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Abstract

Unlike the white-box counterparts that are widely studied and readily accessible,
adversarial examples in black-box settings are generally more Herculean on account
of the difficulty of estimating gradients. Many methods achieve the task by issuing
numerous queries to target classification systems, which makes the whole procedure
costly and suspicious to the systems. In this paper, we aim at reducing the query
complexity of black-box attacks in this category. We propose to exploit gradients
of a few reference models which arguably span some promising search subspaces.
Experimental results show that, in comparison with the state-of-the-arts, our method
can gain up to 2× and 4× reductions in the requisite mean and medium numbers
of queries with much lower failure rates even if the reference models are trained
on a small and inadequate dataset disjoint to the one for training the victim model.
Code and models for reproducing our results will be made publicly available.

1 Introduction

Deep neural networks (DNNs) have been demonstrated to be vulnerable to adversarial examples [37]
that are typically formed by perturbing benign examples with an intention to cause misclassifications.
According to the amount of information that is exposed and possible to be leveraged, an intelligent
adversary shall adopt different categories of attacks. Getting access to critical information (e.g., the
architecture and learned parameters) about a target DNN, the adversaries generally prefer white-box
attacks [37, 7, 24, 2, 23]. After a few rounds of forward and backward passes, such attacks are capable
of generating images that are perceptually indistinguishable to the benign ones but would successfully
trick the target DNN into making incorrect classifications. Whereas, so long as little information is
exposed, the adversaries will have to adopt black-box attacks [28, 22, 3, 25, 13, 26, 38, 14, 8] instead.

In general, black-box attacks require no more information than the confidence score from a target
and thus the threat model is more realistic in practice. Over the past few years, remarkable progress
has been made in this regard. While initial efforts reveal the transferability of adversarial examples
and devote to learning substitute models [28, 22], recent methods focus more on gradient estimation
accomplished via zeroth-order optimizations [3, 25, 13, 26, 38, 14]. By issuing classification queries
to the target (a.k.a., victim model), these methods learn to approach its actual gradient w.r.t. any input,
so as to perform adversarial attacks just like in the white-box setting. Despite many practical merits,
high query complexity is virtually inevitable for computing sensible estimations of input-gradients in
some methods, making their procedures costly and probably suspicious to the classification system.
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Following this line of research, we aim at reducing the query complexity of the black-box attacks. We
discover in this paper that, it is possible that the gradient estimations and zeroth-order optimizations
can be performed in subspaces with much lower dimensions than one may suspect, and a principled
way of spanning such subspaces is considered by utilizing “prior gradients” of a few reference models
as heuristic search directions. Our method, for the first time, bridges the gap between transfer-based
attacks and the query-based ones. Powered by the developed mechanism, we are capable of trading
the attack failure rate in favor of the query efficiency reasonably well. Experimental results show
that our method can gain significant reductions in the requisite numbers of queries with much lower
failure rates, in comparison with previous state-of-the-arts. We show that it is possible to obtain the
reference models with a small training set disjoint to the one for training CIFAR-10/ImageNet targets.

2 Related Work

One common and crucial ingredient utilized in most white-box attacks is the model gradient w.r.t the
input. In practical scenarios, however, the adversaries may not be able to acquire detailed architecture
or learned parameters of a model, preventing them from adopting gradient-based algorithms directly.
One initial way to overcome this challenge is to exploit transferability [37]. Ever since the adversarial
phenomenon was discovered [37, 7], it has been presented that adversarial examples crafted on one
DNN model can probably fool another, even if they have different architectures. Taking advantage of
the transferability, Papernot et al. [27, 28] propose to construct a dataset which is labeled by querying
the victim model, and train a substitute model as surrogate to mount black-box attacks. Thereafter,
Liu et al. [22] study such transfer-based attacks over large networks on ImageNet [32], and propose
to attack an ensemble of models for improved performance. Despite the simplicity, attacks function
solely on the transferability suffer from high failure rates.

