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Abstract

We study the problem of off-policy policy opti-
mization in Markov decision processes, and de-
velop a novel off-policy policy gradient method.
Prior off-policy policy gradient approaches have
generally ignored the mismatch between the distri-
bution of states visited under the behavior policy
used to collect data, and what would be the distri-
bution of states under the learned policy. Here we
build on recent progress for estimating the ratio of
the Markov chain stationary distribution of states
in policy evaluation, and present an off-policy
policy gradient optimization technique that can
account for this mismatch in distributions. We
present an illustrative example of why this is im-
portant, theoretical convergence guarantee for our
approach and empirical simulations that highlight
the benefits of correcting this mismatch.

1. Introduction
The ability to use data about prior decisions and their out-
comes to make counterfactual inferences about how alter-
native decision policies might perform, is a cornerstone of
intelligent behavior. It also has immense practical potential
– it can enable the use of electronic medical record data
to infer better treatment decisions for patients, the use of
prior product recommendations to inform more effective
strategies for presenting recommendations, and previously
collected data from students using educational software to
better teach those and future students. Such counterfac-
tual reasoning, particularly when one is deriving decision
policies that will be used to make not one but a sequence
of decisions, is important since online sampling during a
learning procedure is both costly and dangerous, and not
practical in many of the applications above. While amply
motivated, doing such counterfactual reasoning is also chal-
lenging because the data is censored – we can only observe
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the result of providing a particular chemotherapy treatment
policy to a particular patient, not the counterfactual of if we
were then to start with a radiation sequence.

We focus on the problem of performing such counterfactual
inferences in the context of sequential decision making in a
Markov decision process (MDP). We assume that data has
been previously collected using some fixed and known be-
havior policy, and our goal is to learn a new decision policy
with good performance for future use. This problem is often
known as batch off-policy policy optimization. We assume
that the behavior policy used to gather the data is stochastic:
otherwise we will not be able to estimate the performance
of any other policy without additional assumptions.

In this paper we consider how to perform batch off-policy
policy optimization (OPPO) using a policy gradient method.
While there has been increasing interest in batch off-
policy reinforcement learning (RL) over the last few years
(Thomas et al., 2015; Jiang and Li, 2016; Thomas and Brun-
skill, 2016), much of this has focused on off-policy policy
evaluation, where the goal is to estimate the performance of
a particular given target decision policy. Ultimately we will
very frequently be interested in the optimization question,
which requires us to determine a good new policy for future
potential deployment, given a fixed batch of prior data.

To do batch off-policy policy optimization, model free meth-
ods (like deep Q-learning (Mnih et al., 2015) or fitted Q
iteration (Ernst et al., 2005)) can be used alone, but there
are many cases where we might prefer to focus on policy
gradient or actor-critic methods. Policy gradient methods
have seen substantial success in the last few years (Schul-
man et al., 2015) in the on-policy setting, and they can be
particularly appealing for cases where it is easier to encode
inductive bias in the policy space, or when the actions are
continuous (see e.g. Abbeel and Schulman (2016) for more
discussion). However, existing approaches to incorporating
offline information into online policy gradients have shown
limited benefit (Gu et al., 2017b;a), in part due to the vari-
ance in gradients incurred due to incorporating off-policy
data. One approach is to correct exactly for the difference
between the sampling data distribution and the target policy
data distribution, by using importance sampling to re-weight
every sample according to the likelihood ratio of behavior
policy and evaluation policy up to that step. Unfortunately
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the variance of this importance sampling ratio will grow
exponentially with the problem horizon.

To avoid introducing variance in gradients, off-policy actor
critic (Off-PAC) (Degris et al., 2012) ignores the stationary
state distribution difference between the behavior policy and
the target policy, and instead only uses a one step of impor-
tance sampling to reweight the action distributions. Many
practical off-policy policy algorithms including DDPG (Sil-
ver et al., 2014), ACER (Wang et al., 2016), and Off-PAC
with emphatic weightings (Imani et al., 2018) are based on
the gradient expression in the Off-PAC algorithm (Degris
et al., 2012). However as we will demonstrate, not correct-
ing for this mismatch in state distributions can result in poor
performance in general, both in theory and empirically.

Instead, here we introduce an off-policy policy gradient al-
gorithm that can be used with batch data and that accounts
for the difference in the state distributions between the cur-
rent target and behavior policies during each gradient step.
Our approach builds on recent approaches for policy eval-
uation that avoid the exponential blow up in importance
sampling weights by instead computing a direct ratio over
the stationary distribution of state visitations under the tar-
get and behavior policy (Hallak and Mannor, 2017; Liu
et al., 2018a; Gelada and Bellemare, 2019). We incorporate
these ideas within an off-policy actor critic method to do
batch policy optimization. We first provide an illustrative
example to demonstrate the benefit of this approach over
Off-PAC (Degris et al., 2012), and show that correcting for
the mismatch in state distributions of the behavior policy and
the target policy can be critical for getting good estimates
of the policy gradient, and we also provide convergence
guarantees for our algorithm under certain assumptions. We
then compare our approach and Off-PAC experimentally on
two simulated domains, cart pole and a HIV patient simula-
tor (Ernst et al., 2005). Our results show that our approach
is able to learn a substantially higher performing policy than
both Off-PAC and the behavior policy that is used to gather
the batch data. We further demonstrate that we can use the
recently proposed off-policy evaluation technique of Liu
et al. (2018a) to reliably identify good policies found during
the policy gradient optimization run. Our results suggest
that directly accounting for the state distribution mismatch
can be done without prohibitively increasing the variance
during policy gradient evaluations, and that doing so can
yield significantly better policies. These results are promis-
ing for enabling us to learn better policies given batch data
or improving the sample efficiency of online policy gradient
methods by being able to better incorporate past data.

Related Work Many prior works focus on the policy eval-
uation problem, as it is a foundation for downstream policy
learning problems. These approaches often build on impor-
tance sampling techniques to correct for distribution mis-

match in the trajectory space, pioneered by the early work on
eligibility traces (Precup et al., 2000), and further enhanced
with a variety of variance reduction techniques (Thomas
et al., 2015; Jiang and Li, 2016; Thomas and Brunskill,
2016). Some authors consider model-based approaches to
OPPE (Farajtabar et al., 2018; Liu et al., 2018b), which usu-
ally perform better than importance sampling approaches
empirically in policy evaluation settings. But those meth-
ods do not extend easily to our OPPO setting, as well as
introduce additional challenges due to bias in the models
and typically require fitting a separate model for each tar-
get policy. The recent work of Liu et al. (2018a) partially
alleviates the variance problem for model-free OPPE by
reweighting the state visitation distributions, which can re-
sult in as just as high a variance in the worst case, but is
often much smaller. Our work incorporates this recent es-
timator in policy optimization methods to enable learning
from off-policy collected data.

