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Abstract

In this paper, we propose to extend the recently
introduced model-agnostic meta-learning al-
gorithm (MAML, Finn et al., 2017) for low-
resource neural machine translation (NMT).
We frame low-resource translation as a meta-
learning problem, and we learn to adapt to
low-resource languages based on multilingual
high-resource language tasks. We use the uni-
versal lexical representation (Gu et al., 2018b)
to overcome the input-output mismatch across
different languages. We evaluate the proposed
meta-learning strategy using eighteen Euro-
pean languages (Bg, Cs, Da, De, El, Es, Et,
Fr, Hu, It, Lt, Nl, Pl, Pt, Sk, Sl, Sv and Ru)
as source tasks and five diverse languages (Ro,
Lv, Fi, Tr and Ko) as target tasks. We show that
the proposed approach significantly outper-
forms the multilingual, transfer learning based
approach (Zoph et al., 2016) and enables us
to train a competitive NMT system with only
a fraction of training examples. For instance,
the proposed approach can achieve as high as
22.04 BLEU on Romanian-English WMT’16
by seeing only 16,000 translated words (∼ 600
parallel sentences).

1 Introduction

Despite the massive success brought by neural ma-
chine translation (NMT, Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017), it
has been noticed that the vanilla NMT often lags
behind conventional machine translation systems,
such as statistical phrase-based translation sys-
tems (PBMT, Koehn et al., 2003), for low-resource
language pairs (see, e.g., Koehn and Knowles,
2017). In the past few years, various approaches
have been proposed to address this issue. The
first attempts at tackling this problem exploited
the availability of monolingual corpora (Gulcehre
et al., 2015; Sennrich et al., 2015; Zhang and
Zong, 2016). It was later followed by approaches

based on multilingual translation, in which the
goal was to exploit knowledge from high-resource
language pairs by training a single NMT system
on a mix of high-resource and low-resource lan-
guage pairs (Firat et al., 2016a,b; Lee et al., 2016;
Johnson et al., 2016; Ha et al., 2016b). Its variant,
transfer learning, was also proposed by Zoph et al.
(2016), in which an NMT system is pretrained on
a high-resource language pair before being fine-
tuned on a target low-resource language pair.

In this paper, we follow up on these latest ap-
proaches based on multilingual NMT and propose
a meta-learning algorithm for low-resource neural
machine translation. We start by arguing that the
recently proposed model-agnostic meta-learning
algorithm (MAML, Finn et al., 2017) could be ap-
plied to low-resource machine translation by view-
ing language pairs as separate tasks. This view en-
ables us to use MAML to find the initialization of
model parameters that facilitate fast adaptation for
a new language pair with a minimal amount of
training examples (§3). Furthermore, the vanilla
MAML however cannot handle tasks with mis-
matched input and output. We overcome this limi-
tation by incorporating the universal lexical repre-
sentation (Gu et al., 2018b) and adapting it for the
meta-learning scenario (§3.3).

We extensively evaluate the effectiveness and
generalizing ability of the proposed meta-learning
algorithm on low-resource neural machine trans-
lation. We utilize 17 languages from Europarl and
Russian from WMT as the source tasks and test
the meta-learned parameter initialization against
five target languages (Ro, Lv, Fi, Tr and Ko), in
all cases translating to English. Our experiments
using only up to 160k tokens in each of the tar-
get task reveal that the proposed meta-learning
approach outperforms the multilingual translation
approach across all the target language pairs, and
the gap grows as the number of training examples
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decreases.

2 Background

Neural Machine Translation (NMT) Given a
source sentence X = {x1, ..., xT ′}, a neural ma-
chine translation model factors the distribution
over possible output sentences Y = {y1, ..., yT }
into a chain of conditional probabilities with a left-
to-right causal structure:

p(Y |X; θ) =
T+1∏
t=1

p(yt|y0:t−1, x1:T ′ ; θ), (1)

where special tokens y0 (〈bos〉) and yT+1 (〈eos〉)
are used to represent the beginning and the end of
a target sentence. These conditional probabilities
are parameterized using a neural network. Typi-
cally, an encoder-decoder architecture (Sutskever
et al., 2014; Cho et al., 2014; Bahdanau et al.,
2015) with a RNN-based decoder is used. More
recently, architectures without any recurrent struc-
tures (Gehring et al., 2017; Vaswani et al., 2017)
have been proposed and shown to speedup training
while achieving state-of-the-art performance.

