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Abstract

We present a new method for planning trajectories of moving agents with the goal of
deriving the state of a spatiotemporally evolving dynamical systems. This method
is based on the spectral analysis of the linear dynamical layer of an Evolving
Gaussian Processes (E-GP) model. First, we present a new algorithm for clustering
elements of the system into separate invariant subspaces. Next, we discuss the
relative importance of several factors in generating and choosing trajectories that
help a moving Bayesian state estimator converge to an accurate state estimate
quickest. Lastly, we provide preliminary results for these new methods using
synthetic and real-world data sets.

1 Introduction

One of the most difficult and important problems in bringing machine learning to physical domains is
modeling and tracking large-scale stochastic phenomena with both spatial and temporal (spatiotem-
poral) evolution [1]. Examples of such phenomena include temperature variation, CO2 flux over
large areas, extreme weather events [5] like wildfires, pedestrian traffic patterns, soft robotics, and
fluid dynamics. The latter is governed by the Navier-Stokes partial differential equations. Numerical
solutions to these equations are highly resource-intensive, making them poorly suited for online
robotic applications, such as autonomous aerial, ground, or water vehicles.

In contrast to first-principles approaches, data-driven models of spatiotemporally evolving phenomena
have been gaining more attention in the machine learning and statistics communities [4]. In 2017, a
highly efficient approach was presented called “Evolving Gaussian Processes” (E-GPs) which aimed
to replace costly numerical simulations for design and autonomy purposes [10], by using a machine
learning model that could generalize across similar physical situations. It is the goal of this paper to
extend that work from offline simulation to online inference via measurements from mobile agents.

1.1 Contribution

We believe we have made significant advances in choosing optimal paths for a mobile agent to take in
a domain in order to infer the state of a system that is changing in both space and time. The algorithms
presented in this paper provide promising results in both simple and complex synthetic systems as
well as in the complex physics governed the Navier-Stokes partial differential equation (PDEs). We
build upon very recent results published in [10] and [7], using spectral analysis to illuminate features
of the dynamic model which are useful for determining the best paths for a mobile agent to follow.

The essential idea behind Evolving Gaussian Processes is layer a linear dynamic transition model over
the weights of a kernel-based model, such as a Gaussian Process with a Radial Basis Function kernel.
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This separation of spatial and temporal components is what makes the learning problem tractable,
even while modeling very complex systems. The evolution of large function spaces governed by
complex PDEs is transformed into a evolution of “weight vectors” in a relatively smaller Hilbert
space, which is spatially encoded with the original domain via the kernels. By analyzing the structure
of the linear transition model in the weight space, we can obtain provides key physical insights into
the system, which enable the design of observers and controllers [7, 6], as well as the path-planning
algorithms presented here.

We present three main algorithmic contributions in this paper. First, we present a method, inspired by
k-means clustering, for identifying areas of the domain which correspond to invariant subspaces in the
linear transition matrix. Secondly, we present a method for identifying which path amongst a library
of paths is most likely to provide the most useful data for a moving agent in the system. Thirdly,
we present a method for generating useful paths based on the first clustering algorithm. Lastly, we
demonstrate our methods on both some simple synthetic examples as well as on complex CFD data.

2 Background

2.1 Kernel Observers & Evolving Gaussian Processes

As presented in [7], let y ∈ RN be the measurements of the function available from N sensors,
A : H → H be a linear transition operator in the Reproducing Kernel Hilbert SpaceH generated by
the kernel k, and K : H → RN be a linear measurement operator. The model for our system is:

fτ+1 = Afτ + ητ , yτ = Kfτ + ζτ , (1)
where ητ and ζτ each represent noise in their respective domains. We work with an approximate
feature map ψ̂(x) := [ ψ̂1(x) ··· ψ̂M (x) ] to an approximate feature space Ĥ. This is defined by
the dictionary of atoms FC = {ψ(c1), · · · , ψ(cM )}, ψ(ci) ∈ H, ψ̂i(x) := k(x, ci), (where C =

{c1, . . . , cM}, ci ∈ Ω compact), and thus Ĥ = spanFC ⊆ H. The finite-dimensional evolution
equations approximating (1) in approximate dual form are

wτ+1 = Âwτ + ητ , yτ = Kwτ + ζτ , (2)

where we have a transition matrix Â ∈ RM×M , the kernel matrix K = [ ψ̂1(x) ··· ψ̂M (x) ] ∈ RN×M ,
the weight vectors wτ ∈ RM , and we abuse notation slightly to let ητ and ζτ be noise again.

In this paper, it will be assumed that an E-GP model has already been learned from historical data
using the 3 (or 4) step process summarized in [10], either specific to the system or from a family of
similar systems. The purpose of this paper is to choose paths that allow a moving agent to rapidly
infer the state of the system from single measurements.

3 Spectral Analysis of E-GP Model and Resulting Algorithms

An invariant subspace of a linear map Â on a vector space is a subspace W of RM that is preserved
by Â, i.e. Â(W ) ⊆ W , and thus information contained in an invariant subspace never leaves it.
Trivial examples include {0} and RM , but we are interested dividing the domain into a set of regions
by subspaces. We can do this because the weights in an E-GP are spatially encoded, i.e. {w}i ↔ ci,
unlike in a neural network. We hypothesize that the ci associated with the invariant subspaces of a
spatiotemporally evolving system are generally associated with spatial regions in the domain. This
hypothesis makes sense: physically, we know the principle of locality states that an object is only
directly influenced by its immediate surroundings [2], and mathematically, thanks to the RBF kernel
functions we expect nearby centers to be connected dynamically.

