
Under review as a conference paper at ICLR 2019

MODELING DYNAMICS OF BIOLOGICAL SYSTEMS
WITH DEEP GENERATIVE NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Biological data often contains measurements of dynamic entities such as cells or
organisms in various states of progression. However, biological systems are notori-
ously difficult to describe analytically due to their many interacting components,
and in many cases, the technical challenge of taking longitudinal measurements.
This leads to difficulties in studying the features of the dynamics, for examples
the drivers of the transition. To address this problem, we present a deep neural
network framework we call Dynamics Modeling Network or DyMoN. DyMoN is a
neural network framework trained as a deep generative Markov model whose next
state is a probability distribution based on the current state. DyMoN is well-suited
to the idiosyncrasies of biological data, including noise, sparsity, and the lack
of longitudinal measurements in many types of systems. Thus, DyMoN can be
trained using probability distributions derived from the data in any way, such as
trajectories derived via dimensionality reduction methods, and does not require
longitudinal measurements. We show the advantage of learning deep models over
shallow models such as Kalman filters and hidden Markov models that do not learn
representations of the data, both in terms of learning embeddings of the data and
also in terms training efficiency, accuracy and ability to multitask. We perform
three case studies of applying DyMoN to different types of biological systems and
extracting features of the dynamics in each case by examining the learned model.

1 INTRODUCTION

Many biological systems can be considered conceptually as stochastic dynamic processes. Examples
include differentiation from stem cells to mature cellular lineages, responses to stimulation or drug
perturbations, and responses to external stimulus or signaling. Such processes involve the slow and
stochastic change in gene expression programs that alter over time, brain circuitry and neuronal
communication where the firing of one set of neurons produces the firings of another set, or cancer
progressions in which one subclone of cells out competes other clones. However, such biological
systems are complex and in many cases, it is impossible to derive differential equations or analytical
models for such processes in order to study them. In this paper, we propose to learn a generative
neural network model of biological dynamic systems that we call a Dynamics Modeling Network, or
DyMoN.

First, DyMoN provides a representational advantage by serving as an embodiment of the dynamics
in lieu of a predetermined model, such as stochastic differential equations. This representation is
deep and factored, in the sense that the “logic” of the dynamic transition is broken down into many
increasingly abstract steps, each of which can be visualized or examined. In the cell trajectory context,
a neural network can learn complex features that correspond to modules of genes that operate together
to create a change in the expression program for the next cellular state. Further, the saliency of these
features can be inferred from the Jacobian matrices of the neural network. Secondly, DyMoN provides
a generative advantage as it generates new trajectories that have not been seen previously in the
system. These can augment data and potentially reveal new paths (for instance novel differentiation
paths in cellular development) that lead to desired outcomes. Third, it provides a denoising advantage,
thanks to the the dimensionality reduction offered in neural networks, which can naturally denoise
the high degree of noise in biological data, and in particular in biological trajectories. Fourth, the
utilization of a deep network model offers a multitasking advantage: while previous models, such as
HMMs, can simulate trajectories, and one may use PCA (or similar methods) to visualize trajectory

1

Under review as a conference paper at ICLR 2019

information, most previous methods are not designed or equipped to simultaneously learn multi-scale
features (i.e., in many levels of abstraction), visualize the intrinsic underlying dynamics, and utilize
them to generate new trajectories. Finally, the natural parallelizability of neural networks (e.g., with
GPU-based implementations) offers computational advantages to deep learning approaches, as they
can be used to process large volumes of noisy data as they become available for training. Furthermore,
once trained, DyMoN can quickly generate new trajectories faster than most existing methods.

We have specifically designed DyMoN to learn a model of dynamics from the types of data available
in biological systems: snapshot high dimensional data. By snapshot, we mean that biological data (for
instance single cell RNA-sequencing data) is often collected only at one or a handful of time-points,
thus the dynamics are either inferred from pseudotime (an axis of time progression based on different
states of cell differentiation or other cellular programs) or from interpolation between discrete time
points. Second, these types of trajectories are not a matter of sequence completion as is often done
in a recurrent neural network, but rather the desired goal is to predict the near-future state of a cell
given its current state. Thus, we propose a neural network framework which learns fixed-memory
stochastic dynamics (e.g., memoryless or n-th order Markov process) in an observed system, and
train this network by providing a current state (or n states) along with a probability distribution of
next states. We penalize the network using maximal mean discrepancy (MMD) as a probabilistic
distance between the desired and generated outputs. Within this framework, we show three variations
of architectures that can realize this framework within three vastly different biological systems.