In the off-policy policy optimization setting, many works
study value-function based approaches (like fitted Q itera-
tion (Ernst et al., 2005) and DQN (Mnih et al., 2015)), as
they are known to be more robust to distribution mismatch.
Some recent works aim to further incorporate reweighting
techniques within off-policy value function learning (Hallak
and Mannor, 2017; Gelada and Bellemare, 2019). These
methods hint at the intriguing potential of value-function
based techniques for off-policy learning, and we are inter-
ested in similarly understanding the viability of using direct
policy optimization techniques in the off-policy setting.

Off-policy actor critic (Degris et al., 2012; Imani et al., 2018)
proposed an answer to this question by learning the critic
in an off-policy way and reweighting actor gradients by cor-
recting the conditional action probabilities, but ignores the
mismatch between the state distributions of the data collec-
tion policy and learned policies. A different research thread
on trust region policy optimization method (Schulman et al.,
2015), while requiring the on-policy setting, incorporates
robustness to the mismatch between the data collection and
gradient evaluation policies. However this is not a fully
off-policy scenario and learning from an offline dataset is
still strongly motivated by many applications. Many recent
methods (Silver et al., 2014; Wang et al., 2016; Gu et al.,
2017a;b; Lillicrap et al., 2015) are derived based on the
policy gradient form in Degris et al. (2012) to improve the
empirical sample efficiency by using more off-policy sam-
ples from previous iteration. In this work, we demonstrate a
basic weakness of the policy gradient definition in Degris
et al. (2012), and show how to correct that.

2. Preliminaries
We consider finite horizon MDPsM = 〈S,A, P, r, γ〉, with
a continuous state space S , a discrete action space A, a tran-
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sition probability distribution P : S×A×S 7→ [0, 1] and an
expected reward function r : S×A 7→ [0, 1]. We observe tu-
ples of state, action, reward and next state: (st, at, rt, st+1),
where s0 is drawn from a initial state distribution p0(s),
action a is drawn from a stochastic behavior policy µ(a|s)
and the reward and next state are generated by the MDP.
Given a discount factor γ ∈ (0, 1], the goal is to maximize
the expected return of policy:

RπM = Eπ

[
lim
T→∞

1∑T
t=0 γ

t

T∑
t=0

γtrt

]
(1)

When γ = 1 this becomes the average reward case and
γ < 1 is called the discounted reward case. Given any
fixed policy π the MDP becomes a Markov chain and
we can define the state distribution at time step t: dπt (s),
and the stationary state distribution across time: dπ(s) =

lim
T→∞

1∑T
t=0 γ

t

∑T
t=0 γ

tdπt (s) To make sure the optimal pol-

icy is learnable from collected data, we assume the following
about the support set of behavior policy:

Assumption 1. For at least one optimal policy π∗, dµ(s) >
0 for all s such that dπ

∗
(s) > 0, and µ(a|s) > 0 for all a

such that π∗(a|s) > 0 when dπ
∗
(s) > 0.

3. An Off-Policy Policy Gradient Estimator
Note that Assumption 1 is quite weak when designing a
policy evaluation or optimization scheme, since it only guar-
antees that µ adequately visits all the states and actions
visited by some π∗. However, a policy optimization al-
gorithm might require off-policy policy gradient estimates
at arbitrary intermediate policy it produces along the way,
which might visit states not reached by µ. A strong assump-
tion to handle such scenarios is that Assumption 1 holds
not just for some π∗, but any possible policy π. Instead of
making such a strong assumption, we start by defining an
augmented MDP where Assumption 1 suffices for obtaining
pessimistic estimates of policy values and gradients.

3.1. Constructing an Augmented MDP

Given a data collection policy µ, let its support set be
Sµ = {s : dµ(s) > 0} and SAµ = {(s, a) :
dµ(s)µ(a|s) > 0}. Consider a modified MDP Mµ =
〈Sµ

⋃
{sabs},A, Pµ, rµ, γ〉. Any state-action pairs not in

SAµ will essentially transition to sabs which is a new
absorbing state where all actions will lead to a zero re-
ward self-loop. Concretely, Pµ(sabs|sabs, a) = 1 and
r(sabs, a) = 0 for any a. For all other states, the transi-
tion probabilities and rewards are defined as: For (s, a) ∈
SAµ, Pµ(s′|s, a) = P (s′|s, a) for all s′ ∈ Sµ, and
Pµ(sabs|s, a) =

∫
s6∈Sµ P (s′|s, a)ds′. For all s ∈ Sµ but

(s, a) 6∈ SAµ, Pµ(sabs|s, a) = 1. rµ(s, a) = r(s, a) for

(s, a) ∈ SAµ, and rµ(s, a) = 0 otherwise. First we prove
that the optimal policy π∗ of the original MDP remains opti-
mal in augmented MDP as a consequence of Assumption 1.

Theorem 1. The expected return of all policies π in the
original MDP is larger than the expected return in the new
MDP: RπM ≥ RπMµ

. For any optimal π∗ that satisfies As-
sumption 1 we have that Rπ

∗

M = Rπ
∗

Mµ

That is, policy optimization in Mµ has at least one optimal
solution identical to the original MDP M with the same
policy value since Mµ lower bounds the policy value in M ,
so sub-optimal policies remain sub-optimal.

Proof. For any trajectory sampled from policy π, if every
sk, ak ∈ SAµ then

∑T
t=0 γ

tr(st, at) =
∑T
t=0 γ

trµ(st, at).
If not, let sk+1, ak+1 be the first state-action pair that is not
in SAµ. Then

∑T
t=0 γ

tr(st, at) ≥
∑k
t=0 γ

tr(st, at) =∑k
t=0 γ

trµ(st, at) +
∑k
t=k+1 γ

trµ(sabs, at). Dividing the
accumulated rewards by 1∑T

t=0 γ
t and taking the limit of

T → ∞, then taking the expectation over trajectories in-
duced by π, we have that: RπM ≥ RπMµ

. For π∗, since SAµ
covers all state-action pairs reachable by π∗, so the expected
return remains the same.