An alternative way of mounting black-box attacks is to perform gradient estimation. Suppose that the
prediction probabilities (i.e., the confidence scores) of the victim model is available, methods in this
category resort to zeroth-order optimizations. For example, Chen et al. [3] propose to accomplish this
task using pixel-by-pixel finite differences, while Ilyas et al. [13] suggest to apply a variant of natural
evolution strategies (NES) [33]. With the input-gradients appropriately estimated, they proceed as if
in a white-box setting. In practice, the two are combined with the C&W white-box attack [2] and
PGD [23], respectively. Though effective, owing to the high dimensionality of natural images, these
initial efforts based on accurate gradient estimation generally require (tens of) thousands of queries to
succeed on the victim model, which is very costly in both money and time. Towards reducing the
query complexity, Tu et al. [38] and Ilyas et al. [14] further introduce an auto-encoding and a bandit
mechanisms respectively that incorporate spatial and temporal priors. Similarly, Bhagoji et al. [26]
show the effectiveness of random grouping and principal components analysis in achieving the goal.

In extreme scenarios where only final decisions of the victim model are exposed, adversarial attacks
can still be performed [1, 4]. Such black-box attacks are in general discrepant from the score-based
attacks, and we restrict our attention to the latter in this paper. As have been briefly reviewed, methods
in this threat model can be divided into two categories, i.e., the transfer-based attacks (which are
also known as the oracle-based attacks) and query-based attacks. Our method, probably for the first
time, bridges the gap between them and therefore inherits the advantages from both sides. It differs
from existing transfer-based attacks in a sense that it takes gradients of reference models as heuristic
search directions for finite difference gradient estimation, and benefit from the heuristics, it is far
more (query-)efficient than the latest query-based attacks.

3 Motivations

Let us consider attacks on an image classification system. Formally, the black-box attacks of our
interest attempt to perturb an input x ∈ Rn and trick a victim model f : Rn → Rk to give an incorrect
prediction argmaxi f(x)i 6= y about its label y. While, on account of the high dimensionality of
input images, it is difficult to estimate gradient and perform black-box attacks within a few queries, we
echo a recent claim that the limitation can be reasonably ameliorated by exploiting prior knowledge
properly [14]. In this section, we will shed light on the motivations of our method.

Attack in Linear Subspaces? Natural images are high-dimensional and spatially over-redundant,
which means not all the pixels (or combinations of pixels) are predictive of the image-level labels. A
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Figure 1: Black-box attack in low-dimensional random subspaces.

classification model offers its predictions typically through mining discriminative components and
suppressing irrelevant variations from raw images [19]. One reasonable hypothesis worth exploring
in this spirit is that, it is probably less effective to perturb an image on some specific pixels (or along
certain directions) when attacking a black-box model. From a geometric point of view, that said, the
problem probably has a lower intrinsic dimension than n, just like many other ones [20].

To verify this, we try estimating gradients and mounting attacks on low-dimensional subspaces for
images, which is bootstrapped by generating m < n random basis vectors u0, . . .um−1 sequentially
on condition of each being orthogonal to the prior ones. We utilize the bandit optimization advocated
in a recent paper [14] for gradient estimation, and adopt the same iterative attack (i.e., PGD) as in it.
Recall that the bandit mechanism updates its estimation gt at each step by a scaled search direction:

∆t =
l(gt + δu′t)− l(gt − δu′t)

δ
u′t, (1)

in which u′t is the search direction sampled from a Gaussian distribution, δ > 0 is a step size that
regulates the directional estimation, and l(·) calculates the inner product between its normalized input
and the precise model gradient. The mechanism queries a victim model twice at each step of the
optimization procedure for calculating ∆t, after which a PGD step based on the current estimation is
applied. Interested readers can check the insightful paper [14] for more details.

