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ABSTRACT

Continuous Speech Keyword Spotting (CSKS) is the problem of spotting key-
words in recorded conversations, when a small number of instances of keywords
are available in training data. Unlike the more common Keyword Spotting, where
an algorithm needs to detect lone keywords or short phrases like Alexa, Cortana,
Hi Alexa!, Whatsup Octavia? etc. in speech, CSKS needs to filter out embedded
words from a continuous flow of speech, ie. spot Anna and github in I know a
developer named Anna who can look into this github issue. Apart from the issue
of limited training data availability, CSKS is an extremely imbalanced classifica-
tion problem. We address the limitations of simple keyword spotting baselines for
both aforementioned challenges by using a novel combination of loss functions
(Prototypical networks loss and metric loss) and transfer learning. Our method
improves F1 score by over 10%.

1 INTRODUCTION

Continuous Speech Keyword Spotting (CSKS) aims to detect embedded keywords in audio record-
ings. These spotted keyword frequencies can then be used to analyze theme of communication,
creating temporal visualizations and word clouds clouds (2019). Another use case is to detect do-
main specific keywords which ASR (Automatic Speech Recognition) systems trained on public data
cannot detect. For example, to detect a TV model number W884 being mentioned in a recording,
we might not have a large number of training sentences containing the model number of a newly
launched TV to finetune a speech recognition (ASR) algorithm. A trained CSKS algorithm can be
used to quickly extract out all instances of such keywords.

We train CSKS algorithms like other Keyword Spotting algorithms by classifying small fragments
of audio in running speech. This requires the classifier model to have a formalized process to reject
unseen instances (everything not a keyword, henceforth referred to as background) apart from ability
to differentiate between classes (keywords). Another real world constraint that needs to be addressed
while training such an algorithm is the availability of small amount of labeled keyword instances.
We combine practices from fields of transfer learning, few-shot learning and metric learning to get
better performance on this low training data imbalanced classification task.

Our work involves :

1. Testing existing Keyword Spotting methodologies Sainath & Parada (2015); Tang & Lin
(2017) for the task of CSKS.

2. Proposing a transfer learning based baseline for CSKS by fine tuning weights of a publicly
available deep ASR Hannun et al. (2014) model.

3. Introducing changes in training methodology by combining concepts from few-shot learn-
ing Snell et al. (2017) and metric learning Hoffer & Ailon (2015) into the transfer learning
algorithm to address both the problems which baselines have a) missing keywords and b)
false positives.

Our baselines, Honk(4.3.1), DeepSpeech-finetune(4.3.2), had comparatively both lower recall and
precision. We noticed an improvement when fine tuning DeepSpeech model with prototypical loss
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(DeepSpeech-finetune-prototypical (4.3.3)). While analysing the false positives of this model, it
was observed that the model gets confused between the keywords and it also wrongly classifies
background noise as a keyword. To improve this, we combined prototypical loss with a metric loss
to reject background (DeepSpeech-finetune-prototypical+metric(4.3.4)). This model gave us the
best results.

2 RELATED WORK

In the past, Hidden Markov Models (HMM) Weintraub (1993); Wilpon et al. (1990); Rose & Paul
(1990) have been used to solve the CSKS problem. But since the HMM techniques use Viterbi
algorithms (computationally expensive) a faster approach is required.

Owning to the popularity of deep learning, many recent works such as Lee et al. (2009);
Mohamed et al. (2012); Grosse et al. (2012); Hinton et al. (2012); Dahl et al. (2012) have used
deep learning techniques for many speech processing tasks. In tasks such as ASR, Hannun et al.
Hannun et al. (2014) proposed a RNN based model to transcribe speech into text. Even for plain
keyword spotting, Sainath & Parada (2015); Tang & Lin (2017); Li et al. (1992); Fernández et al.
(2007); Chen et al. (2014); Pons et al. (2018) have proposed various deep learning architectures to
solve the task. But to the best of our knowledge, no past work has deployed deep learning for
spotting keywords in continuous speech.