3.2. Off-Policy Policy Gradient in Augmented MDP

We will now use the expected return in the modified MDP,
RπMµ

, as a surrogate for deriving policy gradients. Accord-
ing to the policy gradient theorem in Sutton et al. (2000),
for a parametric policy π with parameters θ:

∂RπMµ

∂θ
=
∑
s

dπ(s)
∑
a

π(a|s)∂ log π(a|s)
∂θ

QπMµ
(s, a).

From here on, dπ(s) is with respect to the new MDP. Now
we will show that we can get an unbiased estimator of this
gradient using importance sampling from the stationary
state distribution dµ(s) and the action distribution µ(a|s).
According to the definition of Mµ, we have that for all s, a
such that dµ(s)µ(a|s) = 0, (s, a) is not in SAµ. Hence
QπMµ

(s, a) = 0 for any policy π since (s, a) will receive
zero reward and lead to a zero reward self-loop. So we have:

∂RπMµ

∂θ
=
∑
s

dπ(s)
∑
a

π(a|s)∂ log π(a|s)
∂θ

QπMµ
(s, a)

=
∑

s : dµ(s)>0

dπ(s)

dµ(s)
dµ(s)

∑
a : µ(a|s)>0

π(a|s)
µ(a|s)

µ(a|s)∂ log π(a|s)
∂θ

QπMµ
(s, a)

= Edµ,µ
[
dπ(s)

dµ(s)

π(a|s)
µ(a|s)

∂ log π(a|s)
∂θ

QπMµ
(s, a)

]
(2)
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Note that according to the definition of Mµ, the Markov
chain induced by M and µ is exactly the same as Mµ and
µ. Thus the distribution of (st, at, st+1) generated by exe-
cuting µ in M is the same as executing µ in Mµ. So, we
can estimate this policy gradient using the data we collected
from µ in M . We conclude the section by pointing out that
working in the augmented MDP allows us to construct a rea-
sonable off-policy policy gradient estimator under the mild
Assumption 1, while all prior works in this vein explicitly
or implicitly require the coverage of all possible policies.

Note that in the average reward case, such an augmented
MDP would not be helpful for policy optimization since all
policies that potentially reach sabs will have a value of zero,
and the stationary state distribution will be a single mass in
the absorbing state. That would not induce a practical policy
optimization algorithm. In the average reward case, either
we need a stronger assumption that µ covers the entire state-
action space or we must approximate the problem by setting
a discount factor γ < 1 for the policy optimization algo-
rithm, which is a common approach for deriving practical
algorithms in an average reward (episodic) environment.

4. Algorithm: OPPOSD
Given the off-policy policy gradient derived in (2), how can
we efficiently estimate it from samples collected from µ?
Notice that most quantities in the gradient estimator (2)
are quite intuitive and also present in prior works such
as Off-PAC. The main difference is the state distribution
reweighting dπ(s)/dµ(s), which we would like to estimate
using samples collected with µ. For estimating this ratio of
state distributions, we build on the recent work of Liu et al.
(2018a) which we describe next.

For a policy π, let us define the shorthand ρπ(s, a) =
π(s, a)/µ(s, a). Further given a function w : S → R,
define ∆(w; s, a, s′) := w(s)ρπ(s, a) − w(s′). Then we
have the following result.

Theorem 2 ((Liu et al., 2018a)). Given any γ ∈ (0, 1),
assume that dµ(s) > 0 for all s and define

L(w, f) = γE(s,a,s′)∼dµ [∆(w; s, a, s′)f(s′)]

+ (1− γ)Es∼p0 [(1− w(s))f(s)].

Then w(s) = dπ(s)/dµ(s) if and only if L(w, f) = 0 for
any measurable test function f .1

This result suggests a constructive procedure for estimating
the state distribution ratio using samples from µ, by finding
a functionw over the states which minimizes maxf L(w, f).
Since the maximization over all measurable functions as per

1When γ = 1, w is only determined up to normalization, and
hence an additional constraint Es∼dµ [w(s)] = 1 is required to
obtain the conclusion w(s) = dπ(s)/dµ(s).

Theorem 2 is intractable, Liu et al. (2018a) suggest restrict-
ing the maximization to a unit ball in an RKHS, which has
an analytical solution to the maximization problem, and we
use the same procedure to approximate density ratios in our
algorithm.

Applying Theorem 2 requires overcoming one final obstacle.
The theorem presupposes dµ(s) > 0 for all s. In case
where SAµ = S × A we can directly apply the theorem.
Otherwise in the MDPMµ, this assumption indeed holds for
all states, but µ never visits the absorbing state sabs, or any
transitions leading into this state. However, since we know
this special state, as well as the dynamics leading in and out
of it, we can simulate some samples for this state, effectively
corresponding to a slight perturbation of µ to cover sabs.
Concretely, we first choose a small smoothing factor ε ∈
(0, 1). For any sample (s, a, s′) in our data set, if there exist
k actions ã such that µ(ã|s) = 0, then we will keep the old
samples with probability 1− ε and sample any one of the
k actions with probability ε/k uniformly and change the
next state s′ to sabs. If we sampled ã, consequently, we
would also change all samples after this transition to a self-
loop in sabs. Thus we create samples drawn according to a
new behavior policy which covers all the state action pairs:
µ̃ = (1− ε)µ+ εU(s) where U(s) is a uniform distribution
over the k actions not chosen by µ in state s. Now we can
use Theorem 2 and the algorithm from Liu et al. (2018a) to
estimate dπ(s)/dµ̃(s). Note that the propensity scores and
policy gradients computed on this new dataset correspond
to the behaviour policy µ̃ and not µ. Formally, in place of
using (2), we now estimate:

Edµ̃,µ̃
[
dπ(s)

dµ̃(s)

π(a|s)
µ̃(a|s)

∂ log π(a|s)
∂θ

QπMµ
(s, a)

]
(3)

Note that we can estimate the expectation in (3) from
the smoothed dataset by construction, since the ratio
π(s, a)/µ̃(s, a) in all states are known.

