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ABSTRACT

We present a framework for interpretable continual learning (ICL). We show that
explanations of previously performed tasks can be used to improve performance
on future tasks. ICL generates a good explanation of a finished task, then uses
this to focus attention on what is important when facing a new task. The ICL idea
is general and may be applied to many continual learning approaches. Here we
focus on the variational continual learning framework to take advantage of its flex-
ibility and efficacy in overcoming catastrophic forgetting. We use saliency maps
to provide explanations of performed tasks and propose a new metric to assess
their quality. Experiments show that ICL achieves state-of-the-art results in terms
of overall continual learning performance as measured by average classification
accuracy, and also in terms of its explanations, which are assessed qualitatively
and quantitatively using the proposed metric.

1 INTRODUCTION

Continual learning, also called lifelong learning, refers to frameworks where knowledge acquired
from past tasks is accumulated for use on future tasks, i.e. where learning continually proceeds in
an online fashion. Data belonging to different tasks might be non i.i.d. (Nguyen et al., 2018; Ring,
1997; Schmidhuber, 2013; Schlimmer & Fisher, 1986; Sutton & Whitehead, 1993). Crucially, a
continual learner must be able to learn a new task without forgetting how to perform previous tasks
(Ring, 1995; Schwarz et al., 2018). Continual learning frameworks need to continually adapt to the
domain shift occurring across tasks, without revisiting data from previous tasks. An appropriate
balance is required between stability and adapting to new tasks and data, since excessive adaptation
might lead to dramatic degradation in performance of earlier tasks, known as catastrophic forgetting
(French, 1999; Goodfellow et al., 2014; McCloskey & Cohen, 1989; Ratcliff, 1990).

Several approaches have been introduced to address catastrophic forgetting. One approach is based
on regularisation where stability is maintained by restricting the change of parameters with high
influence while allowing the other parameters to vary freely (Li & Hoiem, 2016; Nguyen et al.,
2018; Kirkpatrick et al., 2017; Vuorio et al., 2018; Zenke et al., 2017). Another approach divides
the network architecture into reusable parts that are less prone to changes, and parts devoted to
individual tasks (Fernando et al., 2017; Rusu et al., 2016b;a; Yoon et al., 2018). The framework in
(Xu & Zhu, 2018) constructs the neural network architecture via designed reinforcement learning
(RL) strategies. The framework in (Lee et al., 2017) bases its solution on moment matching. Another
RL based framework is presented in (Kaplanis et al., 2018) where catastrophic forgetting is mitigated
at multiple time scales by using RL agents with a synaptic model. Mankowitz et al. (2018) propose
a framework where multiple agents jointly learn to achieve multiple goals at once in a parallel off-
policy setup. The work in (Farquhar & Gal, 2018) proposes experimental evaluations of continual
learning as well as a variational Bayesian loss, via which they categorise a few previous works into
either prior-focused or likelihood-focused. Attention mechanisms have been developed in rather
similar problems before, e.g. in (Khetarpal & Precup, 2018; Serra et al., 2018; Welleck et al., 2017;
Heo et al., 2018). Other saliency metrics have been introduced in (Dabkowski & Gal, 2017; Adebayo
et al., 2018). To the best of our knowledge, our framework is the first piece of work to pursue a
comprehensive interpretability approach in the continual learning setting.

Our work is based on the idea of imitating some aspects of how humans learn continually. We sug-
gest that humans are quite successful in achieving goals and performing tasks sequentially, partly
because we manage to understand and explain to ourselves certain aspects of the tasks we have al-
ready accomplished. This provides a contribution to our performance on similar tasks in the future.
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When given a task, we typically not only accomplish it, but also often (perhaps unconsciously) gain
a useful interpretable concept. For instance, when a child tries to grasp an object, the progress in the
child’s skill is accompanied by improvements in similar tasks, e.g. grasping other objects which the
child has never seen before. The development of the child’s cognitive abilities shows an understand-
ing of the concepts of gravity, geometric characteristics of the object, etc (Schroeder, 2014). We
suggest that this development may be established by the consolidation of interpretable information
from past experience. With this motivation, here we consider and analyse the impact of interpretable
methods on continual learning. While there can be a tradeoff between performance and interpretabil-
ity when considering just one task, here we show that interpretability can help performance when a
learner faces consecutive tasks over time, as in continual learning.

