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ABSTRACT

Knowledge graph embedding research has overlooked the problem of probabil-
ity calibration. We show popular embedding models are indeed uncalibrated.
That means probability estimates associated to predicted triples are unreliable.
We present a novel method to calibrate a model when ground truth negatives are
not available, which is the usual case in knowledge graphs. We propose to use
Platt scaling and isotonic regression alongside our method. Experiments on three
datasets with ground truth negatives show our contribution leads to well calibrated
models when compared to the gold standard of using negatives. We get signifi-
cantly better results than the uncalibrated models from all calibration methods.
We show isotonic regression offers the best the performance overall, not without
trade-offs. We also show that calibrated models reach state-of-the-art accuracy
without the need to define relation-specific decision thresholds.

1 INTRODUCTION

Knowledge graph embedding models are neural architectures that learn vector representations (i.e.
embeddings) of nodes and edges of a knowledge graph. Such knowledge graph embeddings have
applications in knowledge graph completion, knowledge discovery, entity resolution, and link-based
clustering, just to cite a few (Nickel et al., 2016a)).

Despite burgeoning research, the problem of calibrating such models has been overlooked, and
existing knowledge graph embedding models do not offer any guarantee on the probability estimates
they assign to predicted facts. Probability calibration is important whenever you need the predictions
to make probabilistic sense, i.e., if the model predicts a fact is true with 80% confidence, it should
to be correct 80% of the times. Prior art suggests to use a sigmoid layer to turn logits returned
by models into probabilities (Nickel et al.l 2016a) (also called the expit transform), but we show
that this provides poor calibration. Figure || shows reliability diagrams for off-the-shelf TransE and
ComplEx. The identity function represents perfect calibration. Both models are miscalibrated: all
TransE combinations in Figure [lp under-forecast the probabilities (i.e. probabilities are too small),
whereas ComplEx under-forecasts or over-forecasts according to which loss is used (FigurdIp).

Calibration is crucial in high-stakes scenarios such as drug-target discovery from biological net-
works, where end-users need trustworthy and interpretable decisions. Moreover, since probabilities
are not calibrated, when classifying triples (i.e. facts) as true or false, users must define relation-
specific thresholds, which can be awkward for graphs with a great number of relation types.

To the best of our knowledge, this is the first work to focus on calibration for knowledge embed-
dings. Our contribution is two-fold: First, we use Platt Scaling and isotonic regression to calibrate
knowledge graph embedding models on datasets that include ground truth negatives. One peculiar
feature of knowledge graphs is that they usually rely on the open world assumption (facts not present
are not necessarily false, they are simply unknown). This makes calibration troublesome because of
the lack of ground truth negatives. For this reason, our second and main contribution is a calibration
heuristics that combines Platt-scaling or isotonic regression with synthetically generated negatives.

Experimental results show that we obtain better-calibrated models and that it is possible to cali-
brate knowledge graph embedding models even when ground truth negatives are not present. We
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Figure 1: Reliability diagrams of uncalibrated models. Probabilities are generated by a logistic
sigmoid layer. The larger the deviation from the diagonal, the more uncalibrated is the model. We
present four different common loss functions used to train knowledge graph embedding models. (a)
Uncalibrated TransE on WNI11. (b) Uncalibrated ComplEx on FB13. Best viewed in colors.

also experiment with triple classification, and we show that calibrated models reach state-of-the-art
accuracy without the need to define relation-specific decision thresholds.

2 RELATED WORK

A comprehensive survey of knowledge graph embedding models is out of the scope of this paper.
Recent surveys such as (Nickel et al.,[2016a) and (Cai et al.,|2017) summarize recent literature.

