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ABSTRACT

We propose Bayesian hypernetworks: a framework for approximate Bayesian in-
ference in neural networks. A Bayesian hypernetwork h is a neural network which
learns to transform a simple noise distribution, p(ε) = N (0, I), to a distribution
q(θ) := q(h(ε)) over the parameters θ of another neural network (the “primary
network”). We train q with variational inference, using an invertible h to en-
able efficient estimation of the variational lower bound on the posterior p(θ|D)
via sampling. In contrast to most methods for Bayesian deep learning, Bayesian
hypernets can represent a complex multimodal approximate posterior with corre-
lations between parameters, while enabling cheap iid sampling of q(θ). In prac-
tice, Bayesian hypernets provide a better defense against adversarial examples
than dropout, and also exhibit competitive performance on a suite of tasks which
evaluate model uncertainty, including regularization, active learning, and anomaly
detection.

1 INTRODUCTION

Simple and powerful techniques for Bayesian inference of deep neural networks’ (DNNs) param-
eters have the potential to dramatically increase the scope of applications for deep learning tech-
niques. In real-world applications, unanticipated mistakes may be costly and dangerous, whereas
anticipating mistakes allows an agent to seek human guidance (as in active learning), engage safe
default behavior (such as shutting down), or use a “reject option” in a classification context.

DNNs are typically trained to find the single most likely value of the parameters (the “MAP es-
timate”), but this approach neglects uncertainty about which parameters are the best (“parameter
uncertainty”), which may translate into higher predictive uncertainty when likely parameter values
yield highly confident but contradictory predictions. Conversely, Bayesian DNNs model the full
posterior distribution of a model’s parameters given the data, and thus provides better calibrated
confidence estimates, with corresponding safety benefits (Gal & Ghahramani, 2016; Amodei et al.,
2016).1 Maintaining a distribution over parameters is also one of the most effective defenses against
adversarial attacks (Carlini & Wagner, 2017).

Techniques for Bayesian DNNs are an active research topic. The most popular approach is varia-
tional inference (Blundell et al., 2015; Gal, 2016), which typically restricts the variational posterior
to a simple family of distributions, for instance a factorial Gaussian (Blundell et al., 2015; Graves,
2011). Unfortunately, from a safety perspective, variational approximations tend to underestimate
uncertainty, by heavily penalizing approximate distributions which place mass in regions where the
true posterior has low density. This problem can be exacerbated by using a restricted family of
posterior distribution; for instance a unimodal approximate posterior will generally only capture a
single mode of the true posterior. With this in mind, we propose learning an extremely flexible and
powerful posterior, parametrized by a DNN h, which we refer to as a Bayesian hypernetwork in
reference to Ha et al. (2017).

A Bayesian hypernetwork (BHN) takes random noise ε ∼ N (0, I) as input and outputs a sample
from the approximate posterior q(θ) for another DNN of interest (the “primary network”). The key

1While Bayesian deep learning may capture parameter uncertainty, most approaches, including ours, em-
phatically do not capture uncertainty about which model is correct (e.g., neural net vs decision tree, etc.). Pa-
rameter uncertainty is often called “model uncertainty” in the literature, but we prefer our terminology because
it emphasizes the existence of further uncertainty about model specification.
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insight for building such a model is the use of an invertible hypernet, which enables Monte Carlo
estimation of the entropy term − logq(θ) in the variational inference training objective.

We begin the paper by reviewing previous work on Bayesian DNNs, and explaining the necessary
components of our approach (Section 2). Then we explain how to compose these techniques to
yield Bayesian hypernets, as well as design choices which make training BHNs efficient, stable and
robust (Section 3). Finally, we present experiments which validate the expressivity of BHNs, and
demonstrate their competitive performance across several tasks (Section 4).

2 RELATED WORK

We begin with an overview of prior work on Bayesian neural networks in Section 2.1 before dis-
cussing the specific components of our technique in Sections 2.2 and 2.3.