Low Resource Translation NMT is known to
easily over-fit and result in an inferior performance
when the training data is limited (Koehn and
Knowles, 2017). In general, there are two ways for
handling the problem of low resource translation:
(1) utilizing the resource of unlabeled monolin-
gual data, and (2) sharing the knowledge between
low- and high-resource language pairs. Many re-
search efforts have been spent on incorporating
the monolingual corpora into machine translation,
such as multi-task learning (Gulcehre et al., 2015;
Zhang and Zong, 2016), back-translation (Sen-
nrich et al., 2015), dual learning (He et al., 2016)
and unsupervised machine translation with mono-
lingual corpora only for both sides (Artetxe et al.,
2017b; Lample et al., 2017; Yang et al., 2018).

For the second approach, prior researches have
worked on methods to exploit the knowledge of
auxiliary translations, or even auxiliary tasks. For
instance, Cheng et al. (2016); Chen et al. (2017);
Lee et al. (2017); Chen et al. (2018) investigate
the use of a pivot to build a translation path be-
tween two languages even without any directed re-
source. The pivot can be a third language or even
an image in multimodal domains. When pivots are
not easy to obtain, Firat et al. (2016a); Lee et al.
(2016); Johnson et al. (2016) have shown that the

structure of NMT is suitable for multilingual ma-
chine translation. Gu et al. (2018b) also showed
that such a multilingual NMT system could im-
prove the performance of low resource translation
by using a universal lexical representation to share
embedding information across languages. All the
previous work for multilingual NMT assume the
joint training of multiple high-resource languages
naturally results in a universal space (for both the
input representation and the model) which, how-
ever, is not necessarily true, especially for very low
resource cases.

Meta Learning In the machine learning com-
munity, meta-learning, or learning-to-learn, has
recently received interests. Meta-learning tries to
solve the problem of “fast adaptation on new train-
ing data.” One of the most successful applications
of meta-learning has been on few-shot (or one-
shot) learning (Lake et al., 2015), where a neural
network is trained to readily learn to classify in-
puts based on only one or a few training examples.
There are two categories of meta-learning:

1. learning a meta-policy for updating model
parameters (see, e.g., Andrychowicz et al.,
2016; Ha et al., 2016a; Mishra et al., 2017)

2. learning a good parameter initialization for
fast adaptation (see, e.g., Finn et al., 2017;
Vinyals et al., 2016; Snell et al., 2017).

In this paper, we propose to use a meta-learning
algorithm for low-resource neural machine trans-
lation based on the second category. More specifi-
cally, we extend the idea of model-agnostic meta-
learning (MAML, Finn et al., 2017) in the multi-
lingual scenario.

3 Meta Learning for Low-Resource
Neural Machine Translation

The underlying idea of MAML is to use a set of
source tasks

{
T 1, . . . , T K

}
to find the initializa-

tion of parameters θ0 from which learning a tar-
get task T 0 would require only a small number of
training examples. In the context of machine trans-
lation, this amounts to using many high-resource
language pairs to find good initial parameters and
training a new translation model on a low-resource
language starting from the found initial parame-
ters. This process can be understood as

θ∗ = Learn(T 0; MetaLearn(T 1, . . . , T K)).
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Figure 1: The graphical illustration of the training process of the proposed MetaNMT. For each episode,
one task (language pair) is sampled for meta-learning. The boxes and arrows in blue are mainly involved
in language-specific learning (§3.1), and those in purple in meta-learning (§3.2).

That is, we meta-learn the initialization from aux-
iliary tasks and continue to learn the target task.
We refer the proposed meta-learning method for
NMT to MetaNMT. See Fig. 1 for the overall il-
lustration.