TransE (Bordes et al.l 2013) is the forerunner of distance-based methods, and spun a number of
models commonly referred to as TransX. The intuition behind the symmetric bilinear-diagonal
model DistMult (Yang et al., 2015) paved the way for its asymmetric evolutions in the complex
space, RotatE (Sun et al., 2019) and ComplEx (Trouillon et al.l 2016) (a generalization of which
uses hypercomplex representations (Zhang et al.l |2019)). HolE relies instead on circular correla-
tion (Nickel et al., 2016b). The recent TorusE (Ebisu & Ichise, [2018)) operates on a lie group and
not in the Euclidean space. While the above models can be interpreted as multilayer perceptrons,
others such as ConvE (Dettmers et al.||2018)) or ConvKB (Nguyen et al.,|2018]) include convolutional
layers. More recent works adopt capsule networks architectures (Nguyen et al., [2019). Adversarial
learning is used by KBGAN (Cai & Wang, |2018), whereas attention mechanisms are instead used
by (Nathani et al.,[2019). Some models such as RESCAL (Nickel et al.,|2011), TuckER (Balazevic¢
et al., 2019), and SimplE (Kazemi & Poole, |2018)) rely on tensor decomposition techniques. More
recently, ANALOGY adopts a differentiable version of analogical reasoning (Liu et al., 2017). In
this paper we limit our analysis to four popular models: TransE, DistMult, ComplEx and HolE.
They do not address the problem of assessing the reliability of predictions, leave aside calibrating
probabilities.

Besides well-established techniques such as Platt scaling (Platt et al., [1999) and isotonic regres-
sion (Zadrozny & Elkan 2002), recent interest in neural architectures calibration show that modern
neural architectures are poorly calibrated and that calibration can be improved with novel methods.
For example, (Guo et al.| 2017)) successfully proposes to use temperature scaling for calibrating
modern neural networks in classification problems. On the same line, (Kuleshov et al., |2018)) pro-
poses a procedure based on Platt scaling to calibrate deep neural networks in regression problems.

The Knowledge Vault pipeline in (Dong et al., 2014)) extracts triples from unstructured knowledge
and is equipped with Platt scaling calibration, but this is not applied to knowledge graph embedding
models. KG2E (He et al.l 2015) proposes to use normally-distributed embeddings to account for
the uncertainty, but their model does not provide the probability of a triple being true, so KG2E
would also benefit from the output calibration we propose here. To the best of our knowledge, the
only work that adopts probability calibration to knowledge graph embedding models is|Krompali &
Tresp| (2015)). The authors propose to use ensembles in order to improve the results of knowledge
graph embedding tasks. For that, they propose to calibrate the models with Platt scaling, so they
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WNI11 FBI3  YAGO39K ‘ FBI5K-237  WNISRR
Training 112,581 316,232 354,996 272,115 86,835 Model Scoring Function f,,,
Validation 5,218 11,816 18,682 17,535 3,034 TransE —|les +rp —eolln
Test 21,088 47,466 18,728 20,466 3,134 DistMult (es,Tp,€0)
Entities 38,696 75,043 39,374 14,541 40,943 ComplEx Re({es,rp,€0))
Relations 11 13 39 237 11 HolE (es,rp ® €o)
(a) (b)

Table 1: (a) Triple classification datasets used in experiments (left); link prediction datasets used for
positive base rate experiments (right); (b) Scoring functions of models used in experiments.

operate on the same scale. No further details on the calibration procedure are provided. Besides,
there is no explanation on how to handle the lack of negatives.

3 PRELIMINARIES

Knowledge Graph. Formally, a knowledge graph G = {(s,p,0)} € € x R x & is a set of triples
t = (s,p,0) , each including a subject s € £, a predicate p € R, and an object o € €. £ and R are
the sets of all entities and relation types of G.

Triple Classification. Binary classification task where G (which includes only positive triples) is
used as training set, and 7 = {(s,p,0)} C & x R x & is a disjoint test set of labeled triples
to classify. Note 7 includes positives and negatives. Since the learned models are not calibrated,
multiple decision thresholds 7; must be picked, where 0 < ¢ < |R|, i.e. one for each relation type.
This is done using a validation set (Bordes et al.,|2013)). Classification metrics apply (e.g. accuracy).