2.1 BAYESIAN DNNS

Bayesian DNNs have been studied since the 1990s (Neal, 1996; MacKay, 1994). For a thorough
review, see Gal (2016). Broadly speaking, existing methods either 1) use Markov chain Monte
Carlo (Welling & Teh, 2011; Neal, 1996), or 2) directly learn an approximate posterior distribution
using (stochastic) variational inference (Graves, 2011; Gal & Ghahramani, 2016; Salimans et al.,
2015; Blundell et al., 2015), expectation propagation (Hernandez-Lobato & Adams, 2015; Soudry
et al., 2014), or α-divergences (Li & Gal, 2017). We focus here on the most popular approach:
variational inference.

Notable recent work in this area includes Gal & Ghahramani (2016), who interprets the popular
dropout (Srivastava et al., 2014) algorithm as a variational inference method (“MC dropout”). This
has the advantages of being simple to implement and allowing cheap samples from q(θ). Kingma
et al. (2015) emulates Gaussian dropout, but yields a unimodal approximate posterior, and does not
allow arbitrary dependencies between the parameters.

The other important points of reference for our work are Bayes by Backprop (BbB) (Blundell et al.,
2015), and multiplicative normalizing flows (Louizos & Welling, 2017). Bayes by Backprop can
be viewed as a special instance of a Bayesian hypernet, where the hypernetwork only performs an
element-wise scale and shift of the input noise (yielding a factorial Gaussian distribution).

More similar is the work of Louizos & Welling (2017), who propose and dismiss BHNs due to the
issues of scaling BHNs to large primary networks, which we address in Section 3.3.2 Instead, in
their work, they use a hypernet to generate scaling factors, z on the means µ of a factorial Gaussian
distribution. Because z follows a complicated distribution, this forms a highly flexible approximate
posterior: q(θ) =

∫
q(θ|z)q(z)dz. However, this approach also requires them to introduce an auxil-

iary inference network to approximate q(z|θ) in order to estimate the entropy term of the variational
lower bound, resulting in lower bound on the variational lower bound.

Finally, the variational autoencoder (VAE) (Jimenez Rezende et al., 2014; Kingma & Welling, 2013)
family of generative models is likely the best known application of variational inference in DNNs,
but note that the VAE is not a Bayesian DNN in our sense. VAEs approximate the posterior over la-
tent variables, given a datapoint; Bayesian DNNs approximate the posterior over model parameters,
given a dataset.

2.2 HYPERNETWORKS

A hypernetwork (Ha et al., 2017; Brabandere et al., 2016; Bertinetto et al., 2016) is a neural net
that outputs parameters of another neural net (the “primary network”).3 The hypernet and primary
net together form a single model which is trained by backpropagation. The number of parameters
of a DNN scales quadratically in the number of units per layer, meaning naively parametrizing a

2 The idea is also explored by Shi et al. (2017), who likewise reject it in favor of their implicit approach
which estimates the KL-divergence using a classifier.

3The name “hypernetwork” comes from Ha et al. (2017), who describe the general hypernet framework, but
applications of this idea in convolutional networks were previously explored by Brabandere et al. (2016) and
Bertinetto et al. (2016).
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large primary net requires an impractically large hypernet. One method of addressing this challenge
is Conditional Batch Norm (CBN) (Dumoulin et al., 2016), and the closely related Conditional
Instance Normalization (CIN) (Huang & Belongie, 2017; Ulyanov et al., 2016), and Feature-wise
Linear Modulation (FiLM) (Perez et al., 2017; Kirkpatrick et al., 2016), which can be viewed as
specific forms of a hypernet. In these works, the weights of the primary net are parametrized directly,
and the hypernet only outputs scale (γ) and shift (β) parameters for every neuron; this can be viewed
as selecting which features are significant (scaling) or present (shifting). In our work, we employ
the related technique of weight normalization (Salimans & Kingma, 2016), which normalizes the
input weights for every neuron and introduces a separate parameter g for their scale.