We train the DyMoN on three biological systems: dynamic calcium imaging data of neurons from
a mouse visual cortex, mass cytometry of developing T cells in the mouse thymus, and single-cell
RNA sequencing of human embryonic stem cells developing in an embryoid body. We interrogate
the weights of the model as a ”transparent box” to understand the dynamics of the system learned
by the network in order to both verify known gene-gene interactions in T cells and to uncover novel
network interactions in neurons. We further show that the DyMoN is able to generate trajectories in
biological data originally measured in discrete snapshots, and use this generative capacity to develop
novel hypotheses for cellular programming in embryonic stem cell differentiation.

2 DYNAMICS MODELING NETWORK (DYMON)

Let X ⊆ Rd be a finite dataset of d-dimensional states, and let T ⊆ X ×X be a (finite) collection of
transitions between these states. Such transitions can either be observed by sampling a dynamical
system, or constructed by geometry-revealing diffusion methods such as diffusion maps (Coifman
& Lafon, 2006), Laplacian eigenmaps (Belkin & Niyogi, 2002), diffusion geometry methods (e.g.,
Wolf et al., 2012; Wolf & Averbuch, 2013; Coifman & Hirn, 2014; Talmon & Coifman, 2015), and
PHATE (Moon et al., 2017). We propose a deep learning approach for learning the dynamics in T
and the geometry represented by them as a stochastic velocity vector field of a Markov process. To
do this, we use a feed-forward neural network we call Dynamics Modeling Network (DyMoN).

DyMoN is formed by a cascade of linear operations and nonlinear activations. These are controlled
by optimized network weights, which we collectively denote by θ ∈ Θ, where Θ represents the space
of possible weight values determined by the fixed network architecture. To capture the dynamics
in T , DyMoN learns a velocity vector ∆θ(x) ∈ Rd and uses it to define a transition function
T : Rd ×Θ→ R

d that generates a Markov process

xt = T (xt−1, θ) = xt−1 + ∆θ(xt−1) t = 1, 2, 3, . . . ,

given an initial state x0 ∈ X and optimized weights θ ∈ Θ. Further, to introduce stochasticity, we treat
the output ∆θ(xt−1) as a random vector whose probability distribution determines the conditional
probabilities P (xt|xt−1) of the Markov process. We provide three possible implementations of this
framework in Figure 10.

Given a fixed architecture, we now describe how DyMoN is trained using the data points in X .
Consider a source state x ∈ X with multiple transitions from it leading to target states Yx =
{y : (x, y) ∈ T }. Let Px(y) = P (y | x), whose support is Yx, be the conditional probability
of transitioning from x to y. For ease of notation, we allow repetitions in the set notation of Yx,
and assume that data points in Yx are indeed distributed according to Px(y) and are sufficient for
estimating Px(y). Further, we assume that these transitions are smooth in the sense that if x is similar
to x′ then P (y | x) is similar to P (y | x′). Therefore in practice we may replace Yx in the following

2

Under review as a conference paper at ICLR 2019

Figure 1: (A) Schema of DyMoN architecture
where x represents the neural network input vec-
tor, ŷ represents the predicted network output
in (1), and ε is a random Gaussian noise vec-
tor. P (y|x) represents the distribution of outputs
from many iterations of the stochastic dynami-
cal process given x, and P (ŷ|x) represents the
distribution of outputs of DyMoN given x and
many different noise vectors. (B) Example input
states. (C) Learned transition vectors (arrows)
and output states from DyMoN.

training procedure with ∪x′≈xYx′ , which includes target points from neighbors of x to increase the
robustness of DyMoN.

The stochastic output of DyMoN is enabled by a random input vector ε ∈ Rn sampled from a simple
(e.g., normal or uniform) distribution F with zero mean and unit variance. This input can be explicitly
written into DyMoN function as

Tε(x, θ) = x+ fθ(x, ε), (1)

where fθ : Rd ×Rn → R
d represents suitable feed forward layers for combining the training input

x with the random input ε to provide an instantiation of the transition velocity vector ∆θ(x).