Now that we have an algorithm for estimating policy gra-
dients from (3), we can plug this into any policy gradient
optimization method. Following prior work, we incorporate
our off-policy gradients into an actor-critic algorithm. For
learning the critic QπMµ

(s, a), we can use any off-policy
Temporal Difference (Bhatnagar et al., 2009; Maei, 2011)
or Q-learning algorithm (Watkins and Dayan, 1992). In our
algorithm, we fit an approximate value function V̂ by: 2

V̂ (s)← V̂ (s) + αc
π(a|s)
µ̃(a|s)

(
Rλ(s, a)− V̂ (s)

)
, (4)

where αc is the step-size for critic updates and Rλ(s, a) is

2For simplicity, Eqn 4 views V̂ (s) in the tabular setting. See
Line 14 in Alg 1 for the function approximation case.
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the off-policy λ-return:

Rλ(s, a) = r(s, a) + (1− λ)γV̂ (s′) + λγ
π(a|s)
µ̃(a|s)R

λ(s′, a′),

and (s, a, s′, a′) is generated by executing µ̃. After we learn
V̂ , Rλ serves the role of QπMµ

in our algorithm.

Given the estimates of the state distribution ratio from Liu
et al. (2018a) and the critic updates from (4), we can now
update the policy by plugging these quantities in (3). It re-
mains to specify the initial conditions to start the algorithm.
Since we have data collected from a behavior policy, it is
natural to also warm-start the actor policy in our algorithm
to be the same as the behavior policy and correspondingly
the critic and w’s to be the value function and distribution
ratios for the behavior policy. This can be particularly useful
in situations where the behavior policy, while suboptimal,
still gets to states with high rewards with a reasonable prob-
ability. Hence we use behavior cloning to warm-start the
policy parameters for the actor, use on-policy value function
learning for the critic and also fit the state ratios w for the
actor obtained by behavior cloning. Note that while the
ratio will be identically equal to 1 if our behavior cloning
was perfect, we actually estimate the ratio to better handle
imperfections in the learned actor initialization.

A full pseudo-code of our algorithm, which we call OP-
POSD for Off-Policy Policy Optimization with State Distri-
bution Correction, is presented in Algorithm 1 in appendix.
We mention a couple of implementation details which we
found helpful in improving the convergence properties of the
algorithm. Typical actor-critic algorithms update the critic
once per actor update in the on-policy setting. However,
in the off-policy setting, we find that performing multiple
critic updates before an actor update is helpful, since the
off-policy TD learning procedure can have a high variance.
Secondly, the computation of the state distribution ratio w
is done in an online manner similar to the critic updates,
and analogous to the critic, we always retain the state of the
optimizer for w across the actor updates (rather than learn-
ing the w from scratch after each actor update). Similar to
the critic, we also perform multiple w updates after each
actor update. These choices are intuitively reasonable as the
standard two-time scale asymptotic analysis of actor-critic
methods (Borkar, 2009) does require the critic to converge
faster than the actor.

5. Convergence Result
In this section, we present two main results to demonstrate
the theoretical advantage of our algorithm. First we present
a simple scenario where the prior approach of Off-PAC
yields an arbitrarily biased gradient estimate, despite having
access to a perfect critic. In contrast OPPOSD estimates the
gradients correctly whenever the distribution ratios in (2)

and the critic are estimated perfectly, by definition. We
will further provide a convergence result for OPPOSD to a
stationary point of the expected reward function.

A hard example for Off-PAC Many prior off-policy pol-
icy gradient methods use the policy gradient estimates pro-
posed in Degris et al. (2012).

gOffPAC(θ) =
∑
s

dµ(s)
∑
a

π(a|s)∂ log π(a|s)
∂θ

Qπ(s, a)

Notice that, in contrast to the exact policy gradient, the ex-
pectation over states is taken with respect to the behavior
policy µ distribution instead of π. In tabular settings this
can lead to correct policy updates, as proved by Degris et al.
(2012). We now present an example where the policy gradi-
ent computed this way is problematic when using function
approximators. Consider the problem instance shown in Fig-
ure 1, where the behavior policy πb is given as: πb(si, `) =
0.5 for i = 1, 2, . . . 8. Thus πb gives us good coverage
over all states and actions. Now we consider policies pa-
rameterized by a parameter α ∈ [0, 1] where πα has the
following structure: πα(s0, `) = πα(s3, `) = πα(s4, `) =
1, πα(s1, `) = πα(s2, `) = α. Thus πα aliases the states
s3 and s4 as a manifestation of imperfect representation
which is typical with large state spaces. The true state value
function of πα, Vπα satisfies that: V πα(s0) = V πα(s1) =
1+α
2 , V πα(s2) = 1−α

2 , V πα(s3) = 1, V πα(s4) = 0. Now
we define our policy class Π = {πα : α ∈ [0, 1]}. Clearly
the optimal policy is π1 as it completely eliminates the ill-
effects of state aliasing. We now study the Off-PAC gradient
estimator gOffPAC(α) in an idealized setting where the critic
Qπα is perfectly known. As per Equation 5 of Degris et al.
(2012), we have

gOffPAC(α) =
∑
s

dπb(s)
∑
a

∂πα(a|s)
∂α

Qπα(s, a)

= dπb(s1)

(
Qπα(s1, `)−Qπα(s1, r)

)
+ dπb(s2)

(
Qπα(s2, `)−Qπα(s2, r)

)
= 1

2 (1− 1/2) + 1
2 (0− 1/2) = 0.

That is, the gradient vanishes for any policy πα, meaning
that the algorithm can be arbitrarily sub-optimal at any point
during policy optimization. We note that this does not con-
tradict the previous Off-PAC theorems as the policy class
is not fully expressive in our example, a requirement for
their convergence results. Our gradient estimator (2) instead
evaluates to ∂RπαMµ

/∂α = (1 + α)/4, which is correctly
maximized at α = 1.

Convergence results for OPPOSD We next ask whether
OPPOSD converges, given reasonable estimates for the den-
sity ratio and the critic. To this end, we need to introduce
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Figure 1. Hard example for Off-PAC (Degris et al., 2012)

some additional notations and assumptions. Suppose we
run OPPOSD over some parametric policy class πθ with
θ ∈ Θ. In the sequel, we use subscripts and superscripts
by θ to mean the corresponding quantities with πθ to ease
the notation. We begin by describing an abstract set of as-
sumptions and a general result about the convergence of
OPPOSD, when we run it over the policies πθ given data
collected with an arbitrary policy ν, before instantiating
our assumptions for the specific structure of µ̃ used in our
algorithm.

Definition 1. A function f : Rd → R is L-smooth when

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, for all x, y ∈ Rd,

Assumption 2. ∀(s, a) pairs, ∀θ ∈ Θ and a data collection
policy ν, we assume that the MDP guarantees:

1.
∥∥∥∂πθ(a|s)∂θ

∥∥∥ ≤ Gmax

2. Qθ(s, a) ≤ Vmax

3. ν(a|s) ≥ νmin

4. w(s) := dθ(s)/dν(s) ≤ wmax, and the function ap-
proximator ŵ(s) for w(s) satisfies ŵ(s) ≤ wmax.