3.1 Learn: language-specific learning

Given any initial parameters θ0 (which can be ei-
ther random or meta-learned), the prior distribu-
tion of the parameters of a desired NMT model
can be defined as an isotropic Guassian:

θi ∼ N (θ0i , 1/β),

where 1/β is a variance. With this prior distri-
bution, we formulate the language-specific learn-
ing process Learn(DT ; θ0) as maximizing the log-
posterior of the model parameters given data DT :

Learn(DT ; θ0) = arg max
θ
LDT (θ)

= arg max
θ

∑
(X,Y )∈DT

log p(Y |X, θ)− β‖θ − θ0‖2,

where we assume p(X|θ) to be uniform. The first
term above corresponds to the maximum likeli-
hood criterion often used for training a usual NMT
system. The second term discourages the newly
learned model from deviating too much from the
initial parameters, alleviating the issue of over-
fitting when there is not enough training data. In
practice, we solve the problem above by maximiz-
ing the first term with gradient-based optimization
and early-stopping after only a few update steps.
Thus, in the low-resource scenario, finding a good
initialization θ0 strongly correlates the final per-
formance of the resulting model.

3.2 MetaLearn
We find the initialization θ0 by repeatedly simulat-
ing low-resource translation scenarios using auxil-
iary, high-resource language pairs. Following Finn
et al. (2017) we achieve this goal by defining the
meta-objective function as

L(θ) =EkEDT k ,D
′
T k

(2) ∑
(X,Y )∈D′

T k

log p(Y |X; Learn(DT k ; θ))

 ,
where k ∼ U({1, . . . ,K}) refers to one meta-
learning episode, and DT , D′T follow the uniform
distribution over T ’s data.

We maximize the meta-objective function using
stochastic approximation (Robbins and Monro,
1951) with gradient descent. For each episode,
we uniformly sample one source task at random,
T k. We then sample two subsets of training ex-
amples independently from the chosen task, DT k

andD′T k . We use the former to simulate language-
specific learning and the latter to evaluate its out-
come. Assuming a single gradient step is taken
only the with learning rate η, the simulation is:

θ′k = Learn(DT k ; θ) = θ − η∇θLDT k (θ).

Once the simulation of learning is done, we evalu-
ate the updated parameters θ′k on D′T k , The gra-
dient computed from this evaluation, which we
refer to as meta-gradient, is used to update the
meta model θ. It is possible to aggregate multiple
episodes of source tasks before updating θ:

θ ← θ − η′
∑
k

∇θLD
′
T k (θ′k),
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Figure 2: An intuitive il-
lustration in which we
use solid lines to repre-
sent the learning of ini-
tialization, and dashed
lines to show the path of
fine-tuning.

where η′ is the meta learning rate.
Unlike a usual learning scenario, the resulting

model θ0 from this meta-learning procedure is not
necessarily a good model on its own. It is however
a good starting point for training a good model us-
ing only a few steps of learning. In the context of
machine translation, this procedure can be under-
stood as finding the initialization of a neural ma-
chine translation system that could quickly adapt
to a new language pair by simulating such a fast
adaptation scenario using many high-resource lan-
guage pairs.

Meta-Gradient We use the following approxi-
mation property

H(x)v ≈ ∇(x+ νv)−∇(x)

ν

to approximate the meta-gradient:1

∇θLD
′
(θ′) = ∇θ′LD

′
(θ′)∇θ(θ − η∇θLD(θ))

= ∇θ′LD
′
(θ′)− η∇θ′LD

′
(θ′)Hθ(LD(θ))

≈ ∇θ′LD
′
(θ′)− η

ν

[
∇θLD(θ)

∣∣∣∣
θ̂

−∇θLD(θ)

∣∣∣∣
θ

]
,

where ν is a small constant and

θ̂ = θ + ν∇θ′LD
′
(θ′).

In practice, we find that it is also possible to ignore
the second-order term, ending up with the follow-
ing simplified update rule:

∇θLD
′
(θ′) ≈ ∇θ′LD

′
(θ′). (3)

Related Work: Multilingual Transfer Learning
The proposed MetaNMT differs from the existing
framework of multilingual translation (Lee et al.,
2016; Johnson et al., 2016; Gu et al., 2018b) or
transfer learning (Zoph et al., 2016). The latter can
be thought of as solving the following problem:

max
θ
Lmulti(θ) = Ek

 ∑
(X,Y )∈Dk

log p(Y |X; θ)

 ,
1We omit the subscript k for simplicity.

whereDk is the training set of the k-th task, or lan-
guage pair. The target low-resource language pair
could either be a part of joint training or be trained
separately starting from the solution θ0 found from
solving the above problem.

The major difference between the proposed
MetaNMT and these multilingual transfer ap-
proaches is that the latter do not consider how
learning happens with the target, low-resource lan-
guage pair. The former explicitly incorporates the
learning process within the framework by simulat-
ing it repeatedly in Eq. (2). As we will see later in
the experiments, this results in a substantial gap in
the final performance on the low-resource task.