We propose a continual learning framework where the training phase of each task is followed by an
explanation stage, which provides insights to be utilised along with the established training platform
in learning the subsequent tasks. We focus on image classification tasks where training of the first
task proceeds normally, before providing a saliency map for each test data point (image). By high-
lighting the most relevant areas of the test image w.r.t. the classification prediction, an understanding
of the individual decisions taken by the classifier is attained. Afterwards, we compute a saliency map
representing a summary (or average) of the saliency maps of test images per class, i.e. a summary of
the classifier’s decisions on the test data. This represents a summarised belief of the relevant areas
of the input for each class. After completing the current task, we can use the explanation, depicted
by the average saliency map, to achieve two goals:

i Assessing how good the developed continual learning framework is at eradicating catastrophic
forgetting. This evaluation is typically performed by measuring the difference in the classification
performance on a certain task when it is the most recently encountered vs. when other tasks subse-
quently followed. Here we propose a new measure by adding a test which compares the saliency
map resulting from testing a task right after finishing the corresponding training phase, with the
saliency map of the same test on the same task after having other tasks subsequently trained by
our continual learner. Degradation of the provided explanations provides a measure of the level of
catastrophic forgetting induced in the continual learning framework.

ii Providing interpretable attention information for subsequent tasks by involving the obtained
saliency maps of the current task in the optimisation for the future tasks.

To achieve the first goal, we need a metric to assess the quality of the extracted saliency maps. We
propose a new metric for evaluating saliency maps resulting from the classification decisions on test
data. Measuring the quality of a saliency map is not a straightforward task. Saliency maps typically
aim at explaining the classification decision taken by a classifier. In other words, a saliency map
seeks the subset of features that are the most influential in the resulting prediction of the classifier.
As such, the explanation provided by a saliency map comes out in the form of a summary of the
significant parts (features) of the input data, from the classifier’s point of view. We propose a metric
to assess the quality of an explanation resulting from a saliency map.

To achieve the second goal, we need to involve the saliency maps in the learning procedure, not just
during the test phase. We propose an attention mechanism that exploits the feature relevance values
learnt in the latest task to focus the attention of the new learner on what is believed to be the most
important parts of the input as per the latest task, which (w.r.t. continual learning) is assumed to be
similar. Thus, an explanation of a task evolving over time is utilised to help the emerging tasks.

Note that there is a difference in the nature of the two proposed goals described above. The opti-
misation needed to achieve the second goal does not guarantee that the first goal is automatically
achieved, since the first goal addresses explanations (saliency maps) related to the same task at dif-
ferent time steps, whereas the second goal is concerned with exchanging interpretable information
among different tasks. Hence, the assessment involved in the first goal is still needed regardless of
the level of perfection of the second goal.

In this work we perform experiments for the classification case illustrated above, but the same
paradigm could be applied in future work to tasks other than classification, where the personali-
sation or notion of the explanation will need to be adapted to the nature of the task, i.e. saliency
maps should be replaced with something more suitable to the task.

We highlight the following contributions of our framework: 1) the interpretable continual learning
(ICL) framework where, in addition to the ordinary understanding benefits of interpretable frame-
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works, explanations of the finished tasks are used to enhance the attention of the learner during
the future tasks. Although we focus on performing within the variational continual learning frame-
work (Nguyen et al., 2018), our proposed methodology is flexible and can be deployed with other
continual learning frameworks, and also with other saliency detection methods. To the best of our
knowledge, ICL represents a novel direction in the continual learning literature that focuses on in-
terpretability; 2) introducing a new metric for saliency maps that aims at robustly assessing their
quality without significant engineering required, i.e. no need to construct bounding rectangles of the
relevant zones or similar; 3) learning from past experiences using an attention mechanism based on
explanations (saliency maps) from the latest task; 4) Our quantitative and qualitative state-of-the-art
results in four experiments on three datasets demonstrate the efficacy of the proposed framework.