Link Prediction. Given a training set G that includes only positive triples, the goal is assigning a
score f(t) € R proportional to the likelihood that each unlabeled triple t included in a held-out set
S is true. Note S does not have ground truth positives or negatives. This task is cast as a learning to
rank problem, and uses metrics such as mean rank (MR), mean reciprocal rank (MRR) or Hits@N.

Knowledge Graph Embeddings. Knowledge graph embedding models are neural architectures
that encode concepts from a knowledge graph G (i.e. entities £ and relation types R) into low-
dimensional, continuous vectors € R” (i.e, the embeddings). Embeddings are learned by training a
neural architecture over G. Although such architectures vary, the training phase always consists in
minimizing a loss function £ that includes a scoring function f,(t), i.e. a model-specific function
that assigns a score to a triple t = (s, p, 0) (more precisely, the input of f,,, are the embeddings of the
subject e, the predicate r),, and the object e,). The goal of the optimization procedure is learning
optimal embeddings, such that the scoring function f,,, assigns high scores to positive triples ¢ and
low scores to triples unlikely to be true ¢~. Existing models propose scoring functions that combine
the embeddings e,,r,, e, € R* using different intuitions. Table lists the scoring functions of the
most common models. For example, the scoring function of TransE computes a similarity between
the embedding of the subject e, translated by the embedding of the predicate e, and the embedding
of the object e,, using the L; or Ly norm || - ||. Such scoring function is then used on positive and
negative triples t* € G, ¢~ € N in the loss function. This is usually a pairwise margin-based loss
(Bordes et al., [2013), negative log-likelihood, or multi-class log-likelihood (Lacroix et al., |2018)).
Since the training set usually includes positive statements, we generate synthetic negatives t~ € A/
required for training. We do so by corrupting one side of the triple at a time (i.e. either the subject
or the object), following the protocol proposed by (Bordes et al., [2013]).

Calibration. Given a knowledge graph embedding model identified by its scoring function f,,,
with f,,(¢t) = p, where p is the estimated confidence level that a triple t = (s, p, 0) is true, we
define f,, to be calibrated if p represents a true probability. For example, if f,,(-) predicts 100
triples all with confidence p = 0.7, we expect exactly 70 to be actually true. Calibrating a model
requires reliable metrics to detect miscalibration, and effective techniques to fix such distortion.
Appendix includes definitions and background on the calibration metrics adopted in the paper.
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4 CALIBRATING KNOWLEDGE GRAPH EMBEDDING MODELS PREDICTIONS

We propose two scenario-dependent calibration techniques: we first address the case with ground
truth negatives t~ € N. The second deals with the absence of ground truth negatives.

Calibration with Ground Truth Negatives. We propose to use off-the-shelf Platt scaling and iso-
tonic regression, techniques proved to be effective in literature. It is worth reiterating that to calibrate
a model negative triples N are required from a held-out dataset (which could be the validation set).
Such negatives are usually available in triple classification datasets (FB13, WN11, YAGO39K)

Calibration with Synthetic Negatives. Our main contribution is for the case where no ground truth
negatives are provided at all, which is in fact the usual scenario for link prediction tasks.

We propose to adopt Platt scaling or isotonic regression and to synthetically generate corrupted
triples as negatives, while using sample weights to guarantee that the frequencies adhere to the base
rate of the population (which is problem-dependent and must be user-specified). It is worth noting
that it is not possible to calibrate a model without implicit or explicit base rate. If it is not implicit
on the dataset (the ratio of positives to totals), it must be explicitly provided.

We generate synthetic negatives A/ following the standard protocol proposed by (Bordes et all
2013ﬂ for every positive triple ¢ = (s, p, 0), we corrupt one side of the triple at a time (i.e. either
the subject s or the object 0) by replacing it with other entities in £. The number of corruptions
generated per positive is defined by the user-defined corruption rate n € N. Since the number of
negatives N = |A/| can be much greater than the number of positive triples P = |G|, when dealing
with calibration with synthetically generated corruptions, we weigh the positive and negative triples
to make the calibrated model match the population base rate « = P/(P + N) € [0, 1], otherwise
the base rate would depend on the arbitrary choice of 7.