Illustration In Fig. 2, we contrast transfer learn-
ing, multilingual learning and meta-learning us-
ing three source language pairs (Fr-En, Es-En and
Pt-En) and two target pairs (Ro-En and Lv-En).
Transfer learning trains an NMT system specifi-
cally for a source language pair (Es-En) and fine-
tunes the system for each target language pair (Ro-
En, Lv-En). Multilingual learning often trains a
single NMT system that can handle many different
language pairs (Fr-En, Pt-En, Es-En), which may
or may not include the target pairs (Ro-En, Lv-
En). If not, it finetunes the system for each target
pair, similarly to transfer learning. Both of these
however aim at directly solving the source tasks.
On the other hand, meta-learning trains the NMT
system to be useful for fine-tuning on various tasks
including the source and target tasks. This is done
by repeatedly simulating the learning process on
low-resource languages using many high-resource
language pairs (Fr-En, Pt-En, Es-En).

3.3 Unified Lexical Representation
I/O mismatch across language pairs One ma-
jor challenge that limits applying meta-learning
for low resource machine translation is that the ap-
proach outlined above assumes the input and out-
put spaces are shared across all the source and tar-
get tasks. This, however, does not apply to ma-
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chine translation in general due to the vocabulary
mismatch across different languages. In multilin-
gual translation, this issue has been tackled by us-
ing a vocabulary of sub-words (Sennrich et al.,
2015) or characters (Lee et al., 2016) shared across
multiple languages. This surface-level sharing is
however limited, as it cannot be applied to lan-
guages exhibiting distinct orthography (e.g., Indo-
Euroepan languages vs. Korean.)

Universal Lexical Representation (ULR) We
tackle this issue by dynamically building a vo-
cabulary specific to each language using a key-
value memory network (Miller et al., 2016; Gul-
cehre et al., 2018), as was done successfully for
low-resource machine translation recently by Gu
et al. (2018b). We start with multilingual word em-
bedding matrices εkquery ∈ R|Vk|×d pretrained on
large monolingual corpora, where Vk is the vo-
cabulary of the k-th language. These embedding
vectors can be obtained with small dictionaries of
seed word pairs (Artetxe et al., 2017a; Smith et al.,
2017) or in a fully unsupervised manner (Zhang
et al., 2017; Alexis et al., 2018). We take one of
these languages k′ to build universal lexical repre-
sentation consisting of a universal embedding ma-
trix εu ∈ RM×d and a corresponding key matrix
εkey ∈ RM×d, where M < |V ′k|. Both εkquery and
εkey are fixed during meta-learning. We then com-
pute the language-specific embedding of token x
from the language k as the convex sum of the uni-
versal embedding vectors by

ε0[x] =
M∑
i=1

αiεu[i],

where αi ∝ exp
{
− 1
τ εkey[i]>Aεkquery[x]

}
and τ is

set to 0.05. This approach allows us to handle lan-
guages with different vocabularies using a fixed
number of shared parameters (εu, εkey and A.)

Learning of ULR It is not desirable to update
the universal embedding matrix εu when fine-
tuning on a small corpus which contains a lim-
ited set of unique tokens in the target language,
as it could adversely influence the other tokens’
embedding vectors. We thus estimate the change
to each embedding vector induced by language-
specific learning by a separate parameter ∆εk[x]:

εk[x] = ε0[x] + ∆εk[x].

During language-specific learning, the ULR ε0[x]
is held constant, while only ∆εk[x] is updated,

# of sents. # of En tokens Dev Test

Ro-En 0.61 M 16.66 M − 31.76
Lv-En 4.46 M 67.24 M 20.24 15.15
Fi-En 2.63 M 64.50 M 17.38 20.20
Tr-En 0.21 M 5.58 M 15.45 13.74

Ko-En 0.09 M 2.33 M 6.88 5.97

Table 1: Statistics of full datasets of the target lan-
guage pairs. BLEU scores on the dev and test sets
are reported from a supervised Transformer model
with the same architecture.

starting from an all-zero vector. On the other hand,
we hold ∆εk[x]’s constant while updating εu and
A during the meta-learning stage.