Given x ∈ X and θ ∈ Θ, one can consider the distribution P̂(θ)
x of the random variable Tε(x, θ),

ε ∼ F and estimate it by m i.i.d. instantiations ε = {εj ∼ F}mj=1 passed through the network to

form Ŷ
(ε)
(x,θ) = {Tε1(x, θ), . . . , Tεm(x, θ)}. To conform with the training data, DyMoN is optimized

so that this distribution approximates the distribution Px, as captured from the training data by Yx.
This optimization is given by arg minθ E [{Hx(θ) : x ∈ X] with Hx(θ) = MMD(P̂(θ)

x ,Px) (see
supplemental material for details on MMD). The MMD is computed using Ŷ (ε)

(x,θ) and Yx. Given
trained weights θ ∈ Θ and an initial state x0 ∈ X , a random walk is generated by xt = Tεt(xt−1, θ),
where t = 1, 2, . . ., and ε1, ε2, . . .

i.i.d.∼ F .
We note that DyMoN can be used to learn deterministic time series by considering Dirac conditional
probabilities in the Markov process, essentially ignoring the random input. Additionally, DyMoN
can be extended to encode high-order Markov processes, which have fixed-size memory rather than
being memoryless. To this end, an n-th order DyMoN takes n input states and have the distribution
of ∆θ(xt−1, xt−2, . . . , xt−n) determine the conditional probability P (xt|xt−1, xt−2, . . . , xt−n) of
an n-th order Markov process. The training and application of both a deterministic and a high-order
DyMoN extend naturally from the stochastic memoryless (i.e., first-order) DyMoN.

3 BIOLOGICAL CASE STUDIES

3.1 BIOLOGICAL CASE STUDY 1: CALCIUM IMAGING OF VISUAL CORTEX NEURONS

We apply DyMoN to dynamic calcium imaging data from 33 Somatostatin-expressing GABAergic
(SOM) interneurons from a mouse visual cortex (Urban-Ciecko & Barth, 2016). SOM interneurons
are a unique set of GABAergic cells and represent about 25% of all cortical interneurons. and are
characterized by high basal firing activity. They are also thought to be connected in dense networks,
though the architecture of these networks is not well-known. The data consists of a total of 129,500
frames at 30Hz, lasting 72 minutes, each containing a recording of the change of fluorescence (dF/F)
indicating calcium activity over time . We train DyMoN to predict the the next state (which we define
as 10 frames later) given the current state of the 33 neurons.

Surprisingly, though SOM cells are not connected to each other by chemical or electrical synapses
and do not receive strong feedforward input, we see co-activation relationships in the data. We see in
Figure 2A that neurons 9 and 18 are strongly affected by two large clusters of neurons in opposite
directions. There is a group of nine neurons which activate 9 and 18, with neuron 19 being the
strongest activator. A second group of 9 neurons which inhibit neurons 9 and 18, with neuron 4 being

3

Under review as a conference paper at ICLR 2019

the strongest inhibitor. We speculate that these interactions are the result of either 1. co-activation by
lateral excitatory inputs from superficial pyramidal neurons, 2. co-modulation by neuromodulators,
or 3. top-down feedback input regulating the activity of a specific subset of SOM cells (Yavorska &
Wehr, 2016).

A subset of the SOM cells appear to function as hubs in an excitatory pattern (see Figure 2B). Early
in postnatal development, a subset of inhibitory neurons function as hub neurons and regulate the
activity of surrounding neurons. Hub neurons have mainly been characterized in the hippocampus and
entorhinal cortex, and a hub role for sensory cortical interneurons would be highly novel (Bonifazi
et al., 2009). Our future work involves examining whether these results hold in additional mouse
samples.

Figure 2: Jacobian of DyMoN’s transition vector with respect to network inputs on mouse neuronal
activations. (A) Biclustered heatmap of gradient of the transition vector with respect to the network
inputs, with the transition vector on the vertical axis and the inputs on the horizontal axis. (B) Graph
built on thresholded gradients (gradients with absolute value less than 0.04 were excluded). Nodes
are colored by their degree.