Given a positive base rate «, we propose the following weighting scheme:

w4 =n for positive triples G

1 (1)

w_ = — —1 for negative triples N’
a

where wy € R is the weight associated to the positive triples and w_ € R to the negatives. The w
weight removes the imbalance determined by having a higher number of corruptions than positive
triples in each batch. The w_ weight guarantees that the given positive base rate « is respected.

The above can be verified as follows. For the unweighted problem, the positive base rate is simply
the ratio of positive examples to the total number of examples:

P
= 2
“TPFN @
If we add uniform weights to each class, we have:
W+P
— L 3
By defining w = 1, i.e. adopting the ratio of negatives to positives (corruption rate), we then have:
pPY N 1
Thus, the negative weights is:
1
wo=——-1 (5)
e

5 RESULTS

We compute the calibration quality of our heuristics, showing that we achieve calibrated predictions
even when ground truth negative triples are not available. We then show the impact of calibrated
predictions on the task of triple classification.

"We also experimented with per-batch entities only, without any significant changes to the results. Future
work will experiments with additional techniques as proposed by [Kotnis & Nastase| (2017)).
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Datasets. We run experiments on triple classification datasets that include ground truth negatives
(Table . We train on the training set, calibrate on the validation set, and evaluate on the test set.

e WNI11 (Socher et al.| 2013)). A subset of Wordnet (Miller, 1995, it includes a large number
of hyponym and hypernym relations thus including hierarchical structures.

e FB13 (Socher et al.l[2013). A subset of Freebase (Bollacker et al., 2008)), it includes facts
on famous people (place of birth and/or death, profession, nationality, etc).

e YAGO39K (Lv et al., 2018). This recently released dataset has been carved out of
YAGO3 (Mahdisoltani et al |2013), and includes a mixture of facts about famous people,
events, places, and sports teams.

We also use two standard link prediction benchmark datasets, WN18RR (Dettmers et al., [2018) (a
subset of Wordnet) and FB15K-237 (Toutanova et al.,[2015) (a subset of Freebase). Their test sets
do not include ground truth negatives.

Implementation Details. The knowledge graph embedding models are implemented with the
AmpliGraph library (Costabello et al., 2019) version 1.1, using TensorFlow 1.13 (Abadi et al.,
2016) and Python 3.6 on the backend. All experiments were run under Ubuntu 16.04 on an In-
tel Xeon Gold 6142, 64 GB, equipped with a Tesla V100 16GB. Code and experiments are available
athttps://github.com/Accenture/AmpliGraph.

Hyperparameter Tuning. For each dataset in Table[Th, we train a TransE, DistMult, and a ComplEx
knowledge graph embedding model. We rely on typical hyperparameter values: we train the embed-
dings with dimensionality ¥ = 100, Adam optimizer, initial learning rate oy = le-4, negatives per
positive ratio n = 20, epochs = 1000. We train all models on four different loss functions: Self-
adversarial (Sun et al., [2019), pairwise (Bordes et al., 2013, NLL, and Multiclass-NLL (Lacroix
et al.,[2018)). Different losses are used in different experiments.

5.1 CALIBRATION RESULTS

Calibration Success. Table [2| reports Brier scores and log losses for all our calibration methods,
grouped by the type of negative triples they deal with (ground truth or synthetic). All calibration
methods show better-calibrated results than the uncalibrated case, by a considerable margin and for
all datasets. In particular, to put the results of the synthetic strategy in perspective, if we suppose
to predict the positive base rate as a baseline, for each of the cases in Table [2| (the three datasets
share the same positive base rate & = 0.5), we would get Brier score B = 0.25 and log loss
Liog = 0.69, results that are always worse than our methods. There is considerable variance of
results between models given a dataset, which also happens when varying losses given a particular
combination of model and dataset (Table E]) TransE provides the best results for WN11 and FB13,
while DistMult works best for YAGO39K. We later propose that this variance comes from the quality
of the embeddings themselves, that is, better embeddings allow for better calibration.