4 Experimental Settings

4.1 Dataset

Target Tasks We show the effectiveness of the
proposed meta-learning method for low resource
NMT with extremely limited training examples
on five diverse target languages: Romanian (Ro)
from WMT’16,2 Latvian (Lv), Finnish (Fi), Turk-
ish (Tr) from WMT’17,3 and Korean (Ko) from
Korean Parallel Dataset.4 We use the officially
provided train, dev and test splits for all these lan-
guages. The statistics of these languages are pre-
sented in Table 1. We simulate the low-resource
translation scenarios by randomly sub-sampling
the training set with different sizes.

Source Tasks We use the following languages
from Europarl5: Bulgarian (Bg), Czech (Cs), Dan-
ish (Da), German (De), Greek (El), Spanish (Es),
Estonian (Et), French (Fr), Hungarian (Hu), Ital-
ian (It), Lithuanian (Lt), Dutch (Nl), Polish (Pl),
Portuguese (Pt), Slovak (Sk), Slovene (Sl) and
Swedish (Sv), in addition to Russian (Ru)6 to
learn the intilization for fine-tuning. In our exper-
iments, different combinations of source tasks are
explored to see the effects from the source tasks.

Validation We pick either Ro-En or Lv-En as a
validation set for meta-learning and test the gener-
alization capability on the remaining target tasks.
This allows us to study the strict form of meta-
learning, in which target tasks are unknown during

2 http://www.statmt.org/wmt16/translation-task.html
3 http://www.statmt.org/wmt17/translation-task.html
4 https://sites.google.com/site/koreanparalleldata/
5 http://www.statmt.org/europarl/
6 A subsample of approximately 2M pairs from WMT’17.

http://www.statmt.org/wmt16/translation-task.html
http://www.statmt.org/wmt17/translation-task.html
https://sites.google.com/site/koreanparalleldata/
http://www.statmt.org/europarl/
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5.54

6.02

4.82

5.38
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5.80

4.01

MultiNMT (Ro-En valid)
MultiNMT (Lv-En valid)
MetaNMT (Ro-En valid)
MetaNMT (Lv-En valid)

(d) Tr-En

Figure 3: BLEU scores reported on test sets for {Ro, Lv, Fi, Tr} to En, where each model is first learned
from 6 source tasks (Es, Fr, It, Pt, De, Ru) and then fine-tuned on randomly sampled training sets with
around 16,000 English tokens per run. The error bars show the standard deviation calculated from 5 runs.

both training and model selection.

Preprocessing and ULR Initialization As de-
scribed in §3.3, we initialize the query embed-
ding vectors εkquery of all the languages. For each
language, we use the monolingual corpora built
from Wikipedia7 and the parallel corpus. The con-
catenated corpus is first tokenized and segmented
using byte-pair encoding (BPE, Sennrich et al.,
2016), resulting in 40, 000 subwords for each lan-
guage. We then estimate word vectors using fast-
Text (Bojanowski et al., 2016) and align them
across all the languages in an unsupervised way
using MUSE (Alexis et al., 2018) to get multilin-
gual word vectors. We use the multilingual word
vectors of the 20,000 most frequent words in En-
glish to form the universal embedding matrix εu.

4.2 Model and Learning

Model We utilize the recently proposed Trans-
former (Vaswani et al., 2017) as an underlying
NMT system. We implement Transformer in this
paper based on (Gu et al., 2018a)8 and mod-

7 We use the most recent Wikipedia dump (2018.5) from
https://dumps.wikimedia.org/backup-index.html.

8 https://github.com/salesforce/nonauto-nmt

ify it to use the universal lexical representation
from §3.3. We use the default set of hyperpa-
rameters (dmodel = dhidden = 512, nlayer = 6,
nhead = 8, nbatch = 4000, twarmup = 16000) for
all the language pairs and across all the experi-
mental settings. We refer the readers to (Vaswani
et al., 2017; Gu et al., 2018a) for the details of
the model. However, since the proposed meta-
learning method is model-agnostic, it can be eas-
ily extended to any other NMT architectures, e.g.
RNN-based sequence-to-sequence models with at-
tention (Bahdanau et al., 2015).

Learning We meta-learn using various sets of
source languages to investigate the effect of source
task choice. For each episode, by default, we use a
single gradient step of language-specific learning
with Adam (Kingma and Ba, 2014) per comput-
ing the meta-gradient, which is computed by the
first-order approximation in Eq. (3).