2.3 INVERTIBLE GENERATIVE MODELS

Our proposed Bayesian hypernetworks employ a differentiable directed generator network
(DDGN) (Goodfellow et al., 2016) as a generative model of the primary net parameters. DDGNs
use a neural net to transform simple noise (most commonly isotropic Gaussian) into samples from
a complex distribution, and are a common component of modern deep generative models such as
variational autoencoders (VAEs) (Kingma & Welling, 2013; Jimenez Rezende et al., 2014) and gen-
erative adversarial networks (GANs) (Goodfellow et al., 2014a; Goodfellow, 2017).

We take advantage of techniques for invertible DDGNs developed in several recent works on gen-
erative modeling (Dinh et al., 2014; 2016) and variational inference of latent variables (Rezende &
Mohamed, 2015; Kingma et al., 2016). Training these models uses the change of variables formula,
which involves computing the log-determinant of the inverse Jacobian of the generator network. This
computation involves a potentially costly matrix determinant, and these works propose innovative
architectures which reduce the cost of this operation but can still express complicated deformations,
which are referred to as “normalizing flows”.

3 METHODS

We now describe how variational inference is applied to Bayesian deep nets (Section 3.1), and
how we compose the methods described in Sections 2.2 and 2.3 to produce Bayesian hypernets
(Section 3.2).

3.1 VARIATIONAL INFERENCE

In variational inference, the goal is to maximize a lower bound on the marginal log-likelihood of
the data, log p(D) under some statistical model. This involves both estimating parameters of the
model, and approximating the posterior distribution over unobserved random variables (which may
themselves also be parameters, e.g., as in the case of Bayesian DNNs). Let θ ∈ RD be parameters
given the Bayesian treatment as random variables, D a training set of observed data, and q(θ) a
learned approximation to the true posterior p(θ|D). Since the KL divergence is always non-negative,
we have, for any q(θ):

log p(D) = KL(q(θ)‖p(θ|D)) + Eq[log p(D|θ) + log p(θ)− log q(θ)] (1)
≥ Eq[log p(D|θ) + log p(θ)− log q(θ)] . (2)

The right hand side of (2) is the evidence lower bound, or “ELBO”.

The above derivation applies to any statistical model and any dataset. In our experiments, we focus
on modeling conditional likelihoods p(D) = p(Y|X ). Using the conditional independence as-
sumption, we further decompose log p(D|θ) := log p(Y|X ,θ) as

∑n
i=1 log p(yi|xi,θ), and apply

stochastic gradient methods for optimization.

3.1.1 VARIATIONAL INFERENCE FOR DEEP NETWORKS

Computing the expectation in (2) is generally intractable for deep nets, but can be estimated by
Monte Carlo sampling. For a given value of θ, log p(D|θ) and log p(θ) can be computed and
differentiated exactly as in a non-Bayesian DNN, allowing training by backpropagation. The entropy
term Eq[− logq(θ)] is also straightforward to evaluate for simple families of approximate posteriors
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such as Gaussians. Similarly, the likelihood of a test data-point under the predictive posterior using
S samples can be estimated using Monte Carlo:4

p(Y = y|X = x,D) =
∫
p(Y = y|X = x,θ)p(θ|D)dθ (3)

≈ 1

S

S∑
s=1

p(Y = y|X = x,θs), θs ∼ q(θ) . (4)

3.2 BAYESIAN HYPERNETS

Bayesian hypernets (BHNs) express a flexible q(θ) by using a DDGN (section 2.3), h ∈ RD → RD,
to transform random noise ε ∼ N (0, ID) into independent samples from q(θ). This makes it cheap
to compute Monte Carlo estimations of expectations with respect to q; these include the ELBO, and
its derivatives, which can be backpropagated to train the hypernet h.

