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Abstract

In this paper, we investigate learning the deep neural networks for automated optical1

inspection in industrial manufacturing. Our preliminary result has shown the stun-2

ning performance improvement by transfer learning from the completely dissimilar3

source domain: ImageNet. Further study for demystifying this improvement shows4

that the transfer learning produces a highly compressible network, which was not5

the case for the network learned from scratch. The experimental result shows that6

there is a negligible accuracy drop in the network learned by transfer learning until7

it is compressed to 1/128 reduction of the number of convolution filters. This result8

is contrary to the compression without transfer learning which loses more than 5%9

accuracy at the same compression rate.10

1 Introduction11

Since every manufactured product must pass the inspection process of detecting defects on the product12

surface, the fast and accurate inspection algorithm is essential in the manufacturing industry. Contrary13

to the success in natural image detection using sufficient data [4, 7], the available images of product14

surfaces, in particular those containing the patterns of defects, are insufficient for the reliable training15

of the deep structured network. While training the network from scratch only produces 81.07%16

performance, we previously reported the 99.90% performance when the whole network is fine-tuned17

from a successfully learned network for imageNet classification [2]. The result is non-trivial because18

the images in the ImageNet source domain do not overlap with the visual inspection images in the19

target domain as shown in Figure 1.20

In this paper, we investigate the compression of the learned network for fast inference. Once the21

network is learned by transfer learning, the activation of the neurons is very sparse. Different from the22

result in [2], the network trained from scratch can also achieve 99.78% accuracy with the extensively23

augmented data and a long period of training. Surprisingly, however, although the performance of24

both networks is similar, the network trained from scratch learns much denser features of the input25

data than the network trained by transfer learning. We experimentally show that using standard26

teacher-student model compression technique [3], the network trained by transfer learning can be27

compressed to 1/128 reduction of the number of convolution filters with a negligible accuracy drop.28

In contrast, the network trained from scratch loses more than 5% accuracy at the same compression29

rate. Previous works on the network compression have focused on the methods of compression30

[3, 5, 6, 9], but our work is the first report to the best of our knowledge that the transfer learning is31

related to the network compression.32

The rest of the paper is organized as follows. In Section 2, we explain the method of experiments and33

show the compression result in Section 2.3. Finally, we conclude with a brief discussion in Section 3.34
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(a) Source domain (ImageNet)

(b) Target domain (DAGM) (c) PCA embedding
Figure 1: Sample images of the source and target domains,
and their embedding result using PCA. Both domains are
clearly dissimilar each other.

Table 1: Teacher network result
Method Accuracy Convergence time

(SGD iterations)

Scratch 81.07% 35,880
(no aug)

Scratch 99.78% 165,600
(aug)

TL 99.90% 2242
(no aug)

Figure 2: Output activations of the last convolutional layer of the Scratch (middle) and TL (right)
teacher networks for a given input image (left).

2 Methods and experimental results35

Following the neural network compression framework of [3], we first train the high performance36

deep teacher network and train a shallow student network to mimic it. To summarize the main results,37

the teacher network trained by transfer learning can be compressed to the shallow student network38

with 1/156 number of parameters and achieves 40× faster inference speed while showing less than39

1% accuracy drop (Table 2). Details of the experiments are explained below.40

2.1 Target problem41

The target problem is a texture inspection problem that the dataset is publicly accessible in the DAGM42

[1]. The dataset contains six patterns of texture with each pattern containing 1000 non-defective43

and 150 defective images, resulting in 6900 images of 12 classes (Figure 1b). The entire dataset is44

randomly divided into 80% for training (5520 images) and 20% for evaluation (1380 images).45

2.2 Teacher networks: training from scratch vs transfer learning46

We use the VGG16 [8] as a teacher network. We train the teacher network in two different ways with47

the same optimizer setting (SGD with batch size 32 and learning rate 10−3). In the first case, we48

randomly initialize all weights in the network and train it directly on the target problem from scratch.49

We denote this deep teacher network as a Scratch. Since the number of training data is insufficient,50

the accuracy of the network no longer increases at 81.07% without any data augmentation. On the51

other hand, if we augment the training data by adding rotated and flipped images, the network can be52

successfully trained to achieve 99.78% accuracy after 165k iterations of training (Table 1).53

For the second case of the teacher network, we apply transfer learning to train the network. We54

denote this teacher network as a TL. The source domain of the transfer learning is the ImageNet data55

[7] (Figure 1a) where the images bear almost no similarity to the target inspection data (Figure 1b).56

We can clearly see the dissimilarity between each domain by embedding features extracted from57

both datasets using principal component analysis (PCA) (Figure 1c). We follow the transfer learning58

method of [2] that weights of the target network initialized with the weights of the source network59

only up to convolutional layers. Then, the network is fine-tuned using target data without any data60

augmentation. Even though the source and target domains are completely dissimilar from each other,61

the network trained by transfer learning converge to 99.90% accuracy 70× faster than training from62

scratch (Table 1). In addition, when we visualize the activation of the last convolutional layer for63
2



Reduce only upper part

The number of convolutional filters with respect to the original value

Figure 3: Neural network compression results (Scratch teacher network vs TL teacher network).

Table 2: Summary of neural network compression results
Model Number of parameters Accuracy (%) Inference speed (ms/image)

Teacher Network (TL) 134 million 99.90 57.43
Student Network (TL) 858,380 99.42 1.46
Student Network (Scratch) 858,380 94.92 1.46

a given input image, we can see that the TL teacher network learns much sparser features of the64

input data than the Scratch teacher network (Figure 2). The sparsity of activation in the TL teacher65

network suddenly increases sharply from the eighth convolutional layer and reaches 99.10% at the66

last convolutional layer.67

2.3 Neural network compression: Scratch teacher network vs TL teacher network68

The student network is trained to learn the input-output mapping function of the teacher network69

by regressing the logits output of the teacher network [3]. For training the student network, we70

use the data same as the teacher network training set with the augmented version. Focusing on71

accelerating the inference time, we design the shallow student network as following rules. We remove72

the first fully-connected layer to reduce the number of parameters in the network. In addition, we73

eliminate eight of the 13 convolutional layers that account for a large part of the computational74

cost. The number of filters in remaining convolutional layers is denoted as N1, N2, N3, N4, and N575

respectively. Then, we gradually reduce the number of filters in all convolutional layers by half from76

the original value (N1, N2, N3, N4, N5) = (64, 128, 256, 512, 512). The accuracy of both teacher77

networks is maintained until we reduce the number of all convolutional filters to 1/16. However, when78

it is reduced to 1/32, a sudden accuracy drop occurs to 82% accuracy in both networks. Using the fact79

that the sparsity of the activation grows rapidly from the eighth convolutional layer of the TL teacher80

network, we further reduce only upper part of the student network (N4, N5). The TL teacher network81

has a negligible accuracy drop until the upper part is compressed to 1/128. In contrast, compressing82

the Scratch teacher network loses more than 5% accuracy at the same compression point (Figure 3).83

Combining the results, the final compressed student model is (N1, N2, N3, N4, N5) = (4, 8, 16, 4, 4).84

The student network compressed from TL teacher network has 1/156 number of parameters and85

achieves 40× faster inference speed while only 0.48% accuracy drop (Table 2).86

3 Conclusion87

Through experiments using inspection data, we show that the high performance, lightweight shallow88

network can be obtained for optical inspection via compressing the deep network trained by transfer89

learning. When the performance of two networks is similar, sparse features learned in the network90

seems to play a key role in model compression. This result proposes that in addition to the compression91

method, what the deep network has learned is also important to the model compression framework.92
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