2 VARIATIONAL CONTINUAL LEARNING (VCL)

In this paper, we use Variational Continual Learning (VCL, Nguyen et al., 2018) as the under-
lying continual learning framework. This is a variational Bayesian framework where the poste-
rior of the model parameters θ is learned and updated continually from a sequence of T datasets,
{x(n)

t ,y
(n)
t }

Nt
n=1, where t = 1, 2, . . . , T and Nt is the size of the t-th dataset. More specifically,

denote by p(y|θ,x) the probability distribution returned by a discriminative classifier with input
x, output y and parameters θ. For Dt = {y(n)

t }
Nt
n=1, we approximate the intractable posterior

p(θ|D1:t) after observing the first t datasets via a tractable variational distribution qt by:1

qt(θ) ≈
1

Zt
qt−1(θ) p(Dt|θ), (1)

where q0 is the prior p, p(Dt|θ) =
∏Nt

n=1 p(y
(n)
t |θ,x

(n)
t ), and Zt is the normalizing constant. This

framework allows the approximate posterior qt(θ) to be updated continuously from the previous
approximate posterior qt−1(θ) in an online fashion. In VCL, the approximation in Equation 1 is
performed by minimizing the following KL divergence over a family Q of tractable distributions:

qt(θ) = argmin
q∈Q

KL
(
q(θ) ‖ 1

Zt
qt−1(θ) p(Dt|θ)

)
. (2)

This framework can be enhanced to further mitigate the catastrophic forgetting problem by including
a coreset, a small representative set of data from previously observed tasks that can serve as an
episodic memory and can be revisited before a decision needs to be made.

VCL and coreset VCL are current state-of-the-art methods for continual learning that can reduce
catastrophic forgetting and outperform other methods such as Elastic Weight Consolidation (EWC,
Kirkpatrick et al., 2017) and Synaptic Intelligence (SI, Zenke et al., 2017) on a variety of continual
learning benchmarks such as Permuted MNIST, Split MNIST and Split notMNIST. For that reason,
we choose VCL as the underlying continual learning framework in our paper.

3 EXPLANATIONS OF CLASSIFICATION DECISIONS

Saliency maps are methods used to detect the relevance of each part of a given image for a specific
class label, according to the model. For each given test point x and classification label y, our ex-
planation assigns a relevance (importance) value for each input feature, creating a saliency map for
(x,y). The method we develop for explaining the classification results and constructing the corre-
sponding saliency map is based on the technique introduced by Zintgraf et al. (2017), also referred
to as prediction difference analysis (PDA). PDA is a robust and probabilistically sound method that
can provide high-quality saliency maps for image datasets of different kinds (benchmarks, medical
data, etc). Its run-time overhead was modest for the network architectures we used. The relevance
of each feature is quantified via the counterfactual hypothesis designating how much the predic-
tion would have changed had this particular feature not been involved in training and prediction
(Robnik-Sikonja & Kononenko, 2008). As such, the relevance of a feature xi2 is proportionate to

1Here we suppress the dependence on the inputs in p(θ|D1:t) and p(Dt|θ) to lighten notation.
2In a slight abuse of notation, we use i here to refer to the index of an image pixel (or a square of adjacent

pixels); which is a simplification of the row and column indices, j, k, used also to refer to a particular index of
an image feature later on.
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the difference between the predictions p(y|x) =
∫
θ
p(y|θ,x)p(θ) and p(y|x\i), where x\i refers

to the set of all features except xi. Since it is prohibitively intractable to start the whole training pro-
cedure of the classifier over again to compute p(y|x\i), for every x\i, the PDA algorithm mimics
the absence of x\i in training by marginalising the feature as follows:

p(y|x\i) =
∑
xi

p(xi|x\i)p(y|x\i,xi). (3)

The expression in equation 3 can be obtained by simply applying the Bayes product and sum rules
to p(y|x\i) =

