

where
ρτ (u) = u(τ − Iu<0) = τ |u|Iu≥0 + (1− τ)|u|Iu<0 (4)

is the weighted sum of residuals. Weights are proportional to the counts of the residual signs and
order of the estimated quantile τ . For higher quantiles positive residuals get higher weight and
vice versa. If τ = 0.5, then the estimate of the median for yi is Q0.5(yi|xi) = xiβ̂, with β̂ =
arg minL(β).

Dabney et al. (2017) introduced QR in a more general setting of RL with function approximator. The
design of the neural network is the same as in the original DQN introduced by Mnih et al. (2015)
except for the last linear layer, which outputs N quantiles {θi}i instead of the a single estimate of
Q. For a given transition (x, a, r, x′) and a discount factor γ the Bellman update is:

∀j ∈ {1, . . . N} T θj = r + γθj(x
′, a∗) (5)

Note the similarity between loss in 3 and Algorithm 1. The difference is in the type of the function
approximator: linear in the former and neural network in the later. This work is closely related to
that of Bellemare et al. (2017) with a major contribution in the way the empirical distribution is
estimated. Bellemare et al. (2017) use Boltzmann distribution in conjunction with a projection step.
QR-DQN seems to be a more elegant solution, since it does not involve the projection step and and
there is no need for explicitly bounding the support.

It is worth emphasizing that function approximator in this case is crucial for generalization of UCB
approach to DeepRL, since it eliminates the need for state-action pair counting.

Algorithm 1 Quantile Regression Q-learning

Input: w,w−, (x, a, r, x′), γ ∈ [0, 1) . network weights, sampled transition, discount factor
1: Q(x′, a′) =

∑
j qjθj(x

′, a′;w−)

2: a∗ = arg maxa′ Q(x, a′)
3: T θj = r + γθj(x

′, a∗;w−)
4: L(w) =

∑
i

1
N

∑
j [ρτ̂i(T θj − θi(x, a;w))]

5: w′ = arg minw L(w)
Output: w′ . Updated weights of θ()

3 ALGORITHM

QR approach allows for a very elegant estimation of distributions in the RL setting. We apply this
idea to the multi-armed bandits. This environment is more tractable and easier to explore. Since the
distributions are not assumed to have any regularities, like symmetry, we conjecture that variance
might not the best UCB measure. Therefore, we explore truncated variability measure. We, then,
generalize this idea to the Deep RL setting.

3.1 QUCB

We propose to estimate empirical distribution of returns for each arm by the means of the QR.
The basic idea is to estimate mean and variance of the return for each arm based on the empirical
distribution provided by QR and pick the arm according to the highest mean plus standard deviation.
We call this algorithm QUCB.
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In the setting of multi-armed bandits denote quantiles by {θi}i and observed reward for by R. Then
for a single arm the set of estimates of quantiles is the solution to:

arg min
θi

∑
i

ρτ̂i(θi −R) (6)

As opposed to the supervised example there are no features xi. Algorithm 2 outlines the QUCB.
Note the definitions of θ̄t,k and V ar(θt,k):

θ̄t,k =
1

N

N∑
i=1

θt,k,i (7)

V ar(θt,k) =
1

N

N∑
i=1

(θ̄t,k − θt,k,i)2 (8)

Note the presence of the multiplier ct in the Algorithm 2. To ensure the optimality in the limit
t → ∞, {ct}t have to be chosen so that limt→∞ ct = 0. In case the number of quantiles is big
compared to the sample size, it might help to warm-up the initial estimates by performing a few
steps of pure exploration (ε = 1).

Hence, the algorithm estimates empirical quantiles. QR approach allows to estimate any quantile.
In fact it allows to estimate multiple quantiles in one update step producing empirical density. More
importantly, having empirical distribution at hand opens up the way for new possible approaches to
computing upper confidence bound, exploration bonuses or some other means of ordering empirical
distributions when choosing action/arm. One such approach is developed in the next section.

Algorithm 2 QUCB

Input: {θ0,k,i}k,i, N, α, {ct}t . Initial values, number of quantiles, learning rate, schedule
1: for t in [0, number of runs] do
2: if t ≤ number of burn-in steps then
3: It ∼ Uniform(K) . Pick an arm randomly
4: else
5: It = arg maxk{θ̄t,k + ct

√
V ar(θt,k)}

6: end if
7: draw reward Rt
8: θt+1,It,i = θt,It,i + α∇θ

∑
i ρτ̂i(θt,It,i −Rt) . Update quantiles of the corresponding arm

9: end for

3.2 ASSYMETRY, TRUNCATED MEASURES, QUCB+

In the case of non parametric approaches or parametric approaches that are not exclusively restricted
to symmetric distributions the symmetry is not guaranteed. In fact, it might be a very rare case as
it can be seen from Figure 1. Note that the game of Pong from Atari 2600 is the simplest one.
In the end of training presented in Figure 1, agent achieves almost the perfect score. Hence the
distributions in the end of training correspond to the near optimal policy and these distributions are
not symmetric. That is, the asymmetry of empirical distributions is the regular case, but not an
exception. Hence, the question: is the variance a ’good’ measure of the upper confidence bound for
asymmetric distributions in the setting of multi-armed bandits and RL?