In this experiment, once the basis {u0, . . .um−1} is established for a given image, they are fixed over
the whole optimization procedure that occurs on the m-dimensional subspace instead of the original
n-dimensional one. More specifically, the search direction u′t is yielded by combining the generated
basis vectors with Gaussian coefficients, i.e., u′t =

∑
i αiui and αi ∼ N (0, 1). We are interested in

how the value of m affects the failure rate and the requisite number of queries of successful attacks.
By sampling 1,000 images from the CIFAR-10 test set, we craft untargeted adversarial examples for
a black-box wide residual network (WRN) [41] with an upper limit of 2,000 queries for efficiency
reasons. As depicted in Figure 1, after m > 500, all three concerned metrics (i.e., failure rate, mean
and median query counts) barely change. Moreover, at m = 2000, the failure rate already approaches
∼10%, which is comparable to the result gained when the same optimization is applied in the original
image space which has n = 3072 dimensions. See the red dotted line in Figure 1 for this baseline.
Similar phenomenon can be observed on other models using other attacks as well, which evidences
that the problem may indeed have a lower dimension than one may suspect and it complements the
study of the intrinsic dimensionality of training landscape of DNNs in a prior work [20].

Prior Gradients as Basis Vectors? Since the requisite number of queries at m = 2000 is already
high in Figure 1, we know that the random basis vectors boost the state-of-the-art only to some
limited extent. Yet, it inspires us to explore more principled subspace bases for query-efficient attacks.
To achieve this goal, we start from revisiting and analyzing the transfer-based attacks. We know from
prior works that even adversarial examples crafted using some single-step attacks like the fast gradient
(sign) [18] can transfer [28, 22], hence one can hypothesize that the gradients of some “substitute”
models are more helpful in spanning the search subspaces with reduced dimensionalities. A simple
yet plausible way of getting these gradients involved is to use them directly as basis vectors. Note that
unlike the transfer-based attacks in which these models totally substitute for the victim when crafting
adversarial examples, our study merely considers their gradients as priors. We refer to such models
and gradients as reference models and prior gradients respectively throughout this paper for clarity.
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Figure 2: Comparison of (a) the failure rates when attacking WRN, and (b) mean squared residuals of
projecting the precise gradient onto subspaces spanned by random directions or prior gradients. We
collect nine models as candidates to obtain the prior gradients: AlexNet [17], VGG-11/13/16/19 [34],
and ResNet-20/32/44/56 [10]. We add prior gradients corresponding to models from deep to shallow
one by one to the basis set.

The simplest solution to utilize such prior gradients might be set these basis vectors to be fixed over
the entire optimization procedure, i.e., only the input-gradient of reference models with respect to
the clean image x are utilized. We further let these basis vectors be adaptive when applying an
iterative attack (e.g., the basic iterative method [18] and PGD [23]), simply by recalculating the
prior gradients (w.r.t the current inputs which may be candidate adversarial examples) at each step.
Different zeroth-order optimization algorithms can be readily involved in the established subspaces.
For simplicity, we will stick with the described bandit optimization in the sequel of this paper and we
leave the exploration on other algorithms like the coordinate-wise finite differences [3] and NES [13]
to future works.

An experiment is similarly conducted to compare attacks in the gradient-spanned subspaces1 and
the random ones, in which the WRN is still regarded as the victim model. We compare mounting
black-box attacks on different subspaces spanned by the adaptive and fixed prior gradients, as well
as randomly generated vectors as described before. Figure 2 summarizes our main results. As
in Figure 1(a), we illustrate the attack failure rates in Figure 2(a). Apparently, the adaptive prior
gradients are much more promising than its fixed and random counterparts when spanning search
subspaces. We would use the adaptive version of prior gradients in the rest of this paper. For more
insights, we project normalized WRN gradients (calculated on clean images) onto the two sorts of
subspaces and further compare the mean squared residuals of projection under different circumstances
in Figure 2(b). It can be seen that the gradient-spanned subspaces indeed align better with the precise
WRN gradients, and over misalignments between the search subspaces and precise model gradients
lead to high failure rates.

4 Our Subspace Attack

As introduced in the previous section, we reckon that it is promising to apply the gradient of some
reference models to span the search subspace for mounting black-box attacks. However, there remain
some challenges in doing so. First, it should be computationally and memory intensive to load all
the reference models and calculate their input-gradients as basis vectors. Second, it is likely that an
“universal” adversarial example for a victim model is still far away from such subspaces, which means
mounting attacks solely on them may lead to high failure rate as encountered in the transfer-based
attacks. We will discuss the issues and present our solutions in this section. We codename our method
subspace attack and summarize it in Algorithm 1, in which the involved hyper-parameters will be
carefully explained in Section 5.