∑
xi

p(y,xi|x\i). To compute p(xi|x\i), we use an assumption that is usually valid

for image data. The value of an image pixel depends very strongly on a small neighbourhood around
it (Zintgraf et al., 2017), and this is true regardless of the pixel’s position in the image. We therefore
approximate p(xi|x\i) with p(xi|x̂\i), where x̂i is a patch containing xi. Then, from equation 3:

p(y|x\i) ≈
∑
xi

p(xi|x̂\i)p(y|x\i,xi). (4)

Define the odds of a prediction (y|x) as odds(y|x) = p(y|x)/(1 − p(y|x)). To get a sense of its
effect: odds of (y|x) has a value of 0 when p(y|x) = 0 and tends to ∞ when p(y|x) = 1. We
use Laplace correction p ← (pN + 1)/(N + |Y |), where N is the number of training instances
of the respective task, and |Y | is the number of classes in the task. Finally, we can compute the
relevance of x\i by assessing the difference between p(y|x) and p(y|x\i), using a notion referred
to as weight of evidence (WE, Robnik-Sikonja & Kononenko, 2008):

WEi(y|x) = log2 (odds(y|x))− log2
(
odds(y|x\i)

)
. (5)

The magnitude and sign of WEi denote how significant the contribution of xi is to this prediction. A
small WEi means that xi was not influential in the prediction procedure, and vice versa. A positive
(negative) valued WEi indicates that xi provides positive evidence for (against) the prediction of
class y. Assume that an input image (data point) x has r rows and c columns. Since PDA produces
a relevance value for each feature, WEi(y|x) is also a matrix of dimensions r × c.

4 LEARNING FROM PAST TASKS VIA SALIENCY BASED ATTENTION

Explanations of predictions can enhance understanding and trust. Additionally, we show that PDA
explanations can be used to improve performance on subsequent tasks. The feature relevance values
obtained by PDA are used to build an attention mechanism, used when training on the next task to
focus on important parts of the input. Tasks presented to the learner in the continual learning setting
evolve over time. Thus, we assume that adjacent tasks are similar.

Our attention strategy is described as follows: After having finished the training procedure of a
task, we gain further insights on the corresponding classification predictions on a test set via the
explanations provided by PDA. The outcome of PDA is a saliency map for every test image. We
summarise these results by computing their average to obtain a saliency map representing averaged
relevance values of the input features for the finished task.3 Since the upcoming task is similar, we
utilise the information already at our disposal by developing an attention mechanism based on the
computed relevance values from the immediately preceding task, described as follows.

For input images of the upcoming task x ∈ Rr×c, the averaged weight of evidence matrix is referred
to as WEi(x) ∈ Rr×c. An attention mask M ∈ Rr×c is inferred as a function of the WE values.
For a position in the image j,k, with row and column indices j and k, the mask valueMj,k can be
computed as follows, where z denotes an offset used to smooth out the mask computation.

Mj,k =

∑u=z
u=−z

∑v=z
v=−z xj+u,k+v WEj+u,k+v

(2 z + 1)2
. (6)

For each pixel in the image, the mask is composed of an average of the relevance values of a square
around the pixel, with side 2z. For pixel positions at the border, e.g. j or k = 1, the denominator
is changed always to be the number of elements used. The mask is then used with the training data
values in the training procedure of the subsequent task to help focus on important locations.

3This averaging procedure is effective in our current experiments, but we recognize that for some datasets,
e.g. in settings where many images are rotated, a more sophisticated summarization approach may be desir-
able. For instance, a clever normalization strategy can help enhance the invariance properties of the attention
mechanism. We leave this as a direction to explore in future work.
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5 EVALUATION OF SALIENCY MAPS

One contribution of ICL is the ability to assess how much catastrophic forgetting is taking place via
evaluating the difference between the explanations of a specific task delivered when the task at hand
is the most recent, and the explanation of the same task after having learnt other (more recent) tasks.
This requires a concrete way to evaluate saliency maps, which is the main concern of this section.