Since BHNs are both trained and evaluated via samples of q(θ), expressing q(θ) as a generative
model is a natural strategy. However, while DDGNs are convenient to sample from, computing
the entropy term (Eq[− logq(θ)]) of the ELBO additionally requires evaluating the likelihood of
generated samples, and most popular DDGNs (such as VAEs and GANs) do not provide a convenient
way of doing so.5 In general, these models can be many-to-one mappings, and computing the
likelihood of a given parameter value requires integrating over the latent noise variables ε ∈ RD:

q(θ) =

∫
q(θ;h(ε))q(ε)dε . (5)

To avoid this issue, we use an invertible h, allowing us to compute q(θ) simply by using the change
of variables formula:

q(θ) = qε(ε)

∣∣∣∣det ∂h(ε)∂ε

∣∣∣∣−1 , (6)

where qε is the distribution of ε and θ = h(ε).

As discussed in Section 2.3, a number of techniques have been developed for efficiently training
such invertible DDGNs. In this work, we employ both RealNVP (RNVP) (Dinh et al., 2016) and
Inverse Autoregressive Flows (IAF) (Kingma et al., 2016). Note that the latter can be efficiently
applied, since we only require the ability to evaluate likelihood of generated samples (not arbitrary
points in the range of h, as in generative modeling applications, e.g., Dinh et al. (2016)); and this
also means that we can use a lower-dimensional ε to generate samples along a submanifold of the
entire parameter space, as detailed below.

3.3 EFFICIENT PARAMETRIZATION AND TRAINING OF BAYESIAN HYPERNETS

In order to scale BHNs to large primary networks, we use the weight normalization reparametriza-
tion (Salimans & Kingma, 2016) 6:

θj = g u , u :=
v

‖v‖2
, g ∈ R , (7)

where θj are the input weights associated with a single unit j in the primary network. We only output
the scaling factors g from the hypernet, and learn a maximum likelihood estimate of v.7 This allows
us to overcome the computational limitations of naively-parametrized BHNs noted by Louizos &
Welling (2017), since computation now scales linearly, instead of quadratically, in the number of

4Here we approximate the posterior distribution p(θ|D) using the approximate posterior q(θ). We further
use S Monte Carlo samples to approximate the integral.

5Note that the entropy term is the only thing encouraging dispersion in q; the other two terms of (2) encour-
age the hypernet to ignore the noise inputs ε and deterministically output the MAP-estimate for θ.

6 Mathematical details can be found in the Appendix, Section B.
7This parametrization strongly resembles the “correlated” version of variational Gaussian dropout (Kingma

et al., 2015, Sec. 3.2); the only difference is that we restrict the u to have norm 1.
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Figure 1: Illustration of BHNs (second and third) and a traditional non-Bayesian DNN (first) on the toy
problem from Blundell et al. (2015). In the second subplot, we place a prior on the scaling factor g and infer
the posterior distribution using a BHN, while in the third subplot the hypernet is used to generate the whole
weight matrices of the primary net. Each shaded region represents half a standard deviation in the posterior on
the predictive mean. The red crosses are 50 examples from the training dataset.

primary net units. Using this parametrization restricts the family of approximate posteriors, but still
allows for a high degree of multimodality and dependence between the parameters.

We also employ weight normalization within the hypernet, and found this stabilizes training dramat-
ically. Initialization plays an important role as well; we recommend initializing the hypernet weights
to small values to limit the impact of noise at the beginning of training. We also find clipping the
outputs of the softmax to be within (0.001, 0.999) critical for numerical stability.

4 EXPERIMENTS

We perform experiments on MNIST, CIFAR10, and a 1D regression task. There is no single metric
for how well a model captures uncertainty; to evaluate our model, we perform experiments on regu-
larization (Section 4.2), active learning (Section 4.3), anomaly detection (Section 4.4), and detection
of adversarial examples (Section 4.5). Active learning and anomaly detection problems make natu-
ral use of uncertainty estimates: In anomaly detection, higher uncertainty indicates a likely anomaly.
In active learning, higher uncertainty indicates a greater opportunity for learning. Parameter uncer-
tainty also has regularization benefits: integrating over the posterior creates an implicit ensemble.
Intuitively, when the most likely hypothesis predicts “A”, but the posterior places more total mass
on hypotheses predicting “B”, we prefer predicting “B”. By improving our estimate of the posterior,
we more accurately weigh the evidence for different hypotheses. Adversarial examples are an espe-
cially difficult kind of anomaly designed to fool a classifier, and finding effective defenses against
adversarial attacks remains an open challenge in deep learning.