Recently, a lot of work is being done on training deep learning models with limited training data. Out
of them, few-shot techniques as proposed by Snell et al. (2017); Vinyals et al. (2016) have become
really popular. Pons et al. Pons et al. (2018) proposed a few-shot technique using prototypical
networks Snell et al. (2017) and transfer leaning Kunze et al. (2017); Choi et al. (2017) to solve a
different audio task.

We took inspiration from these works to design our experiments to solve the CSKS task.

3 DATASET

Our learning data, which was created in-house, has 20 keywords to be spotted about television
models of a consumer electronics brand. It was collected by making 40 participants utter each
keyword 3 times. Each participant recorded in normal ambient noise conditions. As a result, after
collection of learning data we have 120 (3 x 40) instances of each of the 20 keywords. We split the
learning data 80:20 into train and validation sets. Train/Validation split was done on speaker level,
so as to make sure that all occurrences of a particular speaker is present only on either of two sets.
For testing, we used 10 different 5 minutes long simulated conversational recordings of television
salesmen and customers from a shopping mall in India. These recordings contain background noise
(as is expected in a mall) and have different languages (Indians speak a mixture of English and
Hindi). The CSKS algorithm trained on instances of keywords in learning data is supposed to detect
keywords embedded in conversations of test set.

4 APPROACH

4.1 DATA PREPROCESSING

Our dataset consisted of keyword instances but the algorithm trained using this data needs to classify
keywords in fragments of running conversations. To address this, we simulate the continuous speech
scenario, both for keyword containing audio and background fragments, by using publicly available
audio data which consisted of podcasts audio, songs, and audio narration files. For simulating
fragments with keywords, we extract two random contiguous chunks from these publicly available
audio files and insert the keyword either in the beginning, in the middle or in the end of the chunks,
thus creating an audio segment of 2 seconds. Random 2 second segments taken from publicly
available audio are used to simulate segments with no keywords(also referred to as background
elsewhere in the paper). These artificially simulated audio chunks from train/validation set of pure
keyword utterances were used to train/validate the model. Since the test data is quite noisy, we
further used various kinds of techniques such as time-shift, pitch-shift and intensity variation to
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augment the data. Furthermore we used the same strategy as Tang et al. Tang & Lin (2017) of
caching the data while training deep neural network on batches and artificially generating only 30%
data which goes into a batch. By following these techniques, we could increase the data by many
folds which not only helped the model to generalise better but also helped reduce the data preparation
time during every epoch.

4.2 FEATURE ENGINEERING

For all the experiments using Honk architecture, MFCC features were used. To extract these fea-
tures, 20Hz/4kHz band pass filters was used to reduce the random noise. Mel-Frequency Cepstrum
Coefficient (MFCC) of forty dimension were constructed and stacked using 20 milliseconds win-
dow size with 10 miliseconds overlap. For all the experiments using deep speech architecture, we
have extracted spectrograms of audio files using 20 milliseconds window size with 10 milliseconds
overlap and 480 nfft value.

4.3 DEEP LEARNING ARCHITECTURES

4.3.1 HONK

Honk is a baseline Neural Network architecture we used to address the problem. Honk has shown
good performance on normal Keyword Spotting and thus was our choice as the first baseline. The
neural network is a Deep Residual Convolutional Neural Network He et al. (2016) which has number
of feature maps fixed for all residual blocks. The python code of the model was taken from the open
source repository of Convolutional Neural Networks for Keyword Spotting..

4.3.2 DEEPSPEECH-FINETUNE

DeepSpeech-finetune is fine tuning the weights of openly available DeepSpeech Hannun et al.
(2014) model (initial feature extraction layers and not the final ASR layer) for CSKS task. The
architecture consists of pretrained initial layers of DeepSpeech followed by a set of LSTM layers
and a Fully Connected layer (initialized randomly) for classification. The output of Fully Connected
layer is fed into a softmax and then a cross entropy loss for classification is used to train the al-
gorithm. Please note that the finetune trains for 21 classes (20 keywords + 1 background) as in
aforementioned Honk model.