We first describe a related earlier method by Dabkowski & Gal (2017). Their approach is based
on a notion of saliency referred to as the Smallest Sufficient Region (SSR), defined as the smallest
region in the image that, when introduced as input to the classifier on its own without the rest of the
image, leads to a considerably confident classification (Fong & Vedaldi, 2017). According to this
notion, a saliency map is better if it is capable of producing a relevant region in the image that is:
i) small, and that ii) leads to a confident prediction (when the classifier acts solely on the relevant
region, rather than the whole image). Since the metric suggested in (Dabkowski & Gal, 2017) needs
a fixed-shape input to the image classifier, a rectangle representing the superset of the relevant region
in the image is selected as the region of interest. This rectangle is chosen as the smallest rectangle
containing the entire salient region. Denote by a the area of this relevant rectangle (the superset of
the region containing all the salient pixels), and denote by ã = max(a, 0.05) a threshold for the area
a used to prevent instabilities resulting from very small area values. Also let p refer to the prediction
probability returned by the classifier for the specified label. The SSR saliency metric s(a, p) can
then be expressed as follows:

s(a, p) = log(ã)− log(p). (7)

For the saliency metric defined in equation 7, the lower the value of s(a, p) the better. A low value
of s(a, p) signifies a small area of the relevant rectangle a as well as a confident prediction p by the
classifier. It remains tricky how to identify the salient area, which is bounded by a, what kind of
threshold shall be used to indicate a salient vs. non-salient values, etc. In addition, this area has to
be one connected chunk, potentially wasting the opportunity to identify salient, but possibly non-
connected, areas like the two eyes of an animal, etc. Furthermore, choosing the entire salient region
as a connected region a can lead to including several non-salient areas therein.

Here we propose a new saliency map metric that is less restricted by the issues above. Our saliency
metric has more freedom in indicating the salient pixels based on merit regardless of their location
and their vicinity to other salient pixels. We believe that the vicinity among salient pixels should in
fact be used as a part of the metric, i.e. a deciding factor in evaluating saliency maps, rather than be
forced to identify the salient regions in the first place. We therefore propose basing the evaluation
on three aspects, number of salient pixels (regardless of their locations), average distance among the
salient pixels, and their impact on the classification prediction. For the former two aspects (number
and average distance among the salient pixels) the lower the values the better the quality of the
resulting saliency. The opposite is true (negative sign) for the impact on the prediction since salient
pixels of a better map have a higher impact. One of the problems that used to prohibit a free choice
of the salient pixels regardless of their adjacency to each other, is that almost all image classifiers
need an image of a fixed size to work on. We have a built-in solution to that since PDA provides the
facility to marginalise pixels, and that is what we follow in order to assess the impact of the salient
pixels on prediction; we marginalise over the salient pixels to analyse their impact.

Our saliency metric, which we refer to as, the flexible saliency metric (FSM) is defined as:

fsm(p) = log(dsal) + log(m)− log(p) , (8)

where dsal refers to the average spatial distance among the salient pixels,m refers to the number of
the salient pixels and p refers to the classification probability of the specified label.

6 EXPERIMENTS

We provide quantitative and qualitative evaluations of the proposed ICL. We perform experiments
on three datasets: MNIST (LeCun et al., 1998), notMNIST (Butalov, 2011) and Fashion-MNIST
(Xiao et al., 2017). Our experiments mainly aim at evaluating the following: (i) performance of the
introduced ICL framework depicted by the classification accuracy; (ii) quality of the explanations
provided by ICL in the form of saliency maps. This is quantitatively measured by the proposed met-
ric. The extent to which catastrophic forgetting can be mitigated when deploying ICL or VCL can be
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inspected via evaluating the respective classification accuracy and saliency maps; and (iii) saliency
examples qualitatively showing that the explanations do not suffer from catastrophic forgetting.