For the hypernet architecture, we try both RealNVP (Dinh et al., 2016) and IAF(Kingma et al.,
2016) with MADE(Germain et al., 2015), with 1-layer ReLU-MLP coupling functions with 200
hidden units (each). In general, we find that IAF performs better. We use an isotropic standard
normal prior on the scaling factors (g) of the weights of the network. We also use Adam with default
hyper-parameter settings (Kingma & Ba, 2014) and gradient clipping in all of our experiments. Our
mini-batch size is 128, and to reduce computation, we use the same noise-sample (and thus the same
primary net parameters) for all examples in a mini-batch. We experimented with independent noise,
but did not notice any benefit. Our baselines for comparison are Bayes by Backprop (BbB) (Blun-
dell et al., 2015), MC dropout (MCdropout) (Gal & Ghahramani, 2016), and non-Bayesian DNN
baselines (with and without dropout).

4.1 QUALITATIVE RESULTS AND VISUALIZATION

We first demonstrate the behavior of the network on the toy 1D-regression problem from Blundell
et al. (2015) in Figure 1. As expected, the uncertainty of the network increases away from the
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Figure 2: Learning the identity function with an overparametrized network: ŷ = a · b · x. This parametriza-
tion results in symmetries shown by the dashed red lines, and the Bayesian hypernetwork assigns significant
probability mass to both modes of the posterior (a = b = 1 and a = b = −1).

observed data. We also use this experiment to evaluate the effects of our proposal for scaling BHNs
via the weight norm parametrization (Section 3.3) by comparing with a model which generates the
full set of parameters, and find that the two models produce very similar results, suggesting that our
proposed method strikes a good balance between scalability and expressiveness.

Next, we demonstrate the distinctive ability of Bayesian hypernets to learn multi-modal, dependent
distributions. Figure 6 (appendix) shows that BHNs do learn approximate posteriors with depen-
dence between different parameters, as measured by the Pearson correlation coefficient. Meanwhile,
Figure 2 shows that BHNs are capable of learning multimodal posteriors. For this experiment, we
trained an over-parametrized linear (primary) network: ŷ = a · b · x on a dataset generated as
y = x+ ε, and the BHN learns capture both the modes of a = b = 1 and a = b = −1.

4.2 CLASSIFICATION
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Figure 3: Box plot of performance across
10 trials. Bayesian hypernets (BHNs) with
inverse autoregressive flows (IAF) consis-
tently outperform the other methods.

We now show that BHNs act as a regularizer, outperform-
ing dropout and traditional mean field (BbB). Results are
presented in Table 1. In our experiments, we find that
BHNs perform on par with dropout on full datasets of
MNIST and CIFAR10; furthermore, increasing the flex-
ibility of the posterior by adding more coupling layers
improves performance, especially compared with models
with 0 coupling layers, which cannot model dependencies
between the parameters. We also evaluate on a subset of
MNIST (the first 5,000 examples); results are presented
in the last two columns of Table 1. Replicating these ex-
periments (with 8 coupling layers) for 10 trials yields Fig-
ure 3.

In these MNIST experiments, we use MLPs with 2 hidden
layers of 800 or 1200 hidden units each. For CIFAR10,
we train a convolutional neural net (CNN) with 4 hidden
layers of [64, 64, 128, 128] channels, 2 × 2 max pooling
after the second and the fourth layers, filter size of 3, and
a single fully connected layer of 512 units.
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Table 1: Generalization results on MNIST and CIFAR10 for BHNs with different numbers of RealNVP cou-
pling layers (#), and comparison methods (dropout / maximum likelihood (MLE)). Bayes-by-backprop (Blun-
dell et al., 2015) (*) models each parameter as an independent Gaussian, which is equivalent to using a hypernet
with 0 coupling layers. We achieved a better result outputting a distribution over scaling factors (only). MNIST
5000 (A) and (B) are generalization results on subset (5,000 training data) of MNIST, (A) MLP with 800 hidden
nodes. (B) MLP with 1,200 hidden nodes.