Figure 1: Architecture for DeepSpeech-finetune-prototypical

4.3.3 DEEPSPEECH-FINETUNE-PROTOTYPICAL

The next model we try is fine tuning DeepSpeech model but with a different loss function Snell et al.
(2017). Prototypical loss works by concentrating embeddings of all data points of a class around
the class prototype. This is done by putting a softmax on the negative distances from different
prototypes to determine the probability to belong to corresponding classes. The architecture 1 is
same as DeepSpeech-finetune, except output of pre-final layer is taken as embedding rather than
applying a Fully Connected layer for classification. These embeddings are then used to calculate eu-
clidean distances between datapoints and prototypes, represented as d(embedding1, embedding2)
in formulae. The softmax over negative distances from prototypes is used to train cross-entropy
loss. During training, examples of each class are divided into support and query embeddings. The
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Table 1: Results of all experiments

Model Recall Precision F1

Honk 0.46 0.34 0.39
DeepSpeech-finetune 0.267 0.244 0.256
DeepSpeech-finetune-prototypical 0.36 0.33 0.344
DeepSpeech-finetune-prototypical+metric 0.55 0.488 0.51

support embeddings are used to determine prototypes of the class. Equation 1 shows derivation of
prototype of kth class where fφ is the neural network yielding the embedding and Sk is the set of
support vectors for the class. The distance of query vectors from the prototypes of the class they
belong to are minimized and prototypes of other classes is maximized when training the prototypi-
cal loss. The negative distances from the prototypes of each class are passed into softmax to get the
probability of belonging in a class as shown in equation 2. We see better results when we train the
algorithm using prototypical loss than normal cross entropy. On qualitatively observing the output
from DeepSpeech-finetune-prototypical we see that the mistakes involving confusion between key-
words are very less compared to datapoints of the class background being classified as one of the
keywords. We hypothesize that this might be due to treating the entire background data as one class.
The variance of background is very high and treating it as one class (a unimodal class in case of
prototypes) might not be the best approach. To address this, we propose the next method where we
use prototypes for classification within keywords and an additional metric loss component to keep
distances of background datapoints from each prototype high.

ck =
1

Sk

∑

(xi,yi)∈Sk

fφ(xi) (1)

p(y = k|x) =
e−d(fφ(x),ck)

∑
j e

−d(fφ(x),cj)
(2)

4.3.4 DEEPSPEECH-FINETUNE-PROTOTYPICAL+METRIC

We hypothesize the components of loss function of this variant from failures of prototypical loss as
stated earlier. The architecture is same as in 1, but the loss function is different from DeepSpeech-
finetune-prototypical. While in DeepSpeech-finetune-prototypical, we trained prototype loss with
21 classes(20 keywords + 1 background), in DeepSpeech-finetune-prototypical+metric prototype
loss is trained only amongst the 20 keywords and a new additional metric loss component inspired
from Hoffer & Ailon (2015) is added to loss function. This metric loss component aims to bring
datapoints of same class together and datapoints of different class further. Datapoints belonging
to background are treated as different class objects for all other datapoints in a batch. So for each
object in a batch, we add a loss component like equation 3 to prototypical loss. c+ is all datapoints
in the batch belonging to the same class as x and c− is all datapoints belonging to different classes
than x (including background). This architecture gets the best results.

Lmetric =
eaverage(d(fφ(x),c+))

eaverage(d(fφ(x),c+)) + eaverage(d(fφ(x),c−))
(3)

5 EXPERIMENTS, RESULTS AND DISCUSSION

While testing, the distance of a datapoint is checked with all the prototypes to determine its pre-
dicted class. Overlapping chunks of running audio are sent to the classifier to get classified for
presence of a keyword. Train set numbers corresponding to all the models have shown in Table
1. DeepSpeech-finetune-prototypical+metric clearly beats the baselines in terms of both precision
and recall. Honk is a respectable baseline and gets second best results after DeepSpeech-finetune-
prototypical+metric, however, attempts to better Honk’s performance using prototype loss and met-
ric loss did not work at all. Our method to combine prototypical loss with metric learning can be
used for any classification problem which has a set of classes and a large background class, but its
effectiveness needs to be tested on other datasets.
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