For the sake of the argument consider a simple decomposition of the variance into the two truncated
variability measures: lower and upper variance 3:

V ar(X) =
1

N

N∑
i=1

(X̄ −Xi)
2 =

1

2N

1
2N∑
i=1

(X̄ −Xi)
2 +

1

2N

N∑
i= 1

2N

(X̄ −Xi)
2 = σ2

l + σ2
u (9)

It is clear that in the case of a symmetric probability density function (PDF) the lower and upper
variances are equivalent. However, in the case of asymmetric distribution the equality σ2

l = σ2
u does

3In case N is odd, partition indexes into lower and upper sets as {1, bN
2
c}, {dN

2
e . . . N}.
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Figure 1: Pong. (left) Empirical distributions of the Q function for a single action obtained from
QR-DQN-1 during training for 20 millions of frames. y-axis is the training step number. (right)
Standard deviation of the empirical distribution of the Q function for a single action.

not always hold 4. σ2
l contains the information about the lower tail variability whereas σ2

u about
upper tail variability.

In case of the UCB type approach to the exploration problem upper tail variability seem to be more
relevant than lower tail one, especially if the estimated PDF is asymmetric. Intuitively speaking, σ2

u
is an optimistic measure of variability. σ2

u is biased towards rare ’positive’ rewards. However, the
availability of empirical PDF makes it possible to truncate the variance in many different ways. σ2

u
might be a good candidate, although one potential draw back is the robustness of the estimator of
the mean. In order to mitigate that, we propose the following truncated measure of the variability
based on the median rather than the mean 5:

σ2
+ =

1

2N

N∑
i=N

2

(θ̄ − θi)2 (10)

where θi’s are i
N -th quantiles. As opposed to σ2

u, σ2
+ captures some ’negative’ variability but still

being optimistic.

We propose QUCB+, the algorithm based on σ2
+ which is a slight modification of QUCB. Instead

of the V ar(θt,k) we propose to use σ2
+. We hypothesize that σ2

+ might be a more robust upper tail
variability measure. We support our hypothesis by empirical results in multi-armed bandits setting
and Atari 2600, presented in Section 4.

3.3 DQN-QUCB+

The ideas presented in the previous section generalize in a straightforward fashion to the tabular RL
and most importantly to the Deep RL setting. As it was mentioned QR-DQN’s output is the quantile
distribution with equispaced quantiles: { iN }

N
i=1. The update step does not change. Action selection

step incorporates bias in the form of σ2
+ from Equation 10. Algorithm 3 outlines DQN-QUCB+.

In the presence of the function approximator the variance encoded in the θi is largely effected by the
variation in the parameters. Therefore, the variance produced by QR-DQN has at least two sources:
intrinsic variation coming from the underlying MDP and parametric variation. The important ques-
tion is the dynamics of the parametric uncertainty during training. As it can be seen from Figure 1
the variance drops significantly meaning that the parametric uncertainty goes down as the network
approaches optimal solution. Hence, if the model tends to learn then the parametric component in
the variance decreases.

4Consider discrete empirical distribution with support {−1, 0, 2} and probability atoms { 1
3
, 1
3
, 1
3
}.

5For details see Huber (2011), Hampel et al. (2011)
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Algorithm 3 DQN-QUCB+

Input: w,w−, (x, a, r, x′), γ ∈ [0, 1) . network weights, sampled transition, discount factor
1: Q(x′, a′) =

∑
j qjθj(x

′, a′;w−)

2: a∗ = arg maxa′(Q(x, a′) + ct

√
σ2
+)

3: T θj = r + γθj(x
′, a∗;w−)

4: L(w) =
∑
i

1
N

∑
j [ρτ̂i(T θj − θi(x, a;w))]

5: w′ = arg minw L(w)
Output: w′ . Updated weights of θ()
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Figure 2: Comparison of performance of QUCB and QUCB+ in multi-armed bandits with 10 arms.
Lines represent averages over 2000 runs, bands are standard errors. (left) The rewards are normally
distributed with unit variance. (right) Rewards are drawn from (right- and left- skewed) lognormal
distribution with unit variance.

4 EXPERIMENTS

4.1 MULTI-ARMED BANDITS

Following Sutton et al. (1998) we applied QUCB and QUCB+ to the multi-armed bandits test bed.
In order to study the effect of asymmetric distributions we set up two configurations of the test bed:
with normally and asymmetrically distributed rewards. Both configurations consist of 10 arms. In
both configurations true means of arms {µi}Kk=1 are drawn from the normal distribution with µ = 1,
σ = 1.