MNIST 50,000 CIFAR10 50,000 MNIST 5,000 (A) MNIST 5,000 (B)

# Accuracy # Accuracy # Accuracy # Accuracy

0 98.28% (98.01%*) 0 67.83% 0 92.06% 0 90.91%
2 98.39% 4 74.77% 8 94.25% 8 96.27%
4 98.47% 8 74.90% 12 96.16% 12 96.51%
6 98.59% dropout 74.08% dropout 95.58% dropout 95.52%
8 98.63% MLE 72.75%

dropout 98.73%

Figure 4: Active learning: Bayesian hypernets outperform other approaches after sufficient acqui-
sitions when warm-starting (left), for both random acquisition function (top) and BALD acquisition
function (bottom). Warm-starting improves stability for all methods, but hurts performance for other
approaches, compared with randomly re-initializing parameters as in Gal et al. (2017) (right). We
also note that the baseline model (no dropout) is competitive with MCdropout, and outperforms the
Dropout baseline used by (Gal et al., 2017).9 These curves are the average of three experiments.

4.3 ACTIVE LEARNING

We now turn to active learning, where we compare to the MNIST experiments of Gal et al. (2017),
replicating their architecture and training procedure. Briefly, they use an initial dataset of 20 exam-
ples (2 from each class), and acquire 10 new examples at a time, training for 50 epochs between
each acquisition. While Gal et al. (2017) re-initialize the network after every acquisition, we found
that “warm-starting” from the current learned parameters was essential for good performance with
BHNs, although it is likely that longer training or better initialization schemes could perform the
same role. Overall, warm-started BHNs suffered at the beginning of training, but outperformed all
other methods for moderate to large numbers of acquisitions.

9For the deterministic baseline, the value of the BALD acquisition function is always zero, and so acquisi-
tions should be random, but due to numerical instability this is not the case in our implementation; surprisingly,
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4.4 ANOMALY DETECTION

Table 2: Anomaly detection on MNIST. Since we use the same datasets as Hendrycks & Gimpel (2016), we
have the same base error rates, and refer the reader to that work.

Dataset MLP MC dropout BHN

ROC PR(+) PR(−) ROC PR(+) PR(−) ROC PR(+) PR(−)

Uniform 96.99 97.99 94.71 98.90 99.15 98.63 98.97 99.27 98.52
OmniGlot 94.92 95.63 93.85 95.87 96.44 94.84 94.89 95.56 93.64
CIFARbw 95.55 96.47 93.72 98.70 98.98 98.39 96.63 97.25 95.78
Gaussian 87.70 87.66 88.05 97.70 98.11 96.94 89.22 86.62 89.85
notMNIST 81.12 97.56 39.70 97.78 99.78 78.53 90.07 98.51 56.59

For anomaly detection, we take Hendrycks & Gimpel (2016) as a starting point, and perform the
same suite of MNIST experiments, evaluating the ability of networks to determine whether an input
came from their training distribution (“Out of distribution detection”). Hendrycks & Gimpel (2016)
found that the confidence expressed in the softmax probabilities of a (non-Bayesian) DNN trained
on a single dataset provides a good signal for both of these detection problems. We demonstrate that
Bayesian DNNs outperform their non-Bayesian counterparts.

Just as in active learning, in anomaly detection, we use MC to estimate the predictive posterior, and
use this to score datapoints. For active learning, we would generally like to acquire points where
there is higher uncertainty. In a well-calibrated model, these points are also likely to be challenging
or anomalous examples, and thus acquisition functions from the active learning literature are good
candidates for scoring anomalies.

We consider all of the acquisition functions listed in (Gal et al., 2017) as possible scores for the
Area Under the Curve (AUC) of Precision-Recall (PR) and Receiver Operating Characteristic (ROC)
metrics, but found that the maximum confidence of the softmax probabilities (i.e., “variation ratio”)
acquisition function used by Hendrycks & Gimpel (2016) gave the best performance. Both BHN and
MCdropout achieve significant performance gains over the non-Bayesian baseline, and MCdropout
performs significantly better than BHN in this task. Results are presented in Table 2.