When a square matrix is perfectly formed, the Jordan form is block diagonal and gives us the
invariant subspaces immediately. In reality, data-driven approximations of Â rarely give such easily
interpretable properties. Hence the need for an algorithm with divides invariant subspaces.

3.1 k-Invariant Subspaces Clustering

The intuition behind our k-invariant subspaces clustering algorithm is to replace the Euclidean distance
in the k-Means algorithm with a different metric of “nearness”, namely one corresponding with
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the dynamic connections. The Â matrix provides easy access to these: its rows Âi∗ indicate which
centers inform the ith value of wτ+1, and its columns Â∗j indicate which centers will be informed
by the jth value of wτ . We condition Â by first removing the eigenvectors whose eigenvalues are
not on the unit circle, and then by controlling for the differing eigenmode frequencies, ending up
with Ā = Ū Ū†. Much like the pairwise squared deviations of points formulation of the k-means
clustering problem, we can now write our problem as

arg max
S

k∑
i=1

1

2|Si|
∑
xi 6=xj

xj ,xi∈Si

Ā2
ij

This problem can be solved with the following algorithm:

Algorithm 1 k-Invariant Subspaces Algorithm
1: while clusters have changed do
2: for each center i do
3: find cluster k which maximizes the score

1

|Sk|+ 1

(
‖Āi,Sk\{i}‖

2 + ‖ĀSk\{i},i‖
2
)

4: reassign center i to cluster with highest score
5: end for
6: end while
7: return clusters

3.2 Scoring Paths

We postulate that the value (with respect to a particular eigenvector) of taking a measurement at a
point in the domain is proportional to the following factors. This scoring method allows us to decide
the likeliest candidate amongst a large family of agent paths:

1. The spatial extent of the eigenvector vi. This can be taken to equal the area under the curve
of the magnitude of the complex function viΦ̂(x), normalized by the its peak.

SEi =
1

supx viΦ̂(x)

∫
X

|viΦ̂(x)|dx

2. The expected size of the measurement itself, which is roughly equal to viΦ̂(x).

3. The ratio of the frequency with which that Koopman mode is visited to the frequency of its
eigenvalue. This factor is included due to the aliasing effect

4. A discount factor equal to a decaying exponential of the number of times that eigenmode
has been visited

3.3 Generating High-Scoring Random Paths

We propose the following algorithm for generating high-scoring paths:

1. Cluster the centers into invariant subspaces according to the k-invariant subspaces algorithm,
with the best reasonable guess(es) for k

2. In each cluster, select a waypoint where the sum of all Koopman modes is maximized

3. Generate a path by selecting waypoints randomly, where the selection is randomly weighted.
The weights are equal to the spatial extent of the clusters multiplied by an exponential decay
factor for the number of times each has been visited
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4 Results

4.1 Simple Synthetic Examples

To begin our investigation into this problem, we constructed a number of simple synthetic spatiotem-
porally evolving systems. One of these is displayed below 2(a). This is a system with two invariant
subspaces, in each of which, two hills oscillate up and down in sync at a different frequency than the
other invariant subspace. This is ideal for testing our methods. In the below example, we used 100
centers with an RBF kernel with a bandwidth of 0.2, however in testing we also went as low as 20
centers. The k-means algorithm divides the system nicely through the middle, as expected.

(a) Synthetic system (b) Initial clustering of centers (c) Final clustering of centers

Figure 1: Synthetic System Invariant Subspaces

We found that few purely random paths would converge quickly for the synthetic data set, due to the
large plain of zero values in-between the two invariant subspaces. Our method for generating and
selecting paths with waypoints resulted in paths that traveled between the four humps and quickly
converged.

4.2 Fluid Flow Past a Cylinder

We used CFD methods to generate the states for a canonical fluid mechanics problem: flow past a
cylinder at various Reynolds numbers, namely Re = 100, 300, 600, 800 and 1000. This deterministic,
high-dimensional spatiotemporal dynamical system is well-studied in the fluid dynamics literature,
both experimentally and numerically [9, 3, 8].

For training the E-GP we used 600 centers with an RBF kernel with a bandwidth of 0.4. This output
a 600× 600 matrix Â which accurately captures the dynamics of the whole system.

Since the CFD set has dynamics almost everywhere, most paths are able to converge to the state.
However, it is notable that a pre-designed lawnmower path failed to do as well as most random paths.
Once again, the random paths generated and chosen by our methods did the best.

(a) CFD system, Re=100 (b) Initial clustering of centers (c) Final clustering of centers

Figure 2: CFD System Invariant Subspaces

5 Conclusion

In this paper we presented an a new path-planning strategy for mobile agents seeking to learn the state
of a spatiotemporally evolving system, based on the spectral analysis of a linear transition matrix in a
E-GP model. Our results demonstrate the viability of this approach.
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