In Figure[2] we also evaluate just the frequencies themselves, ignoring sharpness (i.e. whether prob-
abilities are close to 0 or 1), using reliability diagrams for a single model-loss combination, for all
datasets (ComplEx+NLL). Calibration plots show a remarkable difference between the uncalibrated
baseline (s-shaped blue line on the left-hand side) and all calibrated models (curves closer to the
identity function are better). A visual comparison of uncalibrated curves in Figure [1| with those in
Figure [2|also gives a sense of the effectiveness of calibration.

Ground Truth vs Synthetic. As expected, the ground truth method generally performs better than
the synthetic calibration, since it has more data in both quantity (twice as much) and quality (two
classes instead of one). Even so, the synthetic method is much closer to the ground truth than to
the uncalibrated scores, as highlighted by the calibration plots in Figure 2] For WN11, it is actually
as good as the calibration with the ground truth. This shows that our proposed method works as
intended and could be used in situations where we do not have access to the ground truth, as is the
case for most knowledge graph datasets.

Isotonic vs Platt. Isotonic regression performs better than Platt scaling in general, but in practice
Isotonic regression has the disadvantage of not being a convex or differentiable algorithm |[Zadrozny
& Elkan| (2002). This is particularly problematic for the synthetic calibration, as it requires the
generation of the synthetic corruptions, which can only be made to scale via a mini-batch based
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Figure 2: Calibration plots for the best calibrated model-loss combinations. Isotonic regression
delivers the best results, getting very close to the perfectly calibrated line, both when used with the
ground truth method or our proposed synthetic method. Best viewed in colors.

Brier Score Log Loss
Ground Truth Synthetic Ground Truth Synthetic

Uncalib  Platt Iso Platt Iso Uncalib  Platt Iso Platt Iso

TransE 443 .089  .087 092 .088 1.959 302 295 311 296

WNI11 DistMult .488 213 208 214 208 5.625 .618 .604 618 .601
ComplEx .490 240 227 240 228 6.061 .674 .651 .674  .650

HolE 474 235 235 235 236 2.731 .663 .661 .663  .668

TransE 446 Jd24 124 148 141 1.534 390 391 459 442

FB13 DistMult 473 178 170 A85 192 2.177 533 518 549 567
ComplEx .481 177 170 182 189 2.393 534 516 544 565

HolE 452 229 228 242 263 1.681 .650  .651 677 725

TransE .363 .095 .093 106 110 1.062 319 .309 370 376

YAGO DistMult .284 .081 079 .093  .089 1.043 279 .266 311 308
39K ComplEx .264 .089 .084 .097  .095 1.199 305 278 323 313
HolE .345 141 .140 166 162 1.065 444 438 581 537

Table 2: Calibration test results (self-adversarial loss (Sun et al., 2019)). Low score = better. Best
results in bold for each combination of dataset and metric.

optimization procedure. Platt scaling, given that it is a convex and differentiable loss, can be made
part of a computational graph and optimized with mini-batches, thus it can rely on the modern
computational infrastructure designed to train deep neural networks.
Influence of Loss Function. We experiment with different losses, to assess how calibration affects
each of them (Table EI) We choose to work with TransE, which is reported as a strong baseline
in (Hamaguchi et al., 2017). Self-adversarial loss obtains the best calibration results for all calibra-
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Brier Score Log Loss MRR
Ground Truth Synthetic Ground Truth Synthetic (filtered)
L Platt Iso Platt  Iso Platt Iso Platt Iso
Pairwise 202 .198 209 200 591 585 .606  .589 .058
NLL .093 .088 .094 .088 342 299 344 301 134
Multiclass-NLL .204 .189 204 189 599 550 599 551 .108
Self-adversarial .089 .087 092 .088 302 .295 311 .296 155
(a) WN11
Brier Score Log Loss MRR
Ground Truth Synthetic Ground Truth Synthetic (filtered)
L Platt Iso Platt Iso Platt Iso Platt Iso
Pairwise 225 203 225 208 636 582 637 .594 282
NLL 209 .203 240 244 614 592 676 .685 202
Multiclass-NLL .146 .146 62 159 455 454 500 490 402
Self-adversarial .124 124 142 141 390 390 446 442 296
(b) FB13
Brier Score Log Loss MRR
Ground Truth Synthetic Ground Truth Synthetic (filtered)
L Platt Iso Platt Iso Platt Iso Platt Iso
Pairwise 123 .103 147 113 445 352 477 393 371
NLL 187 170 260 200 577 S18 756 .622 .063
Multiclass-NLL .111 .104 28 116 392 350 431 440 325
Self-adversarial .095 093 A13 109 319 308 399 376 .169
(c) YAGO39K