5. The expected return of πθ: Rθ is a differentiable, G-
Lipschitz and L-smooth function w.r.t. θ.

Theorem 3. Assume an MDP, a data collection policy ν and
function classes {πθ} and {ŵ} satisfy Assumption 2. Sup-
pose OPPOSD with policy parameters θk at iteration k is
provided critic estimates Q̂k and distribution ratio estimates
ŵk satisfying E(s,a)∼dν (wθk(s, a)−ŵk(s, a))2 ≤ ε2w,k and

E(s,a)∼dν (Qθk(s, a) − Q̂k(s, a))2 ≤ ε2Q,k for iterations
k = 1, 2, . . .K. Then

1

K

K∑
k=1

E
[∥∥∇θRθk∥∥2] ≤ 2Vmax

K

+

∑K
k=1O

(
(ε2w,kV

2
max + ε2Q,kw

2
max)G2

max

)
Kν2min

. (5)

That is, when Assumption 2 holds, the scheme converges to
an approximate stationary point given estimators ŵ and Q̂

with a small average MSE across the iterations under ν. An
immediate consequence of the theorem above is that as long

as we guarantee that limK→∞

∑
ε2w,k+ε

2
Q,k

K = 0, which a
reasonable online critic and w learning algorithm can guar-

antee, we have: limK→∞
1
K

∑K
k=1 E

[∥∥∥∇θRθkMν

∥∥∥2] = 0,

which implies the procedure will converge to a stationary
point where the true policy gradient is zero.

We now discuss the validity of Assumption 2 in the specific
context of the data collection policy µ̃ used in OPPOSD
as well as the augmented MDP Mµ. The first assumption,
that the gradient of policy distribution is bounded, can be
achieved by an appropriate policy parametrization such as a
linear or a differentiable neural network-based scoring func-
tion composed with a softmax link. The second assumption
on bounded value functions is standard in the literature. In
particular, both these assumptions are crucial for the con-
vergence of policy gradient methods even in an on-policy
setting. The third assumption on lower bounded action prob-
abilities holds by construction for the policy µ̃ due to the
ε−smoothing. The fourth assumption on bounded distribu-
tion ratios can be ensured if dµ̃(s) ≥ 1/wmax. Technically,
this might not hold for µ̃ in Mµ as some states in Sµ might
be reached with tiny probabilities, but we can instead de-
fine Sµ to be the set of all the states with dµ(s) ≥ 1/wmax.
With this change, and given a suitably large ε, µ̃ always
satisfies the fourth assumption in the MDP Mµ. We note
that the assumption also requires the outputs of the func-
tion approximator ŵ(s) to be bounded, which might require
additional clipping or regularization in the algorithm. In Al-
gorithm 1, we instead use a weighted importance sampling
version of ŵ which normalize the value in ŵ by its mean in
one batch, which ensures that the largest value of w is the
mini-batch size |Ba|. Finally the regularity assumption on
the smoothness of the reward function is again standard for
policy gradient methods even in an on-policy setting.

Thus we find that under standard assumptions for policy
gradient methods, along with some reasonable additional
conditions, we expect OPPOSD to have good convergence
properties in theory.

6. Experimental Evaluation
In this section we study the empirical properties of OP-
POSD, with an eye towards two questions:

1. Does the state distribution correction help improve the
performance of off-policy policy optimization?

2. Can we identify the best policy from the optimization
path using off-policy policy evaluation?

Baseline and implementation details To answer the first
question, we compare OPPOSD with its closest prior work,
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(a) CartPole-v0. (b) HIV treatment simulator.

Figure 2. Episodic scores over length 200 episodes in CartPole-
v0 (Barto et al., 1983; Brockman et al., 2016) (left) and HIV
treatment simulator (Ernst et al., 2006) (right). Shaded region
represents 1 standard deviation over 10 runs of each method.

but without the state distribution correction, that is the Off-
PAC algorithm (Degris et al., 2012).

We implement both OPPOSD and Off-PAC using feedfor-
ward neural networks for the actor and critic, with ReLU
hidden layers. For state distribution ratio w, we also use
a neural network with ReLU hidden layers, with the last
activation function f(x) = log(1 + exp(x)) to guarantee
that w(s) > 0 for any input. To make a fair comparison, we
keep the implementation of Off-PAC as close as possible to
OPPOSD other than the use of w. Concretely, we also equip
Off-PAC with the enhancements that we find improve empir-
ical performance such as warm start of the actor and critic,
as well as several critic updates per actor update. We use
the same off-policy critic learning algorithm for Off-PAC
and OPPOSD. To learn w, we use Algorithm 1 (average
reward) in Liu et al. (2018a) with RBF kernel for CartPole-
v0 experiment, and Algorithm 2 (discounted reward) in Liu
et al. (2018a) with RBF kernel for HIV experiment. We
normalize the input to the networks to have 0 mean and 1
standard deviation, and in each mini-batch we normalized
kernel loss of fitting w by the mean of the kernel matrix
elements, to minimize the effect kernel hyper-parameters on
the learning rate. Full implementation details when omitted
are provided in the Appendix.

Simulation domains We compare the algorithms in two
simulation domains. The first domain is the cart pole control
problem, where an agent needs to balance a mass attached
to a pole in an upright position, by applying one of two
sideways movements to a cart on a frictionless track. The
state space is continuous and describes the position and
velocity of cart and pole. The action space consists of
applying a unit force to two directions. The horizon is
fixed to 200. If the trajectory ends in less than 200 steps,
we pad the episode by continuing to sample actions and
repeating the last state. We use a uniformly random policy
to collect n = 500 trajectories as off-policy data, which is a
very challenging data set for off-policy policy optimization
methods to learn from as this policy does not attain the
desired upright configuration for any prolonged period of

time. We use neural networks with a 32-unit hidden layer to
fit the stationary distribution ratio, actor and critic.