In ICL, we extract explanations after learning each task and use them as a precursor to the attention
mechanism for the following task. After developing the mask needed for the attention mechanism,
VCL is used for the task learning. In Section 6.1, we compare the classification results obtained by
ICL to three different (non-interpretable) versions of the VCL algorithm (Nguyen et al., 2018) and to
the elastic weight consolidation (EWC) algorithm (Kirkpatrick et al., 2017). As mentioned earlier,
one of the strengths of ICL is that it can be applied to many continual learning frameworks. We base
our original ICL version on VCL due to advantages of the latter in terms of flexibility, being effective
at reducing catastrophic forgetting, etc. When evaluating the algorithm in terms of the introduced
interpretability metric in Section 6.2, we compare the standard VCL and EWC to interpretable (ICL)
versions of both. For all experiments, statistics reported are averages of ten repetitions. Statistical
significance of the the average accuracy and FSM results obtained after completing the last two
tasks from each dataset are displayed in the tables in Appendix A. We also display the results of a
comparison with a fixed attention map, consisting of concentric circles, as a baseline in Appendix
A. Regarding PDA, 10 samples are used to estimate p(y|x\i) (equation 4). The size of the square
of pixels marginalised at once, xi, is 10 × 10. The size of the surrounding square x̂i used to
approximate p(xi|x\i), is 16 × 16 pixels. The only exception to the latter is the Permuted MNIST
experiment where a larger x̂i of size 20 × 20 is needed to mitigate the permutation impact.

6.1 CLASSIFICATION ACCURACY

We compare the all-important classification accuracy of ICL to state-of-the-art continual learning
frameworks. We aim at assessing the impact of adopting the introduced attention mechanism, which
is based on the classification explanations provided by the saliency maps, on top of the seminal VCL
algorithm. We consider four continual learning experiments, based on the MNIST, notMNIST and
Fashion-MNIST datasets. The introduced ICL is compared to EWC in addition to the following
non-interpretable versions of VCL: VCL with no coreset, VCL with a random coreset consisting of
200 points4, VCL with a 200-point coreset assembled by the K-center method (Nguyen et al., 2018).
All the reported classification accuracy values reflect an average of the classification accuracy over
all tasks the learner has trained on so far. More specifically, assume that the continual learner has
just finished training on a task t, then the reported classification accuracy at time t is the average
accuracy value obtained from testing on equally sized sets each belonging to one of the tasks 1, 2,
. . . , t. ICL achieves state-of-the-art classification accuracy in three out of the four experiments, and
it achieves joint highest accuracy in the fourth (Permuted MNIST) with VCL with a random coreset.

Permuted MNIST Using MNIST, Permuted MNIST is a standard continual learning benchmark
(Goodfellow et al., 2014; Kirkpatrick et al., 2017; Zenke et al., 2017). For each task t, the corre-
sponding dataset is formed by performing a fixed random permutation process on labeled MNIST
images. This random permutation is unique per task, i.e. it differs for each task. For the hyperpa-
rameter λ of EWC, which controls the overall contribution from previous data, we experiment with
two values, λ = 1 and λ = 100. The latter has previously produced the best EWC classification
results (Nguyen et al., 2018). In this experiment, fully connected single-head networks with two
hidden layers are used. There are 100 hidden units in each layer, with ReLU activations. Results of
the accumulated classification accuracy, averaged over tasks, on a test set are displayed in Figure 1.
After 10 tasks, ICL and VCL using a random coreset achieve the highest classification accuracy.

Split MNIST In this MNIST based experiment, five binary classification tasks are processed in the
following sequence: 0/1, 2/3, 4/5, 6/7, and 8/9 (Zenke et al., 2017). The architecture used consists
of fully connected multi-head networks with two hidden layers, each consisting of 256 hidden units
with ReLU activations. As can be seen in Figure 1, ICL achieves the highest classification accuracy.

Split notMNIST This is similar to the last one, but the dataset used (notMNIST) is larger and a
bit more challenging. It contains 400,000 training images, and the classes are 10 characters, from
A to J. Each image consists of one character, and there are different font styles. The five binary
classification tasks are: A/F, B/G, C/H, D/I, and E/J. The networks used here contain four hidden

4Whenever there is no validation process performed to indicate the hyperparameter values of competitors or
characteristics of neural network architectures, this is done for the sake of comparing on common ground with
the best settings, as specified in the respective papers.
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Figure 1: Average test classification accuracy vs. the number of observed tasks in the Permuted
MNIST, Split MNIST, Split notMNIST, and Split Fashion-MNIST experiments.

layers, each containing 150 hidden units with ReLU activations. ICL achieves an improvement in
classification accuracy over competitors (Figure 1). VCL with a random coreset achieves 96.1%
accuracy, whereas ICL accomplishes an average accuracy of 96.5%.