Table 3: Calibration test results using different losses £ with TransE. Lower calibration metrics =
better. We compute MRR only on positive test triples. Self-adversarial loss achieves better calibrated
results across the board. Results show no correlation between MRR and calibration performance,
i.e. embeddings that bring higher MRR are not necessarily easier to calibrate. Best results in bold.

tion methods, across all datasets. Experiments also show the choice of the loss has a big impact,
greater than the choice of calibration method or embedding model. We assess whether such vari-
ability is determined by the quality of the embeddings. To verify whether better embeddings lead
to sharper calibration, we report the mean reciprocal rank (MRR), which, for each true test triple,
computes the (inverse) rank of the triple against synthetic corruptions, then averages the inverse rank
(Table EI) In fact, we notice no correlation between calibration results and MRR. In other words,
embeddings that lead to the best predictive power are not necessary the best calibrated.

Positive Base Rate. We apply our synthetic calibration method to two link prediction benchmark
datasets, FB15K-237 and WN18RR. As they only provide positive examples, we apply our method
with varying base rates «, linearly spaced from 0.05 to 0.95. We evaluate results relying on the
closed-world assumption, i.e. triples not present in training, validation or test sets are considered
negative. For each a; we calibrate the model using the synthetic method with both isotonic regres-
sion and Platt scaling. We sample negatives from the negative set under the implied negative rate,
and calculate a baseline which is simply having all probability predictions equal to «;. Figure
shows that isotonic regression and Platt scaling perform similarly and always considerably below
the baseline. As expected from the previous results, the uncalibrated scores perform poorly, only
reaching acceptable levels around some particular base rates.

Triple Classification and Decision Threshold. To overcome the need to learn |R| decision thresh-
olds 7; from the validation set, we propose to rely on calibrated probabilities, and use the natural
threshold of 7 = 0.5. Table 4] shows how calibration affects the triple classification task, comparing
with the literature standard of per-relation thresholds (last column). For simplicity, note we use the
same self-adversarial loss in Table[2]and Table[d] We learn thresholds 7; on validation sets, resulting
in 11, 7, and 33 thresholds for WN11, FB13 and YAGO39K respectively.

Using a single 7 = 0.5 and calibration provides competitive results compared to multiple learned
thresholds (note uncalibrated results with 7 = (0.5 are poor, as expected). It is worth mentioning that
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Figure 3: Synthetic calibration on FB15K-237 and WN18RR, with varying positive base rates. The
baseline stands for using the positive base rate as the probability prediction. Results are evaluated
under the closed-world assumption, using the same positive base rate used to calibrate the models.

Ground Truth (7 = .5)  Synthetic ( =.5)  Uncalib. Uncalib. (Per-Relation 7)

Platt Iso Platt Iso (r=.5) ~Reproduced Literature

TransE  88.8 88.9 88.9 88.9 50.7 88.2

WNI11 DistMult 66.5 67.2 66.4 67.1 50.8 67.2 88.9*
ComplEx 60.6 62.4 60.0 62.4 50.8 59.6
HolE 59.3 59.0 59.3 59.0 50.9 60.8
TransE  82.4 82.4 80.7 80.2 50.0 82.1

FB13 DistMult 72.5 73.2 72.1 70.2 50.1 80.8 89.1"
ComplEx 73.8 74.2 74.2 724 50.1 83.6
HolE 60.3 60.6 57.8 54.3 50.0 62.6