The second domain is an HIV treatment simulation de-
scribed in (Ernst et al., 2006). Here the states are six-
dimensional real-valued vectors, which model the response
of numbers of cells/virus to a treatment. Each action corre-
sponds to whether or not to apply two types of drug, leading
to a total of 4 actions. The transition dynamics are mod-
eled by an ODE system in Ernst et al. (2006). The reward
consists of a small negative reward for deploying each type
of drug, and a positive reward based on the HIV-specific
cytotoxic T-cells which will increase with a proper treatment
schedule. To maximize the total reward in this simulator, al-
gorithms need to do structured treatment interruption (STI),
which aim to achieve a balance between treatment and the
adverse effect of abusing drugs. The horizon of this do-
main is 200 and discount factor is set by the simulator to
γ = 0.98. Each trajectory simulates a treatment period for
one patient in 1000 days and each step corresponds to a
5-day interval in the ODE system. We represent the state
by taking logarithm of state features and divide the reward
by 108 to ensure they are in a reasonable range to fit the
neural network models. A uniformly random policy does
not visit any rewarding states often enough to collect useful
data for off-policy learning. To simulate an imperfect but
reasonable data collection policy, we first train an on-policy
actor critic method to learn a reasonable (but still far from
optimal) policy π̂. We then use the data collection policy
µ = 0.7 ∗ π̂ + 0.3 ∗ U , where U is the uniformly random
policy, to collect n = 1000 trajectories. We use neural
networks with three 16-unit hidden layers to fit the actor
and state distribution ratio, and a neural network with four
32-unit hidden layers for the critic.

Though in both domains our data collection policy is eventu-
ally able to cover the whole state-action space, the situation
under finite amounts of data is different. In cart pole since
an optimal policy can control the cart to stay in a small
region, it is relatively easy for the uniform random policy
to cover the states visited by the optimal policy. In the HIV
treatment domain, it is unlikely that the logged data will
cover the desirable state space.

Impact of state reweighting on policy optimization In
Figures 2a and 2b, we plot the on-policy evaluation values
of the policies produced by OPPOSD and Off-PAC during
the actor updates across 10 runs. Each run uses a different
data set collected using the behavior policy as well as a
different random seed for the policy optimization procedure.
In each run we use the same dataset for each method to allow
paired comparisons. We evaluate the policy after every 100
actor updates using on-policy Monte-Carlo evaluation over
20 trajectories. The results are averaged over 10 runs and
error bars show the standard deviation. Along X-axis, the
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Figure 3. Off-policy policy evaluation results of saved policies
from OPPOSD. The estimated and true values exhibit a high cor-
relation (coefficient = 0.80 and 0.71 in the left and right plots)
for most policies. Two panels correspond to repeating the whole
procedure using two datasets from the same behavior policy.

plot shows how the policy value changes as we take policy
gradient steps.

At a high-level, we see that in both the domains our algo-
rithm significantly improves upon the behavior policy, and
eventually outperforms Off-PAC consistently. Zooming in
a bit, we see that for the initial iterates on the left of the
plots, the gap between OPPOSD and Off-PAC is small as
the state distribution between the learned policies is likely
close enough to the behavior policy for the distribution mis-
match to not matter significantly. This effect is particularly
pronounced in Figure 2a. However, the gap quickly widens
as we move to the right in both the figures. In particular,
Off-PAC barely improves over behavior policy in Figure 2b,
while OPPOSD finds a significantly better policy. Overall,
we find that these results are an encouraging validation of
our intuition about the importance of correcting the state
distribution mismatch.

Identifying Best Policy by Off-Policy Evaluation
While OPPOSD consistently outperforms Off-PAC in aver-
age performance across 10 runs in both the domains, there
is still significant variance in both the methods across runs.
Given this variance, a natural question is whether we can
identify the best performing policies, during and across mul-
tiple runs of OPPOSD for a single dataset. To answer this
question, we checkpoint all the policies produced by OP-
POSD after every 1000 actor updates, across 5 runs of our
algorithm with the same input dataset generated in the HIV
domain. We then evaluate these policies using the off-policy
policy evaluation (OPPE) method in Liu et al. (2018a). The
evaluation is performed with an additional dataset sampled
from the behavior policy.

We show the quality of the OPPE estimates against the true
policy values for two different datasets for OPPE sampled
from the behavior policy in the two panels of Figure 3. In
each plot, the X-axis shows the true values by on-policy
Monte-Carlo evaluation results and Y-axis shows the OPPE
estimates. We find that the OPPE estimates are generally
well correlated with the on-policy values, and picking the
policy with the best OPPE estimate results in a true value

substantially better than both the best Off-PAC result as
well as the behavior policy. A closer inspection also reveals
the importance of this validation step. The red squares
correspond to the final iterate of OPPOSD in each of the 5
iterations, which has a very high value in some cases, but
somewhat worse in other runs. Using OPPE to robustly
select a good policy adds a layer of additional assurance to
our policy optimization procedure.

7. Discussion and Conclusion
We presented a new off-policy actor critic algorithm, OP-
POSD, based on a recently proposed stationary state dis-
tribution ratio estimator. There exist many interesting next
steps, including different critic learning methods which may
also leverage the state distribution ratio, and exploring alter-
native methods for policy evaluation or alternative stationary
state distribution ratio estimators (Hallak and Mannor, 2017;
Gelada and Bellemare, 2019). Another interesting direction
is to improve the sample efficiency of online policy gradient
algorithms by using our corrected gradient estimates.

In parallel with our work, Zhang et al. (2019) have pre-
sented a different approach for off-policy policy gradient,
motivated by a similar recognition of the bias in the Off-
PAC gradient estimator. While similarly motivated, the two
works have important differences. On the methodological
side, Zhang et al. (2019) start from an off-policy objective
function and derive a gradient for it. In contrast, we compute
an off-policy estimator for the gradient of the on-policy ob-
jective function. The latter leads to a much simpler method,
both conceptually and computationally, as we do not need
to compute the gradients of the visitation distribution. On
the other hand, Zhang et al. (2019) focus on incorporating
more general interest functions in the off-policy objective,
and use the emphatic weighting machinery for obtaining the
gradient of their off-policy objective. In terms of settings,
our approach works in the offline setting (though easily ex-
tended to online), while they require an online setting in
order to compute the gradients of the propensity score func-
tion. Finally, we present convergence results quantifying the
error in our critic and propensity score computations while
Zhang et al. (2019) assume a perfect oracle for both and rely
on a truly unbiased gradient estimator for the convergence
results.