In the first configuration. During each step the the reward for the k-th arm is drawn from N(µk, 1).
As it can be seen from 2 there is no statistically significant difference between QUCB and QUCB+.
It is expected, since the the rewards are normally distributed, hence, symmetric around the mean.
In addition median and mean of the normal distribution coincide. Therefore, estimate of σ2 is close
to that of σ2

+. In the second configuration the reward for the best arm is drawn from the lognormal
distribution centered at µk and variance 1. And the rewards for other arms are drawn from the
reflected about µk lognormal distribution with variance one. Hence true variances of all arms are
the same, however in the presence of slight asymmetry QUCB+ performs better, see Figure 2.

4.2 ATARI 2600

As it was claimed earlier in the paper the QUCB generalizes to the Deep RL setting in the straight-
forward fashion. The architecture of the network is that of QR-DQN. Dabney et al. (2017) experi-
mented with two losses: the original QR loss and Huber loss with κ = 1. Both architectures proved
to be stable. For our experiments we chose only one loss: the Huber loss with κ = 1 6, due to high

6QR-DQN with κ = 1 is denoted as QR-DQN-1 in the work by Dabney et al. (2017). We use QR-DQN
and QR-DQN-1 interchangeably.
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Figure 3: Atari 2600 Venture game. Online training curves for QUCB with vanishing schedule and
QUCB with constant schedule. Curves are averaged over 3 runs. Shaded area represents corre-
sponding standard errors.

computational costs of experiments. Another reason for picking the Huber loss is its smoothness
compared to L1 loss of QR. Smoothness is better suited for gradient descent methods. Overall, we
followed closely Dabney et al. (2017) in setting the hyper parameters, except for the learning rate of
the Adam optimizer which we set to α = 0.0001.

The most significant distinction is the way the exploration is performed in DQN-QUCB. As opposed
to QR-DQN there is no epsilon greedy exploration schedule in DQN-QUCB. The exploration is
performed via the σ2

+ term only.

An important hyper parameter which is introduced by DQN-QUCB is the schedule, i.e. the sequence
of multipliers for σ2

+, {ct}t. The choice depends on the specific problem. In case of the station-
ary environment the UCB term involving σ2

+ should eventually vanish, i.e. ct → ∞. In the non
stationary environment the agent might always need to explore, so that ct is eventually a constant 7.

In our experiments we used the following schedule:

ct = 50

√
log t

t
(11)

The motivation behind the schedule is to gradually vanish the exploration term as it is done in QR-
DQN. This makes performance comparison more adequate. During experiments we observed that
DQN-QUCB is sensitive to the schedule to some extent, see for example Figure 3. We conjecture
that tuning the schedule might yield better performance across games.

We evaluated DQN-QUCB on the set of 49 Atari games initially proposed by Mnih et al. (2015).
Algorithms were evaluated on 40 million frames8 3 runs per game. The summary of the results is

7Here by is eventually a constant, we mean ∃T∀t ≥ Tct = c
8Equivalently, 10 million agent steps.
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Figure 4: Cumulative rewards performance comparison of DQN-QUCB+ and QR-DQN-1. The bars
represent relative gain/loss of DQN-QUCB+ over QR-DQN-1.

presented in Figure 4. DQN-QUCB achieves better performance (gain of over 3%) with respect to
cumulative reward measure in 26 games.

We argue that cumulative reward is a suitable performance measure for our experiments, since none
of the learning curves exhibit plummeting behaviour 9. A more detailed discussion of this point is
presented in Machado et al. (2017).

5 CONCLUSIONS

Recent advancements in RL, namely Distributional RL, not only established new theoretically sound
principles but also achieved state-of-the-art performance in challenging high dimensional environ-
ments like Atari 2600. The by-product of the Distributional RL is the empirical PDF for the Q
function which is not directly used except for the mean computation. UCB on the other hand is a
very attractive exploration algorithm in the multi-armed bandits setting, which does not generalize
in a straightforward fashion to Deep RL.

In this paper we established the connection between the UCB idea and Distributional RL. We also
pointed to the asymmetry of the PDFs estimated by Distributional RL, which is not a rare exception
but rather the only case. We introduced truncated variability measure as an alternative to the variance
and empirically showed that it can be successfully applied to multi-armed bandits and rich visual
environments like Atari 2600. It is highly likely that DQN-QUCB+ might be improved through
schedule tuning. DQN-QUCB+ might be combined with other advancements in Deep RL, e.g.
Rainbow by Hessel et al. (2017), to yield better results.

9We present leaning curves for all 49 games in the Appendix.
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Figure 5: Online learning curves for DQN-QUCB+ and QR-DQN-1 averaged over 3 runs for 40
millions of frames. Bands represent standard errors.

10


	Introduction
	Background
	UCB
	Distributional RL

	Algorithm
	QUCB
	Assymetry, truncated measures, QUCB+
	DQN-QUCB+

	Experiments
	Multi-armed bandits
	Atari 2600

	Conclusions
	Appendix