YAGO T{ansE 87.2 87.8 85.3 84.9 50.2 88.8

39K DistMult 88.9 89.3 88.1 88.5 56.7 90.2 93.8"
ComplEx 87.3 88.2 86.9 87.2 61.1 89.4
HolE 80.4 80.4 78.4 78.5 50.6 81.5

Table 4: Effect of calibration on triple classification accuracy. Best results in bold. For all calibration
methods there is one single threshold, 7 = 0.5. For the per-relation 7, we learned multiple thresholds
from validation sets (Appendix [A-3). We did not carry out additional model selection, and used
Table [2] hyperparameters instead. Isotonic regression reaches state-of-the-art results for WN11.
Results of * from (Zhang et al.l 2018)); x from (Ji et al.||2016)); T from (Lv et al.l 2018).

we are at par with state-of-the-art results for WN11. Isotonic regression is again the best method,
but there is more variance in the model choice. Our proposed calibration method with synthetic neg-
atives performs well overall, even though calibration is performed only using half of the validation
set (negatives examples are replaced by synthetic negatives).

6 CONCLUSION

We propose a method to calibrate knowledge graph embedding models. We target datasets with
and without ground truth negatives. We experiment on triple classification datasets and apply Platt
scaling and isotonic regression with and without synthetic negatives controlled by our heuristics. All
calibration methods perform significantly better than uncalibrated scores. We show that isotonic re-
gression brings better calibration performance, but it is computationally more expensive. Additional
experiments on triple classification shows that calibration allows to use a single decision threshold,
reaching state-of-the-art results without the need to learn per-relation thresholds.

Future work will evaluate additional calibration algorithms, such as beta calibration (Kull et al.,
2017) or Bayesian binning (Naeini et al., 2015). We will also experiment on ensembling of knowl-
edge graph embedding models, inspired by(Krompall & Trespl 2015)). The rationale is that different
models operate on different scales, but calibrating brings them all to the same probability scale, so
their output can be easily combined.
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A APPENDIX

A.1 CALIBRATION METRICS

Reliability Diagram (DeGroot & Fienberg, |1983; Niculescu-Mizil & Caruanal 2005). Also known
as calibration plot, this diagram is a visual depiction of the calibration of a model (see Figure [I| for
an example). It shows the expected sample accuracy as a function of the estimated confidence. A
hypothetical perfectly calibrated model is represented by the diagonal line (i.e. the identity function).
Divergence from such diagonal indicates calibration issues (Guo et al., 2017).

Brier Score (Brier, [1950). It is a popular metric used to measure how well a binary classifier
is calibrated. It is defined as the mean squared error between n probability estimates p and the
corresponding actual outcomes y € 0,1. The smaller the Brier score, the better calibrated is the
model. Note that the Brier score B € [0, 1].

1 n
B=— i — Di)? 6
- ;(y Pi) (6)
Log Loss is another effective and popular metric to measure the reliability of the probabilities re-
turned by a classifier. The logarithmic loss measures the relative uncertainty between the probability
estimates produced by the model and the corresponding true labels.

Liog = —(y - log(p) + (1 — y) - log(1 — p)) (7)

Platt Scaling. Proposed by (Platt et al.,|1999) for support vector machines, Platt scaling is a popular
parametric calibration techniques for binary classifiers. The method consists in fitting a logistic
regression model to the scores returned by a binary classifier, such that § = o(ap + b), where
p € R is the uncalibrated score of the classifier, a,b € R are trained scalar weights. and § is the
calibrated probability returned as output. Such model can be trained be trained by optimizing the
NLL loss with non-binary targets derived by the Bayes rule under an uninformative prior, resulting
in an Maximum a Posteriori estimate.

Isotonic Regression (Zadrozny & Elkan,|[2002). This popular non-parametric calibration techniques
consists in fitting a non-decreasing piecewise constant function to the output of an uncalibrated
classifier. As for Platt scaling, the goal is learning a function § = g(p), such that § is a calibrated
probability. Isotonic regression learns g by minimizing the square loss Y .-, (¢; — v;)? under the
constraint that g must be piecewise constant (Guo et al., [2017).