For each target task, we sample training exam-
ples to form a low-resource task. We build tasks of
4k, 16k, 40k and 160k English tokens for each lan-
guage. We randomly sample the training set five
times for each experiment and report the average
score and its standard deviation. Each fine-tuning

https://dumps.wikimedia.org/backup-index.html
https://github.com/salesforce/nonauto-nmt
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Meta-Train
Ro-En Lv-En Fi-En Tr-En Ko-En

zero finetune zero finetune zero finetune zero finetune zero finetune

− 00.00± .00 0.00± .00 0.00± .00 0.00± .00 0.00± .00
Es 9.20 15.71± .22 2.23 4.65± .12 2.73 5.55± .08 1.56 4.14± .03 0.63 1.40± .09
Es Fr 12.35 17.46± .41 2.86 5.05± .04 3.71 6.08± .01 2.17 4.56± .20 0.61 1.70± .14
Es Fr It Pt 13.88 18.54± .19 3.88 5.63± .11 4.93 6.80± .04 2.49 4.82± .10 0.82 1.90± .07

De Ru 10.60 16.05± .31 5.15 7.19± .17 6.62 7.98± .22 3.20 6.02± .11 1.19 2.16± .09
Es Fr It Pt De Ru 15.93 20.00± .27 6.33 7.88± .14 7.89 9.14± .05 3.72 6.02± .13 1.28 2.44± .11
All 18.12 22.04± .23 9.58 10.44± .17 11.39 12.63± .22 5.34 8.97± .08 1.96 3.97± .10

Full Supervised 31.76 15.15 20.20 13.74 5.97

Table 2: BLEU Scores w.r.t. the source task set for all five target tasks.
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BL
EU

16.13
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21.33
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23.16

Ro-En MetaNMT
Ro-En MultiNMT

0 4K 16K 40K 160K
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5.41
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9.14

7.79

10.12

9.41

11.78
11.32

Fi-En MetaNMT
Fi-En MultiNMT

Figure 4: BLEU Scores w.r.t. the size of the target
task’s training set.

is done on a training set, early-stopped on a vali-
dation set and evaluated on a test set.

Fine-tuning Strategies The transformer con-
sists of three modules; embedding, encoder and
decoder. We update all three modules during meta-
learning, but during fine-tuning, we can selectively
tune only a subset of these modules. Following
(Zoph et al., 2016), we consider three fine-tuning
strategies; (1) fine-tuning all the modules (all), (2)
fine-tuning the embedding and encoder, but freez-
ing the parameters of the decoder (emb+enc) and
(3) fine-tuning the embedding only (emb).

5 Results

vs. Multilingual Transfer Learning We meta-
learn the initial models on all the source tasks us-
ing either Ro-En or Lv-En as a validation task.
We also train the initial models to be multilin-
gual translation systems. We fine-tune them us-
ing the four target tasks (Ro-En, Lv-En, Fi-En
and Tr-En; 16k tokens each) and compare the pro-
posed meta-learning strategy and the multilingual,

transfer learning strategy. As presented in Fig. 3,
the proposed learning approach significantly out-
performs the multilingual, transfer learning strat-
egy across all the target tasks regardless of which
target task was used for early stopping. We also
notice that the emb+enc strategy is most effec-
tive for both meta-learning and transfer learn-
ing approaches. With the proposed meta-learning
and emb+enc fine-tuning, the final NMT systems
trained using only a fraction of all available train-
ing examples achieve 2/3 (Ro-En) and 1/2 (Lv-En,
Fi-En and Tr-En) of the BLEU score achieved by
the models trained with full training sets.

Impact of Validation Tasks Similarly to train-
ing any other neural network, meta-learning still
requires early-stopping to avoid overfitting to a
specific set of source tasks. In doing so, we ob-
serve that the choice of a validation task has non-
negligible impact on the final performance. For in-
stance, as shown in Fig. 3, Fi-En benefits more
when Ro-En is used for validation, while the oppo-
site happens with Tr-En. The relationship between
the task similarity and the impact of a validation
task must be investigated further in the future.