Second, we follow the same experimental setup, using all the acquisition functions, and exclude
one class in the training set of MNIST at a time. We take the excluded class of the training data as
out-of-distribution samples. The result is presented in Table 3 (Appendix). This experiment shows
the benefit of using scores that reflect dispersion in the posterior samples (such as mean standard
deviation and BALD value) in Bayesian DNNs.

4.5 ADVERSARY DETECTION

Finally, we consider this same anomaly detection procedure as a novel tool for detecting adversarial
examples. Our setup is similar to Li & Gal (2017) and Louizos & Welling (2017), where it is shown
that when more perturbation is added to the data, model uncertainty increases and then drops. We
use the Fast Gradient Sign method (FGS) (Goodfellow et al., 2014b) for adversarial attack, and use
one sample of our model to estimate the gradient.10 We find that, compared with dropout, BHNs are
less confident on data points which are far from the data manifold. In particular, BHNs constructed
with IAF consistently outperform RealNVP-BHNs and dropout in detecting adversarial examples
and errors. Results are shown in Figure 5.

5 CONCLUSIONS

We introduce Bayesian hypernets (BHNs), a new method for variational Bayesian deep learning
which uses an invertible hypernetwork as a generative model of parameters. BHNs feature efficient

we found the BALD values our implementation computes provide a better-than-random acquisition function
(compare the blue line in the top and bottom plots).

10 Li & Gal (2017) and Louizos & Welling (2017) used 10 and 1 model samples, respectively, to estimate
gradient. We report the result with 1 sample; results with more samples are given in the appendix.
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Figure 5: Adversary detection: Horizontal axis is the step size of the FGS algorithm. While accuracy drops
when more perturbation is added to the data (left), uncertainty measures also increase (first row). In particular,
the BALD and Mean STD scores, which measure epistemic uncertainty, are strongly increasing for BHNs, but
not for dropout. The second row and third row plots show results for adversary detection and error detection
(respectively) in terms of the AUC of ROC (y-axis) with increasing perturbation along the x-axis. Gradient
direction is estimated with one Monte Carlo sample of the weights/dropout mask.

training and sampling, and can express complicated multimodal distributions, thereby addressing
issues of overconfidence present in simpler variational approximations. We present a method of
parametrizing BHNs which allows them to scale successfully to real world tasks, and show that
BHNs can offer significant benefits over simpler methods for Bayesian deep learning. Future work
could explore other methods of parametrizing BHNs, for instance using the same hypernet to output
different subsets of the primary net parameters.
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A ADDITIONAL RESULTS

A.1 LEARNING CORRELATED WEIGHTS

Figure 6: Histogram of Pearson correlation coefficient p-values (left) and a scatter matrix (right) of sam-
ples from a hypernet approximate posterior. We see that the hypernet posterior includes correlations between
different parameters. Many of the p-values of the Pearson correlation test are below .05.

A.2 UNSEEN MODE DETECTION

We replicate the experiments of anomaly detection with unseen classes of MNIST.

Table 3: Anomaly detection on MNIST with unseen classes. The first column indicates the missing class
label in the training set. Top-most block: ROC score; middle: positive precision-recall; bottom: negative
precision-recall.