To conclude, our algorithm fixes the bias in off-policy pol-
icy gradient estimates introduced by the behavior policy’s
stationary state distribution. We prove under certain as-
sumptions our algorithm is guaranteed to converge. We also
show that ignoring the bias due to the mismatch in state
distributions can make an off policy gradient algorithm fail
even in a simple illustrative example, and that by accounting
for this mismatch our approach yields significantly better
performance in two simulation domains.
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A. Algorithm Psuedo-code

Algorithm 1 OPPOSD: Off-Policy Policy Optimization with State Distribution Correction

Require: S,A, µ,D :
{
{sit, ait, rit, µ(ait|sit)}Tt=0

}n
i=0

Require: Hyperparameters λ, γ, Nw, αw, Nc, αc, α
1: Warm start πθ, V̂θc , wθw
2: Pad D to get D′, µ̃ if necessary
3: for each step of policy update do
4: for state ratio updates i = 1, 2, . . . , Nw do
5: Sample a mini-batch Bw ∼ D′ according to d̂γ 3

6: if γ = 1 then
7: Perform one update according to Algorithm 1 in Liu et al. (2018a) with stepsize αw
8: else
9: Perform one update according to Algorithm 2 in Liu et al. (2018a) with stepsize αw

10: end if
11: end for
12: for critic updates i = 1, 2, . . . , Nc do
13: Sample a mini-batch Bc ∼ D′

14: θc ← θc − αc ∂`c∂θc
, where: `c = 1

|Bc|
∑

(s,a,s′)∼Bc
π(a|s)
µ̃(a|s)

(
Rλ(s, a)− V̂ (s)

)2
15: end for
16: Sample a mini-batch Ba ∼ D′ according to d̂γ
17: zw ← 1

|Ba|
∑
s∼Ba w(s)

18: Qπ(s, a)← 1{(s, a) ∈ SAµ}Rλ(s, a)

19: θ ← θ − α
|Ba|

∑
s∼Ba

w(s)
zw

ρ(s, a)∂ log π(a|s)
∂θ Qπ(s, a)

20: end for

B. Proof of Theorem 3
We first state and prove an abstract result. Suppose we have a function f : Rd → R which is differentiable, G-Lipschitz and
L-smooth, and f attains a finite minimum value f∗ := minx∈Rd f(x). Suppose we have access to a noisy gradient oracle
which returns a vector ζ(x) ∈ Rd given a query point x. We say that the vector is σ,B-accurate for parameter σ,B ≥ 0 if
for all x ∈ Rd, the quantity δ(x) := ζ(x)−∇f(x) satisfies

‖E [δ(x) | x] ‖ ≤ B and E
[
‖δ(x)‖2 | x

]
≤ 2(σ2 +B2). (6)

Notice that the expectations above are only with respect to any randomness in the oracle, while holding the query point fixed.
Suppose we run the stochastic gradient descent algorithm using the oracle responses, that is we update xk+1 = xk − ηζ(xk).
While several results for the convergence of stochastic gradient descent to a stationary point of a smooth, non-convex
function are well-known, we could not find a result for the biased oracle assumed here and hence we provide a result from
first principles. We have the following guarantee on the convergence of the sequence xk to an approximate stationary point
of f .

Theorem 4. Suppose f is differentiable and L-smooth, and the approximate gradient oracle satisfies the conditions (6)
with parameters (σk, Bk) at iteration k. Then stochastic gradient descent with the oracle, with an initial solution x1 and
stepsize η = 1/L satisfies after K iterations:

1

K

K∑
k=1

E[‖∇f(xk)‖2] ≤ 2

K
(f(x1)− f∗) +

2

LK

K∑
k=1

(σ2
k +B2

k).

3d̂γ = 1∑T
t=0 γ

t

∑T
t=0 γ

td̂t(s), where d̂t(s) is the empirical state distribution at time step t in dataset D′
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Proof. Since f is L-smooth, we have

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− η〈∇f(xk), ζ(xk)〉+
Lη2

2
‖ζ(xk)‖2

= f(xk)− η〈∇f(xk), δ(xk) +∇f(xk)〉+
Lη2

2
‖δ(xk) +∇f(xk)‖

= f(xk) + ‖∇f(xk)‖2
(
Lη2

2
− η
)
− (η − Lη2)〈∇f(xk), δ(xk)〉+

Lη2

2
‖δ(xk)‖2 .

Here the first equality follows from our update rule while the remaining simply use the definition of δ along with algebraic
manipulations. Now taking expectations of both sides, we obtain

E[f(xk+1)] ≤ E[f(xk)] + E[‖∇f(xk)‖2]

(
Lη2

2
− η
)

+ (η − Lη2)GBk + Lη2(σ2
k +B2

k),

where we have invoked the properties of the oracle to bound the last two terms. Summing over iterations k = 1, 2, . . . ,K,
we obtain

E[f(xk+1)] ≤ f(x1) +

(
Lη2

2
− η
) K∑
k=1

E[‖∇f(xk)‖2] + η

K∑
k=1

(GBk(1− Lη) + Lη(σ2
k +B2

k)).

Rearranging terms, and using that f(xK+1) ≥ f∗, we obtain

1

K

K∑
k=1

E[‖∇f(xk)‖2] ≤ f(x1)− f(x∗)

K(η − Lη2/2)
+
η
∑K
k=1(GBk(1− Lη) + Lη(σ2

k +B2
k))

K(η − Lη2/2)
.

Now using the choice η = 1/L and simplifying, we obtain the statement of the theorem.

The theorem tells us that if we pick an iterate uniformly at random from x1, . . . , xK , then it is an approximate stationary
point in expectation, up to an accuracy which is determined by the bias and variance of the stochastic gradient oracle.

Given this abstract result, we can now prove Theorem 3 by instantiating the errors in the gradient oracle as a function of our
assumptions.

Proof of Theorem 3 We now instantiate the result and assumptions for the case of the off-policy policy gradient method.
First, note that the algorithm is stochastic gradient ascent for maximizing the expected return J(θ) := Rπθ . Thus we can
apply Theorem 4 with f = −J , so that f(x1)− f∗ ≤ Vmax where Vmax is an upper bound on the value of any policy in the
MDP. f attains a finite minimum value since the expected return has a finite maximum value. We focus on quantifying the
bias B in terms of errors in the critic and propensity score computations first. We first introduce some additional notation.
Suppose wθ(s) and Qθ(s, a) are the true propensity (in terms of state distributions, relative to µ) and Q-value functions for
a policy πθ. Let gθ(s, a) = ∂ log πθ(a|s)

∂θ . Suppose we are given estimators ŵ and Q̂ for wθ and Qθ respectively. Then our
estimated and true off-policy policy gradients can be written as:

∇θJ(θ) = Eν [wρgθQ
π] and ζ(θ) = ŵρgθQ̂.