3.2 BIOLOGICAL CASE STUDY 2: T CELL DEVELOPMENT IN THE THYMUS

Next, we use DyMoN to learn transitions in single-cell data. Single-cell data has recently gained
popularity in biology as a way of dissecting cellular heterogeneity. Recent works such as Diffusion
Pseudotime (Haghverdi et al., 2016), Wanderlust (Bendall et al., 2014), and Wishbone (Setty et al.,
2016) take the view that cells from a single experimental sample are at different stages of development
and derive a pseudo-temporal developmental ordering to the cells. The idea of pseudo-time is
that while we cannot follow a single cell through time with current high-dimensional single cell
technologies, the entire population of cells can be used to derive potential cell trajectories within a
sample.

Here, we use a mass cytometry dataset measuring actively developing T cells, which are adaptive
immune cells, obtained from a mouse thymus (Setty et al., 2016). We preprocess this data using
the MAGIC algorithm (van Dijk et al., 2018). After preprocessing, we are left with 17,000 cells,
measured in 33 protein dimensions (Figure 3). We then train DyMoN on a trajectory obtained by
using a diffusion-based Markov affinity matrix (as described in Moon et al. (2017)) and the ordering
obtained by Wishbone.

After training we sample trajectories by initializing DyMoN with undifferentiated cells. We obtain
two types of trajectories. To investigate the difference between the two trajectories we examine their
marker expression as a function of trajectory progression (Figure 3ii, iii). Both trajectories start out
with low CD4 and CD8, which is expected form naive T cells. Both trajectories then increase in CD4
and CD8, signaling the change to the double-positive T cells. Then, at this point, we find that the two
trajectories diverge with the main difference between the two trajectories that in one CD8 goes down
whereas in the other CD4 goes down. This signifies the transitions into T helper cells (CD4+/CD8-)
or cytotoxic T cells (CD4-/CD8+) respectively.

To investigate the internal representation that is learned by DyMoN, we compute the Jacobian of the
transition vector with respect to the inputs, at two different points on the trajectory: at the branch
point (Figure 3Di) and at the CD8+/CD4- branch (Figure 3Dii). DyMoN is capable of learning

4

Under review as a conference paper at ICLR 2019

different associations between genes at different points in the ambient space. We find a negative
association between CD4 and CD8 in the Jacobian obtained at the branch point, reflecting the
decision between downregulating either CD4 or CD8. In addition, we find that in the Jacobian of
the CD8+ branch Gata3, a developmental marker, goes down with CD4 and CD8 confirming the
developmental characteristic of the trajectory. Finally, in the same CD8+ branch Jacobian, Foxp3 and
CD25 are positively associated, which is consistent with their role as regulatory T cell markers. The
concordance of our analysis with the established literature on T cell development provides validation
that DyMoN can both learn meaningful trajectories, and can be further interrogated to provide insights
into the network’s dynamical model of the system.

Figure 3: DyMoN on mass cytometry data of T cell development in the thymus. (A) PCA plots of
all 17,000 cells colored by CD8 (Ai) and CD4 (Aii) expression. (B) PCA plots with all cells in grey
and DyMoN trajectories in color. Bi shows DyMoN trajectory of CD4+/CD8- T helper cells, and
Bii shows DyMoN trajectory of CD4-/CD8+ cytotoxic T cells. (C) Shows row z-scored heatmaps
of marker expression as a function of the trajectory for each of the two DyMoN trajectories with
hierarchically clustered genes on the rows and cells on the columns. (D) Heatmaps of the Jacobians
obtained at the branch point (Di) and at the end of the CD8+/CD4- branch (Dii).

3.3 BIOLOGICAL CASE STUDY 3: HUMAN EMBRYONIC STEM CELL DIFFERENTIATION

In order to apply DyMoN’s generative capabilities on a biologically novel system, we generated
single-cell RNA sequencing data of human embryonic stem cells (hESCs) differentiating in an
embryoid body (EB) system. EB differentiation has been shown to mirror early human development
in numerous cell types (e.g. neuronal, hematopoietic, muscle, pancreatic cells, etc), and is used as a
model to develop cellular reprogramming protocols (Bibel et al., 2007; Nakano et al., 1996; Kania
et al., 2004; Geijsen et al., 2004).