Variation ratio Mean std BALD

MLP dropout BHN 4 BHN 8 dropout BHN 4 BHN 8 dropout BHN 4 BHN 8

0 95.52 97.44 96.62 96.45 97.90 96.53 96.77 97.89 96.59 96.55
1 96.70 94.60 96.62 96.46 94.01 96.62 96.25 93.92 96.92 96.19
2 92.83 95.77 92.99 93.47 96.02 93.03 93.57 96.08 93.59 94.26
3 93.03 93.11 95.03 95.34 93.65 94.86 94.77 93.65 94.87 94.96
4 89.08 88.96 75.73 81.19 89.45 75.73 81.31 89.34 74.31 84.34
5 88.53 94.66 93.20 87.95 95.37 93.08 88.31 95.45 92.61 85.77
6 95.40 96.33 93.67 94.69 96.99 93.80 94.80 96.96 93.27 94.50
7 92.46 96.61 95.08 93.70 97.08 94.68 92.82 97.06 94.88 92.89
8 96.35 98.05 95.86 96.85 97.67 95.74 96.98 97.23 95.48 96.87
9 94.75 95.95 95.62 96.54 96.03 95.46 96.42 96.10 95.84 96.37

0 97.68 98.68 98.34 98.32 98.87 98.31 98.45 98.87 98.35 98.35
1 98.26 97.03 98.23 98.15 96.58 98.20 98.04 96.58 98.35 98.00
2 96.06 97.74 95.63 96.07 97.83 95.31 96.01 97.87 95.80 96.45
3 96.00 95.74 97.28 97.68 95.97 97.09 97.37 96.00 97.13 97.49
4 93.73 93.93 84.66 86.40 94.10 85.16 86.46 94.00 83.32 90.00
5 93.92 97.31 96.79 93.15 97.60 96.62 93.34 97.61 96.34 90.72
6 97.68 97.99 96.38 97.27 98.29 96.55 97.29 98.29 96.05 97.13
7 95.56 98.16 97.40 96.51 98.36 97.07 95.82 98.32 97.17 95.89
8 98.18 99.03 97.97 98.37 98.87 97.96 98.53 98.70 97.83 98.45
9 97.32 97.94 97.76 98.27 97.93 97.71 98.31 98.02 98.00 98.29

0 90.11 94.44 92.17 90.95 96.08 92.06 92.67 96.08 91.92 91.91
1 92.84 89.08 92.48 91.99 88.11 92.71 91.53 87.67 93.11 91.55
2 85.74 91.13 86.61 87.52 92.04 88.22 88.51 92.16 89.20 89.90
3 87.46 87.78 89.46 88.75 89.72 89.99 87.09 89.78 90.22 87.21
4 80.96 79.04 64.02 72.11 81.82 64.33 73.69 81.89 64.16 75.72
5 80.41 87.74 84.15 78.16 90.48 84.85 78.96 90.81 84.27 76.99
6 89.34 92.26 88.17 88.60 94.21 88.28 89.10 94.07 87.14 87.89
7 87.08 92.69 88.91 86.85 94.02 89.07 86.64 94.33 89.70 86.71
8 91.88 95.82 90.52 92.83 94.40 89.69 92.82 92.80 88.41 92.08
9 88.10 90.71 89.70 91.67 91.49 88.72 90.85 91.56 88.79 90.30
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A.3 STRONGER ATTACK

Here we use 32 samples to estimate the gradient direction with respect to the input. A better estimate
of gradient amounts to a stronger attack, so accuracy drops lower for a given step size while an
adversarial example can be more easily detected with a more informative uncertainty measure.
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Figure 7: Adversary detection with 32-sample estimate of gradient.

B DERIVATION OF TRAINING OBJECTIVE

In this paper, we employ weight normalization in the primary network (7), treating (only) the scaling
factors g as random variables. We choose an isotropic Gaussian prior for g: p(g) = N (g;0, λI),
which results in an L2 weight-decay penalty on g, or, equivalently, w = g v

||v||2 . Our objective and
lower bound are then:

log p(D;v,b) = log

∫
g

p(D|g;v,b)p(g)dg (8)

≥ Eq(g)[log p(D|g;v,b) + log p(g)− log q(g)] (9)

≥ Eε∼qε(ε),g=hφ(ε)[log p(D|g;v,b) + log p(g)− log q(ε) + log

∣∣∣∣det ∂hφ(ε)∂ε

∣∣∣∣ ]
(10)

where v and b are the direction and bias parameters of the primary net, and φ is the parameters of
the hypernetwork. We optimize this bound with respect to {v,b, φ} during training.
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