A.2 CALIBRATION DIAGRAMS: INSTANCES PER BIN

We present in Figure [d] the total count of instances for each bin used in the calibration plots included
in Figure[2] As expected, calibration considerably helps spreading out instances across bins, whereas
in uncalibrated scenarios instances are squeezed in the first or last bins.

A.3 IMPACT OF MODEL HYPERPARAMETERS: 77 AND EMBEDDING DIMENSIONALITY

In Figure [5] we report the impact of negative/positive ratio ) and the embedding dimensionality
k. Results show that the embedding size & has higher impact than the negative/positive ratio 7.
We observe that calibrated and uncalibrated low-dimensional embeddings have worse Brier score.
Results also show that any £ > 50 does not improve calibration anymore. The negative/positive
ratio 7 follows a similar pattern: choosing 1 > 10 does not have any effect on the calibration score.

A.4 POSITIVE BASE RATE EXPERIMENTS: LINK PREDICTION PERFORMANCE
In Table[5] we present the traditional knowledge graph embedding rank metrics: MRR (mean recip-

rocal rank), MR (mean rank) and Hits@ 10 (precision at the top-10 results). We report the results for
all datasets and models used in the main text, which appear in Table [2| Table {4|and Figure
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Figure 4: Histograms show the total count instances for each bin used by calibration plots presented
in FigureEl Best viewed in colors.
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Figure 5: Impact of 7 (eta) and k (embedding size) on the Brier score. We used TransE and the
Self-Adversarial loss for all datasets. Best viewed in colors.

MR MRR Hits@10
TransE 2289 155 .309
DistMult 10000 045 081
WNI1 ComplEx 13815 054  .094
HolE 13355 017 035
TransE 3431 .296 .394
DistMult 6667  .183 337
FBI3 ComplEx 8937 018 039
HolE 8937  .0I8 039
TransE 244 .169 319
DistMult 635 306 620
YAGOIK o plEx 1074 531 753
HolE 922 .10l 189
WNISRR  ComplEx 4111  .506 583
FBI5K-237 ComplEx 183 320 499

Table 5: Standard filtered metrics for knowledge graph embeddings models. The models are imple-
mented in the same codebase and share the same evaluation protocol. Note that we do not include
results from reciprocal evaluation protocols.
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A.5 PER-RELATION DECISION THRESHOLDS

We report in Table[6] the per-relation decision thresholds 7 used in Table[d] under the ‘Reproduced’
column. Note that the thresholds reported here are not probabilities, as they have been applied to the
raw scores returned by the model-dependent scoring function f,, (t).

Relation T
_domain_region -6.0069733
_domain_topic -5.5207396
_has_instance -6.2901406
_has_part -5.673306 Relation T
_member_holonym -6.3117476 cause_of_death  -3.5680597
-member_meronym -5.982978 ethnicity -3.4997067
_part_of -5.798244 gender -3.4051323
_similar_to -6.852225 institution -3.547462
_subordinate_instance_of ~ -5.4750223 nationality -3.8507419
_synset_domain_topic -6.6392403 profession -3.7040129
_type_of -6.743014 religion -3.5918012
WNI11 FB13
Relation T Relation T

0 -3.9869666 16 -1.8443029

1 -3.6161883 17 -3.4323683

2 -2.9660778 18 -1.6325312

3 -2.9241138 19 -4.2211304

4 -3.8640308 20 -4.101904

5 -3.685308 21 -3.840962

6 -2.861393 22 -1.832546

7 -3.3280334 23 -2.0101485

8 -3.0741293 24 -3.1512089

9 -3.1950998 25 -2.4524217

10 -2.951118 27 -3.4848583

11 -1.8720441 29 -2.4269128

12 -2.4230814 31 -2.209188

13 -1.542841 32 -1.3310984

14 -2.6944544 33 -2.3231838

15 -3.381497 35 -2.0017974

36 -1.3954651

YAGO39K

Table 6: Relation-specific decision thresholds learned on uncalibrated raw scores (See also Table [4]
for a report on triple classification results.)
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