To investigate potentially novel reprogramming strategies in the EB system with DyMoN, we
measured approximately 31,000 cells, using the 10x Chromium platform, equally distributed over a
27-day differentiation time course, and preprocessed the cells with MAGIC (van Dijk et al., 2018).
Because this dataset has numerous lineages, it is not amenable to training by diffusion pseudotime.
Instead, we train the DyMoN on Markovian transitions based on the diffusion geometry of the dataset.
We sample neighbors y of x over weighted affinities defined by a Gaussian kernel, retaining only
those neighbors for which y is defined to be ”later” than x, where time is defined here as a smoothed
estimate of the discrete time variable denoting development within the experimental time course.

In Figure 4, we show two representative trajectories generated through the data by DyMoN, one
of which samples neural progenitor development (A), and the other bone progenitor development
(B), both starting out as embryonic stem cells. We show in a heatmap of genes with high mutual
information with the path position that each of these paths initially express known stem cell markers

5

Under review as a conference paper at ICLR 2019

Figure 4: Trajectories generated by DyMoN sampling the neural progenitor (A) and bone progenitor
(B) cell states. Trajectories are shown both as MDS against the training data (i) and as heatmaps of
selected transcription factors (ii). From these trajectories, we propose a novel cellular programming
protocol shown in (iii).

NANOG and POU5F1, and follow a common differentiation transition into the ectoderm (LHX2).
Following this, the two paths diverge, with path A taking the neural progenitor branch distinguished
by SOX1, and path B taking the bone progenitor branch distinguished by ALPL. We observe a novel
set of transcription factors distinguishing each stage of differentiation in these generated trajectories
(e.g. RBM17, FNDC3B, HAND1, and HES5, see Figure 4iii), and propose these transcription factors
for a potentially novel reprogramming protocol to obtain each respective mature cell type. In this
system, DyMoN provides a novel form of hypothesis generation enabled by the deep abstract model
of the differentiation process, enabling researchers to perform more informed validation experiments
based on hypotheses generated in an unsupervised and data-driven manner.

4 EMPIRICAL VALIDATION

In this section, we demonstrate the performance and accuracy of DyMoN on a variety of datasets
including simulated datasets and the Frey faces dataset (Roweis & Saul, 2000). We show that DyMoN
is able to learn processes that are harmonic or chaotic, ergodic or null-recurrent, and compare its
performance to a range of other methods used to perform prediction in dynamical systems. We
further show that DyMoN’s output and hidden layers can be interrogated to learn about the process
being modeled. Specifically, we show that we can reliably use DyMoN to 1. learn the transition
probabilities at each state; 2. generate stochastic trajectories within a system; 3. visualize the data;
and 4. learn the relevant features that drive the transitions. For training details, see the supplementary
material.

Learning transition probabilities: We first demonstrate DyMoN on two test cases: a circle, which
is traversed directionally and non-directionally; and a tree, which is traversed directionally starting
from the root. The tree is generated by creating points sequentially along branches at random angles
with one another, and then adding Gaussian noise. In both cases, the inputs to the network are
two-dimensional Euclidean coordinates. Training examples are drawn from the tree where transitions
crossing branch points select a branch with probability 0.5.

Figure 5 shows vector fields for these two examples indicating the distribution of transitions at each
state and at unobserved states as predicted by DyMoN. DyMoN is able to randomly select a direction
of travel at each branch point, allowing it to walk along a data manifold in the correct direction.
Empirical testing on these test systems also motivates our choice to include a skip connection from

6

Under review as a conference paper at ICLR 2019

Figure 5: Vector fields indicating the predicted transitional direction by DyMoN on circle (left) and
tree (center) datasets. The right-hand branch point of the tree is shown at higher resolution in the
right panel. We run DyMoN at discrete points in the state space, with arrows pointing in the direction
of prediction. We run DyMoN 40 times and show darker arrows in the more frequently predicted
directions. DyMoN is trained to move both clockwise and counter-clockwise on the circle. For the
tree, it begins at the center-left and travels down each of the branches.

the inputs to the outputs, allowing the network to learn the velocity of the transition function rather
than the position transition itself (shown in the supplemental material).

Trajectory generation: We now demonstrate the ability of an nth order DyMoN to generate paths
on a single and double pendulum. Since these processes are deterministic, we do not add noise to
the input of DyMoN and use the mean squared error as the loss function. For the single pendulum,
we use a second-order DyMoN with the current and previous angle of the pendulum as inputs. For
the double pendulum, we use a third-order DyMoN with the current and last two angles of both
pendulums as inputs.