4.1 Coordinate Descent for Efficiency

If one of the prior gradients happens to be well-aligned with the gradient of the victim model, then
“an adaptive” one-dimensional subspace suffices to mount the attack. Nevertheless, we found that it is
normally not the case, and increasing the number of reference models and prior gradients facilitates

1Granted, the prior gradients are almost surely linearly independent and thus can be regarded as basis vectors.
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Algorithm 1 Subspace Attack

1: Input: a benign example x ∈ Rn, its label y, a set of m reference models {f0, . . . , fm−1}, a
chosen attack objective function L(·, ·), and the victim model from which the output of f can be
inferred.

2: Output: an adversarial example xadv fulfills ||xadv − x||∞ ≤ ε.
3: Initialize the adversarial example to be crafted xadv ← x.
4: Initialize the gradient to be estimated g← 0.
5: Initialize the drop-out/layer ratio p.
6: while not successful do
7: Choose a reference model whose index is i uniformly at random
8: Calculate a prior gradient with drop-out/layer ratio p as u← ∂L(fi(xadv,p),y)

∂xadv

9: g+ ← g + τu, g− ← g − τu
10: g′+ ← g+/‖g+‖2, g′− ← g−/‖g−‖2
11: ∆t ←

L(f(xadv+δg
′
+),y)−L(f(xadv+δg

′
−),y)

τδ u
12: g← g + ηg∆t

13: xadv ← xadv + η · sign(g)
14: xadv ← Clip(xadv,x− ε,x + ε)
15: xadv ← Clip(xadv, 0, 1)
16: Update the drop-out/layer ratio p following our policy
17: end while
18: return xadv

the attack, which can be partially explained by the fact that they are nearly orthogonal to each other
in high-dimensional spaces [22]. Definitely, it is computationally and memory intensive to calculate
the input-gradients of a collection of reference models at each step of the optimization.

Given a set of basis vectors, off-the-shelf optimization procedures for black-box attacks either estimate
the optimal coefficients for all vectors before update [3] or give one optimal scaling factor overall [14].
For any of them, the whole procedure is somewhat analogous to a gradient descent whose update
directions do not necessarily align with single basis vectors. It is thus natural to make an effort based
on coordinate descent [39], which operates along coordinate directions (i.e., basis vectors) to seek the
optimum of an objective, for better efficiency. In general, the algorithm selects a single coordinate
direction or a block of coordinate directions to proceed iteratively. That said, we may only need to
calculate one or several prior gradients at each step before update and the complexity of our method is
significantly reduced. Experimental results in Section 5 show that one single prior gradient suffices.

4.2 Drop-out/layer for Exploration

As suggested in Figure 2(b), one way of guaranteeing a low failure rate in our method is to collect
adequate reference models. However, it is usually troublesome in practice, if not infeasible. Suppose
that we have collected a few reference models which might not be adequate, and we aim to reduce the
failure rate whatsoever. Remind that the main reason of high failure rates is the imperfect alignment
between our search subspaces and the precise gradients (cf., Figure 2(b)), however, it seems unclear
how to explore other possible search directions without training more reference models. One may
simply try adding some random vectors to the basis set for better alignment and higher subspace-
dimensions, although they bare the ineffectiveness as discussed in Section 3 and we also found in
experiments that this strategy does not help much.

Our solution to resolve this issue is inspired by the dropout [35] and “droplayer” (a.k.a., stochastic
depth) [12] techniques. Drop-out/layer, originally serve as regularization techniques, randomly drop a
subset of hidden units or residual blocks (if exist) from DNNs during training. Their successes indicate
that a portion of the features can provide reasonable predictions and thus meaningful input-gradients,
which implies the possibility of using drop-out/layer invoked gradients to enrich our search priors 2.
By temporarily removing hidden units or residual blocks, we can acquire a spectrum of prior gradients
from each reference model. In experiments, we append dropout to all convolutional/fully-connect
layer (except the final one), and we further drop residual blocks out in ResNet reference models.