Training Set Size We vary the size of the tar-
get task’s training set and compare the proposed
meta-learning strategy and multilingual, transfer
learning strategy. We use the emb+enc fine-tuning
on Ro-En and Fi-En. Fig. 4 demonstrates that the
meta-learning approach is more robust to the drop
in the size of the target task’s training set. The gap
between the meta-learning and transfer learning
grows as the size shrinks, confirming the effective-
ness of the proposed approach on extremely low-
resource language pairs.

Impact of Source Tasks In Table 2, we present
the results on all five target tasks obtained while
varying the source task set. We first see that it is
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Source (Tr) google mülteciler için 11 milyon dolar toplamak üzere bağış eşleştirme kampanyasını başlattı .
Target google launches donation-matching campaign to raise $ 11 million for refugees .
Meta-0 google refugee fund for usd 11 million has launched a campaign for donation .
Meta-16k google has launched a campaign to collect $ 11 million for refugees .

Source (Ko) 이번에체포되어기소된사람들중에는퇴역한군고위관리 ,언론인 ,정치인 ,경제인등이포함됐다
Target among the suspects are retired military officials , journalists , politicians , businessmen and others .
Meta-0 last year , convicted people , among other people , of a high-ranking army of journalists in economic

and economic policies , were included .
Meta-16k the arrested persons were included in the charge , including the military officials , journalists , politicians

and economists .

Table 3: Sample translations for Tr-En and Ko-En highlight the impact of fine-tuning which results in
syntactically better formed translations. We highlight tokens of interest in terms of reordering.

0 20K 40K 60K 80K 100K 120K
Meta-learning steps

0

5

10

15

BL
EU

MetaNMT Fine-tune
MetaNMT Zero-shot
MultiNMT Fine-tune
MultiNMT Zero-shot

Figure 5: The learning curves of BLEU scores on
the validation task (Ro-En).

always beneficial to use more source tasks. Al-
though the impact of adding more source tasks
varies from one language to another, there is up
to 2× improvement going from one source task to
18 source tasks (Lv-En, Fi-En, Tr-En and Ko-En).
The same trend can be observed even without any
fine-tuning (i.e., unsupervised translation, (Lam-
ple et al., 2017; Artetxe et al., 2017b)). In addi-
tion, the choice of source languages has different
implications for different target languages. For in-
stance, Ro-En benefits more from {Es, Fr, It, Pt}
than from {De, Ru}, while the opposite effect is
observed with all the other target tasks.

Training Curves The benefit of meta-learning
over multilingual translation is clearly demon-
strated when we look at the training curves in
Fig. 5. With the multilingual, transfer learning ap-
proach, we observe that training rapidly saturates
and eventually degrades, as the model overfits to
the source tasks. MetaNMT on the other hand con-
tinues to improve and never degrades, as the meta-
objective ensures that the model is adequate for
fine-tuning on target tasks rather than for solving
the source tasks.

Sample Translations We present some sample
translations from the tested models in Table 3.

Inspecting these examples provides the insight
into the proposed meta-learning algorithm. For in-
stance, we observe that the meta-learned model
without any fine-tuning produces a word-by-word
translation in the first example (Tr-En), which is
due to the successful use of the universal lexcial
representation and the meta-learned initialization.
The system however cannot reorder tokens from
Turkish to English, as it has not seen any train-
ing example of Tr-En. After seeing around 600
sentence pairs (16K English tokens), the model
rapidly learns to correctly reorder tokens to form
a better translation. A similar phenomenon is ob-
served in the Ko-En example. These cases could
be found across different language pairs.

6 Conclusion

In this paper, we proposed a meta-learning algo-
rithm for low-resource neural machine translation
that exploits the availability of high-resource lan-
guages pairs. We based the proposed algorithm
on the recently proposed model-agnostic meta-
learning and adapted it to work with multiple lan-
guages that do not share a common vocabulary us-
ing the technique of universal lexcal representa-
tion, resulting in MetaNMT. Our extensive evalu-
ation, using 18 high-resource source tasks and 5
low-resource target tasks, has shown that the pro-
posed MetaNMT significantly outperforms the ex-
isting approach of multilingual, transfer learning
in low-resource neural machine translation across
all the language pairs considered.

The proposed approach opens new opportuni-
ties for neural machine translation. First, it is a
principled framework for incorporating various
extra sources of data, such as source- and target-
side monolingual corpora. Second, it is a generic
framework that can easily accommodate existing
and future neural machine translation systems.
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