Now the bias can be bounded as

‖E[ζ(θ)−∇J(θ)|θ]‖ =
∥∥∥Eν [wρgθQ

θ − ŵρgθQ̂]
∥∥∥

≤
∥∥Eν [(w − ŵ)ρgθQ

θ]
∥∥+

∥∥∥Eν [ŵρgθ(Q
θ − Q̂)]

∥∥∥ .
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How we simplify further depends on the assumptions we make on the errors in ŵ and Q̂. As a natural assumption, suppose

that the relative errors are bounded in MSE, that is Eν(w(s)− ŵ(s))2 ≤ ε2w and Eν
(
Qθ(s, a)− Q̂(s, a)

)2
≤ ε2Q. Then by

Cauchy-Shwartz inequality, we can simplify the above bias term as

‖E[ζ(θ)−∇J(θ)|θ]‖ ≤ εw
∥∥∥∥√Eν [ρgθQθ]2

∥∥∥∥+ εQ

∥∥∥√Eν [ρgθŵ]2
∥∥∥ ,

where the operations of squaring and square root are applied elementwise to the vector gθ. By Assumption 2 we have
Qθ ≤ Vmax, ŵ(s) ≤ wmax for all s, a, and

‖ρ(s, a)gθ(s, a)‖ =

∥∥∥∥ 1

ν(a|s)
∂πθ(a|s)
∂θ

∥∥∥∥ ≤ Gmax

νmin

Then the bound on the bias further simplifies to

‖E[ζ(θ)−∇J(θ)|θ]‖ ≤ εwGmaxVmax/νmin + εQGmaxwmax/νmin

Similarly, for the variance we have

E[‖ζ(θ)−∇J(θ)‖2 |θ] ≤ 2Eν [
∥∥(ŵ − w)ρgθQ

θ
∥∥2] + 2Eν [

∥∥∥ŵρgθ(Q̂−Qθ)∥∥∥2]

≤ 2ε2wG
2
maxV

2
max/ν

2
min + 2ε2Qw

2
maxG

2
max/ν

2
min.

Hence, the RHS of Theorem 4 simplifies to

2Vmax

K
+O

(∑T
k=1 ε

2
w,kG

2
maxV

2
max/ν

2
min + ε2Q,kw

2
maxG

2
max/ν

2
min

K

)
,

where εw,k and εQ,k are the error parameters in the propensity scores and critic at the kth iteration of our algorithm. Since
we update these quantities online along with the policy parameters, we expect εw,k and εQ,k to decrease as k increases. That
is, assuming that ν satisfies the coverage assumptions with finite upper bounds on the propensities and the policy class is
Lipschitz continuous in its parameters, the scheme converges to an approximate stationary point given estimators ŵ and Q̂
with a small average MSE across the iterations under ν.

C. Details for Experiments
In this section we will show some important details and hyper-parameter settings of our algorithm in experiments. We use
three separate neural networks, one for each of actor, critic, and the state distribution ratio model w. We use the Adam
optimizer for all of them. We also use a entropy regularization for the actor. We warm start the actor by maximizing the
log-likelihood of actor on the collected dataset. For critic, we use the same critic algorithm as we used in Algorithm 1 except
that there is no importance sampling ratio (as it is on-policy for the warm start). For the warm start of w, we just fit the w for
several iterations using the warm start policy found for the actor. Warm start uses the same learning rates as normal training.
For critic and w, we also keep the state of optimizer to be the same when we start normal training.

In the table below we show some hyper-parameters setting we used in both domain:

We also follow the details in Algorithm 1 and Algorithm 2 of Liu et al. (2018a) to learn w. We scale the inputs to w so that
the whole off-policy dataset has zero mean and standard deviation of 1 along each dimension in state space. We use the RBF
kernel to compute the loss function for w. For the CartPole simulator, the kernel bandwidth is set to be the median of state
distance. If computing this median state distance over the whole off-policy dataset is computationally too expensive, it can
be approximated using a mini-batch. In the HIV domain the bandwidth is set to be 1. When we compute the loss of w, we
need to sample two mini-batch independently to get an unbiased estimates of the quadratic loss. The loss in each pair of
mini-batch is normalized by the sum of kernel matrix elements computed from them.
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Hyper-parameters cart pole HIV
γ 1.0 0.98
λ 0. 0.

entropy coefficient 0.01 0.03
learning rate (actor) 1e-3 5e-6
learning rate (critic) 1e-3 1e-3

learning rate (w) 1e-3 3e-4
batch size (actor) 5000 5000
batch size (critic) 5000 5000

batch size (w) 200 200
number of iterations (critic) 10 10

number of iterations (w) 50 50
weight decay (w) 1e-5 1e-5

behavior cloning number of iterations 2000 2000
warm start number of iterations (crtic) 500 2500

warm start number of iterations (w) 500 2500

Figure 4. Episodic scores over length 200 episodes in HIV treatment simulator.

C.1. Choice of Algorithm with Discounted Reward

In discounted reward settings, the state distribution is also defined with respect to the discount factor γ, and Liu et al.
(2018a) introduce an algorithm to learn state distribution ratio in this setting. However, we notice that in on-policy policy
learning cases, though the policy gradient theorem (Sutton et al., 2000) requires samples from the stationary state distribution
defined using the discount factor, it is common to directly use the collected samples to compute policy gradient without
re-sampling/re-weighting (s, a, r, s′)’s according to the discounted stationary distribution. This might be driven by sample
efficiency concerns, as samples at later time-steps in the discounted stationay distribution will receive exponentially small
probability, meaning they are not leveraged as effectively by the algorithm. Given this, we compare three different variants
of our algorithm in HIV experiment with discounted reward. The first (OPPOSD average) variant uses the algorithm for
the average reward setting, but evaluates its discounted reward. The second learns the state distribution ratio w(s) in the
discounted case (Algorithm 2 in (Liu et al., 2018a)), but still samples from the undiscounted distribution to compute the
gradient (OPPOSD disc w). The third learns the state distribution ratio w(s) in the discounted case and also re-samples the
samples according to dπ(s) = lim

T→∞
1∑T
t=0 γ

t

∑T
t=0 γ

tdπt (s) (OPPOSD). In the main body of paper, we select the third one

as it is the most natural way from the definition of problem and policy gradient theorem. Results of these three methods are
demonstrated in Figure 4 and they do not have significant differences in this experiment.