Figure 6: Paths generated by the second-order DyMoN trained on a single and double pendulum. A
single trajectory is shown for each system in (A) and (C) respectively. In (B) and (D) we show the x
coordinate of 500 generated paths starting from an epsilon-difference for the single and the lower of
the double pendulums, respectively.

Figure 6 shows the Euclidean coordinates of DyMoN-generated paths of both pendulums over time,
with only the second pendulum shown in the case of the double pendulum. Both predicted pendulums
show smooth trajectories, with the single pendulum showing periodic behavior and the double
pendulum showing chaotic behavior.

We also trained DyMoN on the Frey faces dataset (Roweis & Saul, 2000) in order to demonstrate
DyMoN’s capacity to learn an empirical model of a stochastic system for which no generating
distribution exists. Figure 7 shows 1000 samples generated by DyMoN on the Frey faces dataset
visualized using PCA. The first 1000 samples are discarded. Ten generated samples with uniform
spacing in time are also shown. DyMoN samples a large range of states and generates a realistic new
trajectory.

Stationary distribution comparison to other methods: We train the DyMoN to sample a Gaussian
mixture model in order to show that DyMoN reliably learns to generate samples of the system
which match the expected data distribution, thus avoiding the ”mode collapse“ problem which
affects Generative Adversarial Networks. We generate training data from a 1-dimensional Gaussian
mixture model using Metropolis-Hastings sampling, and compare the performance of Recurrent
Neural Networks (RNNs), Hidden Markov Models (HMMs) and Kalman Filters (KFs) on this simple
stochastic system. Figure 8 shows 50,000 points generated in a chain from each method, and we
compare the Earth Mover’s Distance (EMD) of these chains to a distribution of 200,000 points

7

Under review as a conference paper at ICLR 2019

Figure 7: Chain generated by the DyMoN visualized on a PCA embedding of the Frey faces dataset
(left). The chain is shown in color (indicating time) superimposed over the training data in gray. 10
equally spaced faces generated by DyMoN are also shown (right).

Figure 8: Chain of samples (top) and marginal distribution (bottom) drawn from Markov-Chain
Monte Carlo (MCMC), DyMoN, Recurrent Neural Network (RNN), Hidden Markov Model (HMM)
and Kalman Filter (KF) when trained on the Gaussian Mixture Model.

generated by MCMC in Table 5. DyMoN provides performance on par with the HMM and MCMC,
both in terms of accuracy of sampling the distribution (EMD) and inference time. RNNs fail to capture
the stochasticity of the system, falling into an infinite loop reproducing the same data point. Kalman
filters are inherently difficult to train on a system without predefined states and transitions, and as
such under-perform in an unsupervised setting. Additionally, although the marginal distribution is
similar, the dynamics of the HMM fail to capture the full variability of the MCMC sampling.

Pointwise sample comparison to other methods: We train the a DyMoN with 2 convolutional
layers with 5x5 filters and 2x2 max pooling, a single fully connected layer of 3 hidden nodes, and
2 deconvolutional layers on a video of a rotating teapot (Weinberger et al., 2004). We compare the
performance of RNNs, HMMs and KFs to DyMoN on this higher-dimensional example. We produce
a single transition from each frame in the time series (giving a chain of prior states to the HMM,
RNN and KF in order to facilitate their estimates of the current state) and measure the mean squared
error between the produced output and the true frame, ten time points after the current state. Due to
the relatively little training data available (400 samples), both classical statistical learning methods
(HMM, KF) have difficulty generating accurate samples from this system given a single snapshot.
RNNs perform well on the large majority of frames when given a sequence as input, but fail entirely
when given only a single frame as input on inference, making them inherently unsuitable to inference
in snapshot biological systems where sequential input is not available. Additionally, DyMoN is able
to generate images faster than all other methods, and is only slower in training than the HMM, which
produces significantly lower quality images. Examples of images produced by each method are
shown in Figure 11.