Split Fashion-MNIST This is another similar but more challenging dataset than MNIST. Fashion-
MNIST is a dataset whose size is the same as MNIST but it is based on different 10 classes. The five
binary classification tasks here are: T-shirt/Trouser, Pullover/Dress, Coat/Sandals, Shirt/Sneaker,
and Bag/Ankle boots. The architecture used is the same as in Split notMNIST. ICL achieves 90.3%
average accuracy after 5 tasks, while VCL with a random coreset attains 88.5% (Figure 1).

6.2 EVALUATION OF CLASSIFICATION EXPLANATIONS

Based on the saliency metric proposed in equation 8, and referred to as FSM, we evaluate the quality
of the explanations resulting from ICL. We compare the non-interpretable versions of VCL and EWC
to interpretable (ICL) versions of both. The lower the FSM value the better.

In Figures 2, 3 and 4, results of the FSM saliency map metric are displayed for the Split MNIST,
Split notMNIST and Split Fashion-MNIST experiments, respectively. The averaged results of the
five tasks in each of the three experiments (as well as most of the individual tasks) show that ICL,
when used with VCL, leads to a better (lower) FSM metric value. This signifies two major empirical
findings. First, ICL yields more interpretable learning procedures, depicted by more interpretable
maps. Second, since the averaged results take into consideration less recent tasks, this means that
ICL remains interpretable, even after facing new learning tasks, which -along with the classification
results in Section 6.1- means that ICL, when used with VCL, is less prone to catastrophic forgetting.

6.3 EXAMPLES OF EXPLANATIONS

We display some examples demonstrating the efficacy of ICL in mitigating catastrophic forgetting
via comparing the explanations provided for a classification decision right after learning the cor-
responding task, with the same explanation after eventually performing the training of some other
tasks. The latter represents the explanation potentially prone to catastrophic forgetting. In each of
the examples we provide, we begin with showing the original test image, followed by the explana-
tion provided by the task right after it has been learnt. Finally, the column at the far right provides
the explanation of the same task that is prone to catastrophic forgetting, i.e. the one provided by
the learner after learning other tasks. The fact that most of the explanations remain similar is a
qualitative demonstration of the efficacy of ICL, when applied to VCL, in mitigating catastrophic
forgetting. Five examples are shown in Figure 5. All explanations provided are for test images that
have been predicted correctly by the learner in both cases (both time steps).
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Figure 2: Values of the proposed saliency metric FSM (equation 8) on the 5 tasks in Split MNIST.
Lower is better. The last (bottom right) column displays the average accuracy over all tasks.
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Figure 3: Values of the proposed saliency metric FSM (equation 8) on the 5 tasks in Split notMNIST.
Lower is better. The last (bottom right) column displays the average accuracy over all tasks.
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Figure 4: Values of the proposed saliency metric FSM on the 5 tasks in Split Fashion-MNIST. Lower
is better. The last (bottom right) column displays the average accuracy over all tasks.

(a) A test image, saliency at t = 1,
saliency at t = 5. Split MNIST.

(b) A test image, saliency at t = 3,
saliency at t = 5. Split MNIST.

(c) A test image, saliency at t = 1,
saliency at t = 5. Split notMNIST.

(d) A test image, saliency at t = 1, saliency
at t = 5. Split Fashion-MNIST.

(e) A test image, saliency at t = 2, saliency
at t = 5. Split Fashion-MNIST.

Figure 5: Explanations (in the form of saliency maps) of the classification prediction on a test image
from a specific task in a particular experiment. Evidence for (against) the predicted class is shown
in red (blue). The middle map represents the explanation at the time training has just been finished
for this task, whereas the map at the right side of each subfigure is the explanation at t = 5.