2We examine the generated input-gradients in this manner and found that most of them are still independent.
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5 Experiments

In this section, we will testify the effectiveness of our subspace attack by comparing it with the state-
of-the-arts in terms of the failure rate and the number of queries (of successful attacks). We consider
both untargeted and targeted `∞ attacks on CIFAR-10 [16] and ImageNet [32]. All our experiments
are conducted on a GTX 1080 Ti GPU with PyTorch [29]. Our main results for untargeted attacks are
summarized in Table 1, and the results for targeted attacks are reported in the supplementary material.

Table 1: Performance of different black-box attacks with `∞ constraint under untargeted setting. The
maximum perturbation is ε = 8/255 for CIFAR-10, and ε = 0.05 for ImageNet. A recent paper [26]
also reports its result on WRN similarly, which achieves a failure rate of 1.0% with 7680 queries.
PyramidNet* in the table indicates PyramidNet+ShakeDrop+AutoAugment [5].

Dataset Victim Model Method Ref. Models Mean Queries Median Queries Failure Rate

CIFAR-10

WRN

NES [13] - 1882 1300 3.5%
Bandits-TD [14] - 713 266 1.2%

Ours AlexNet+VGGNets 392 60 0.3%

GDAS
NES [13] - 1032 800 0.0%

Bandits-TD [14] - 373 128 0.0%
Ours AlexNet+VGGNets 250 58 0.0%

PyramidNet*
NES [13] - 1571 1300 5.1%

Bandits-TD [14] - 1160 610 1.2%
Ours AlexNet+VGGNets 555 184 0.7%

ImageNet

Inception-v3
NES [13] - 1427 800 19.3%

Bandits-TD [14] - 887 222 4.2%
Ours Original ResNets 462 96 1.1%

PNAS-Net
NES [13] - 2182 1300 38.5%

Bandits-TD [14] - 1437 552 12.1%
Ours Original ResNets 680 160 4.2%

SENet
NES [13] - 1759 900 17.9%

Bandits-TD [14] - 1055 300 6.4%
Ours Original ResNets 456 66 1.9%

5.1 Experimental Setup

Evaluation Metrics and Settings. As in prior works [13, 26, 14], we adopt the failure rate and the
number of queries to evaluate the performance of attacks using originally correctly classified images.
For untargeted settings, an attack is considered successful if the model prediction is different from
the ground-truth, while for the targeted settings, it is considered successful only if the victim model
is tricked into predicting the target class. We observe that the number of queries changes dramatically
between different images, thus we report both the mean and median number of queries of successful
attacks to gain a clearer understanding of the query complexity.

Following prior works, we scale the input images to [0, 1], and set the maximum `∞ perturbation to
ε = 8/255 for CIFAR-10 and ε = 0.05 for ImageNet. We limit to query victim models for at most
10,000 times in the untargeted experiments and 50,000 times in the targeted experiments, as the latter
task is more difficult and requires more queries. In all experiments, we invoke PGD [23] to maximize
the hinge logit-diff adversarial loss from Carlini and Wagner [2]. The PGD step size is set to 1/255
for CIFAR-10 and 0.01 for ImageNet. At the end of each iteration, we clip the candidate adversarial
examples back to [0, 1] to make sure they are still valid images. We initialize the drop-out/layer
ratio as 0.05 and increase it by 0.01 at the end of each iteration until it reaches 0.5 throughout our
experiments. Other hyper-parameters like the OCO learning rate ηg and the finite-difference step
sizes (i.e., δ, τ ) are set following the paper [14]. We mostly compare our method with NES [13] and
Bandits-TD [14], and their official implementations are directly used. We apply all the attacks on the
same set of clean images and victim models for fair comparison. For Bandits-TD on ImageNet, we
craft adversarial examples on a resolution of 50× 50 and upscale them according to specific requests
from the victim models (i.e., 299× 299 for Inception-v3, 331× 331 for PNAS-Net, and 224× 224
for SENet) before query, just as described in the paper [14]. We do not perform such rescaling on
CIFAR-10 since no performance gain is observed.
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Victim and Reference Models. On CIFAR-10, we consider three victim models: (a) a WRN [41]
with 28 layers and 10 times width expansion 3, which yields 4.03% error rate on the test set; (b) a
model obtained via neural architecture search named GDAS [6] 4, which has a significantly different
architecture than our AlexNet and VGGNet reference models and shows 2.81% test error rate; (c) a
272-layer PyramidNet+Shakedrop model [9, 40] trained using AutoAugment [5] with only 1.56%
test error rate, 5 which is the published state-of-the-art on CIFAR-10 to the best of our knowledge. As
for reference models, we simply adopt the AlexNet and VGG-11/13/16/19 architectures with batch
normalizations [15]. To evaluate in a more data-independent scenario, we choose an auxiliary dataset
(containing only 2,000 images) called CIFAR-10.1 [30] to train the reference models from scratch.