7 CONCLUSION

We introduced a continual learning framework incorporating interpretability, where saliency based
explanations of previously learnt tasks are used to enhance the attention of the learner during future
tasks. This framework demonstrates that interpretability is not only useful for increasing the un-
derstanding of the obtained results, but can also improve the performance of a sequential learning
procedure. The proposed framework is flexible and can enhance both the interpretability and per-
formance of continual learning methods, especially in terms of mitigating catastrophic forgetting.
We proposed a new metric for saliency maps. We believe that adopting a Bayesian attention mech-
anism could be a fruitful direction for future work, especially when integrated with fully Bayesian
variational continual learning.
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APPENDIX A

We first display the results of the highest performing competing frameworks in terms of the aver-
age accuracy values (Figure 1) obtained after completing the last two tasks from each of the four
experiments in Table 1. In addition, we compare to a predefined, fixed attention map consisting of
concentric circles where the centre is the image centre. Radius values in use have been indicated by
cross-validation. A bold entry in Table 1 denotes that the classification accuracy of an algorithm is
significantly higher than its competitors. Significant results are identified using a paired t-test with p
= 0.05. Average classification accuracy resulting from ICL is significantly higher than its competi-
tors in 6 out of the 8 comparison cases. Also, deterioration of the accuracy values due to using the
fixed attention map empirically demonstrates the significance of the learning procedure adopted to
estimate the ICL attention maps.

Table 1: Average test classification accuracy of 4 and 5 tasks for the Split MNIST, Split notMNIST
and Split Fashion-MNIST experiments, and for 9 and 10 tasks of Permuted MNIST. A bold entry in
Table 1 denotes that the classification accuracy of an algorithm is significantly higher than its com-
petitors. Significant results are identified using a paired t-test with p = 0.05. Average classification
accuracy resulting from ICL is significantly higher than its competitors in 6 out of the 8 cases (3 out
of 4 after the completion of all the tasks required per experiment).

Classification accuracy ICL VCL VCL + Random Coreset VCL + K-center Coreset VCL + fixed attention
Permuted MNIST (task 9) 93.8% 91.5% 93.5% 93.5% 92.9%
Permuted MNIST (task 10) 93.3% 90.1% 93% 93% 92.2%

Split MNIST (task 4) 99.2% 98.6% 98.7% 98.7% 97.1%
Split MNIST (task 5) 99.1% 97% 98.4% 98.4% 96.8%

Split notMNIST (task 4) 96.8% 95.8% 96.9% 96.4% 95.2%
Split notMNIST (task 5) 96.7% 92% 96% 95.6% 95%

Split Fashion-MNIST (task 4) 91.6% 90% 90.7% 90.4% 87.7%
Split Fashion-MNIST (task 5) 90.3% 88% 88.5% 88.2% 86.3%

We then shed light again on the results of the FSM interpretability metric -Figures 2, 3 and 4- in
Table 2 to display the statistical significance unequivocally. Recall that lower FSM values are better.
A result in bold refers to an FSM value that is significantly lower (better) than the competitors. FSM
values resulting from using ICL with VCL are significantly better in all of the 6 cases.

Table 2: Values of the proposed saliency metric FSM for the Split MNIST, Split notMNIST and
Split Fashion-MNIST experiments. A result in bold refers to an FSM value that is significantly
lower (better) than the other competitors. FSM values resulting from using ICL with VCL are
significantly better in all of the 6 cases.

Interpretability metric ICL with VCL VCL ICL with EWC (λ=100) EWC (λ=100)
Split MNIST (task 4) 0.4625 0.4738 0.52 0.5238
Split MNIST (task 5) 0.463 0.475 0.532 0.538

ICL with VCL VCL ICL with EWC (λ = 104) EWC (λ = 104)
Split notMNIST (task 4) 0.355 0.3713 0.4125 0.43
Split notMNIST (task 5) 0.3626 0.383 0.43 0.45

ICL with VCL VCL ICL with EWC (λ=100) EWC (λ=100)
Split Fashion-MNIST (task 4) 0.7488 0.7562 0.7688 0.7725
Split Fashion-MNIST (task 5) 0.761 0.768 0.783 0.794
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