We also consider three victim models on ImageNet: (a) an Inception-v3 [36] which is commonly
chosen [13, 14, 4, 38] with 22.7% top-1 error rate on the official validation set; (b) a PNAS-Net-5-
Large model [21] whose architecture is obtained through neural architecture search, with a top-1
error rate of 17.26%; (c) an SENet-154 model [11] with a top-1 error rate of 18.68% 6. We adopt
ResNet-18/34/50 as reference architectures, and we gather 30,000+45,000 images from an auxiliary
dataset [31] and the ImageNet validation set to train them from scratch. The clean images for attacks
are sampled from the remaining 5,000 ImageNet official validation images and hence being unseen
to both the victim and reference models.

5.2 Comparison with The State-of-the-arts

In this section we compare the performance of our subspace attack with previous state-of-the-art
methods on CIFAR-10 and ImageNet under untargeted settings.

On CIFAR-10, we randomly select 1,000 images from its official test set, and mount all attacks on
these images. Table 1 summarizes our main results, in which the fifth to seventh columns compare the
mean query counts, median query counts and failure rates. On all three victim models, our method
significantly outperforms NES and Bandits-TD in both query efficiency and success rates. By using
our method, we are able to reduce the mean query counts by a factor of 1.5 to 2.1 times and the median
query counts by 2.1 to 4.4 times comparing with Bandits-TD which incorporates both time and spatial
priors [14]. The PyramidNet+ShakeDop+AutoAugment [5] model, which shows the lowest test error
rate on CIFAR-10, also exhibits the best robustness under all considered black-box attacks. More
interestingly, even if the victim model is GDAS, whose architecture is designed by running neural
architecture search and thus being drastically different from that of the reference models, our prior
gradients can still span promising subspaces for attacks. To the best of our knowledge, we are the first
to attack PyramidNet+ShakeDrop+AutoAugment which is a published state-of-the-art and GDAS
which has a searched architecture in the black-box setting.

For ImageNet, we also randomly sample 1,000 images from the ImageNet validation set for evalu-
ation. Similar to the results on CIFAR-10, the results on ImageNet also evidence that our method
outperforms the state-of-the-arts by large margins. Moreover, since the applied reference models are
generally more “old-fashioned” and computationally efficient than the victim models that are lately
invented, our method introduces little overhead to the baseline optimization algorithm.

5.3 Dropout Ratios and Training Scales

We are interested in how the dropout ratio would affect our attack performance. To figure it out, we
set an upper limit of the common dropout ratio p to 0.0, 0.2, 0.5 respectively to observe how the
query complexity and the failure rate vary when attacking the WRN victim model. With the AlexNet
and VGGNet reference models trained on CIFAR-10.1 [30], we see from the bottom of Table 2 that
more dropout indicates lower failure rate, verifying that exploration via dropout well amends the
misalignments between our subspaces and the victim model gradients.
It might also be intriguing to evaluate how the performance of our method varies with the scale
of training set for yielding reference models. We attempt to evaluate it empirically by training
AlexNet and VGGNets from scratch using different numbers of training images. More specifically,

3Pre-trained model: https://github.com/bearpaw/pytorch-classification
4Pre-trained model: https://github.com/D-X-Y/GDAS
5Unlike the other two models that are available online, this one is trained using scripts from: https:

//github.com/tensorflow/models/tree/master/research/autoaugment
6Pre-trained models: https://github.com/Cadene/pretrained-models.pytorch
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Table 2: Impact of the dropout ratio and training scale on CIFAR-10. The victim model is WRN.

Ref. Training Set #Images Maximum p Mean Queries Median Queries Failure Rate

CIFAR-10 Training
0.0 59 12 1.4%

50k 0.2 77 14 0.2%
0.5 111 14 0.2%

CIFAR-10.1 + CIFAR-10 Test (Part)
0.0 239 16 3.2%

2k+8k 0.2 174 20 0.7%
0.5 212 22 0.3%

CIFAR-10.1
0.0 519 48 9.6%

2k 0.2 380 62 0.9%
0.5 392 60 0.3%

we enlarge our training set by further using the CIFAR-10 official training and test images, excluding
the 1,000 images for mounting attacks of course. In addition to the CIFAR-10.1 dataset as used,
we try two larger sets: (a) the official CIFAR-10 training set which consists of 50,000 images; 7

(b) a set built by augmenting CIFAR-10.1 with 8,000 CIFAR-10 test images, whose overall size is
2,000+8,000=10,000. It can be seen from Table 2 that by training reference models with 8,000 more
images, the query counts could be cut by over 2× without dropout, and the failure rate decreases as
well. We believe that the performance gain is powered by better generalization ability of the reference
models. In a special scenario where the reference and the victim models share the same training set,
our method requires only 59 queries on average to succeed on 98.6% of the testing images without
dropout. The performance of our method with dropout is also evaluated on the basis of these reference
models, and we can see that dropout is capable of reducing the failure rates significantly regardless
of the reference training set. While for the query complexity, we may observe that more powerful
reference models generally require less exploration governed by dropout to achieve efficient queries.

5.4 Choice of Reference Models and Prior Gradients

Table 3: Subspace attack using different reference models with `∞ constraint under untargeted setting
on CIFAR-10. The maximum perturbation is ε = 8/255, and the victim model is WRN.

Ref. Models Mean Queries Median Queries Failure Rate

VGG-19 400 78 0.6%

VGG-19/16/13 395 71 0.4%

VGG-19/16/13/11+AlexNet 392 60 0.3%

We investigate the impact of number and architecture of reference models for our method by evaluating
our attack using different reference model sets, and report the performance in Table 3. As in previous
experiments, reference models are trained on CIFAR-10.1, and the maximum dropout ratio is set to
0.5. We see that increasing the number of reference models indeed facilitates the attack in both query
efficiency and success rates, just like in the exploratory experiment where dropout is absent.

We also compare using “gradient descent” and “coordinate descent” empirically. On CIFAR-10 we
choose the same five reference models as previously reported, and at each iteration we compute all
five prior gradients and search in the complete subspace. We combine all the prior gradients with
Gaussian coefficients to provide a search direction in it. Experimental results demonstrate that with
significantly increased run-time, both the query counts and failure rates barely change (mean/median
queries: 389/62, failure rate: 0.3%), verifying that our coordinate-descent-flavored policy achieves a
sensible trade-off between efficiency and effectiveness.

6 Conclusion

While impressive results have been gained, state-of-the-art black-box attacks usually require a large
number of queries to trick a victim classification system, making the process costly and suspicious to

7In this special setting the reference models and the victim model share the same training data.
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the system. In this paper, we propose the subspace attack method, which reduces the query complexity
by restricting the search directions of gradient estimation in promising subspaces spanned by input-
gradients of a few reference models. We suggest to adopt a coordinate-descent-flavored optimization
and drop-out/layer to address some potential issues in our method and trade off the query complexity
and failure rate. Extensive experimental results on CIFAR-10 and ImageNet evidence that our method
outperforms the state-of-the-arts by large margins, even if the reference models are trained on a small
and inadequate dataset disjoint to the one for training the victim models. We also evaluate the effec-
tiveness of our method on some winning models (e.g., PyramidNet+ShakeDrop+AutoAugment [5]
and SENet [11]) on these datasets and models whose architectures are designed by running neural
architecture search (e.g., GDAS [6] and PNAS [21]).
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