Visualization: A DyMoN with a low-dimensional latent layer can also be used to produce a visu-
alizable embedding of the data. Figure 9 shows the embedding layer of the DyMoN trained on the
teapot data produces a single trajectory homeomorphic to a circle, while the PCA embedding of the
same dataset produces spurious intersections and branches in the data. We see that the RNN trained

8

Under review as a conference paper at ICLR 2019

MSE TRAINING (CPU S) INFERENCE (CPU S / FORWARD PASS)

DYMON 1.8± 0.01 8 MIN 1.2 S
RNN (SEQUENCE) 2.3± 0.20 8.7 H 3.0 S
RNN (SNAPSHOT) 9.1± 0.04 — 2.9 S
KF 10.2± 0.07 300 H 175 S
HMM 5.4± 0.06 28 S 192 S

Table 1: Performance of various learning methods for dynamical systems on generating frames from
the teapot dataset.

with a similar architecture (a 64 node LSTM layer is added to both sides of the 3 node layer) does
not contain an interpretable embedding, as the RNN does not simply model the transition and has
memory that may confound the embedding.

Figure 9: Embedding of the teapot video dataset colored by the x axis using PCA (left), a three-node
hidden layer of DyMoN (center), and a three-node hidden layer of an RNN (right). We also show
sequential images from the original video and a DyMoN-generated chain (far right).

5 CONCLUSION

Here we presented a framework, which we call DyMoN, for designing neural networks that can model
stochastic dynamics from biological data. The DyMoN framework is well-suited for creating a deep
model of n-th order Markovian stochastic dynamics from the types of data that occur in biological
settings, especially in systems for which the generative process cannot be described by differential
equations. In addition to actual longitudinal samples of dynamics, this can include noisy or sparse
data, snapshot data where neighborhoods represent probabilistic next states, pseudotime trajectories
created over data, or even trained Markov models. The flexibility of this framework is enabled by
several aspects of DyMoN. First, since the networks encode Markovian dynamics, they do not require
long histories that are difficult to obtain in biological data. Secondly, the MMD penalty used to train
the next-state generation, can enforced via samples or a known probability distribution, making the
networks trainable on top of other more shallow models such as diffusion operators and pseudotime
inferences. We show that creating a deep model of biological stochastic dynamics enables several
different analyses of such systems, including the generation of new trajectories to augment the data,
extraction of feature dependencies of the dynamics, and visualization of the dynamic process, as well
as denoising trajectories from naturally noisy data. We believe that DyMoN will enable inference of
driving forces (genes, transcription factors, mutations, etc) of progression dynamics from the large
amounts of biomedical data now being generated in many settings.

9

Under review as a conference paper at ICLR 2019

REFERENCES

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-
to-end speech recognition in english and mandarin. In International Conference on Machine
Learning, pp. 173–182, 2016.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pp. 585–591, 2002.

Sean C Bendall, Kara L Davis, El-ad David Amir, Michelle D Tadmor, Erin F Simonds, Tiffany J
Chen, Daniel K Shenfeld, Garry P Nolan, and Dana Peer. Single-cell trajectory detection uncovers
progression and regulatory coordination in human b cell development. Cell, 157(3):714–725, 2014.

Miriam Bibel, Jens Richter, Emmanuel Lacroix, and Yves-Alain Barde. Generation of a defined and
uniform population of cns progenitors and neurons from mouse embryonic stem cells. Nature
protocols, 2(5):1034–1043, 2007.

Paolo Bonifazi, Miri Goldin, Michel A Picardo, Isabel Jorquera, A Cattani, Gregory Bianconi,
Alfonso Represa, Yehezkel Ben-Ari, and Rosa Cossart. Gabaergic hub neurons orchestrate
synchrony in developing hippocampal networks. Science, 326(5958):1419–1424, 2009.

Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.
Domain separation networks. In Advances in Neural Information Processing Systems, pp. 343–351,
2016.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio.
Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, pp. 10–21, 2016.

Tsai-Wen Chen, Trevor J Wardill, Yi Sun, Stefan R Pulver, Sabine L Renninger, Amy Baohan, Eric R
Schreiter, Rex A Kerr, Michael B Orger, Vivek Jayaraman, et al. Ultrasensitive fluorescent proteins
for imaging neuronal activity. Nature, 499(7458):295, 2013.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. In Advances in neural information processing
systems, pp. 2980–2988, 2015.

Ronald R. Coifman and Matthew J. Hirn. Diffusion maps for changing data. Applied and
Computational Harmonic Analysis, 36(1):79 – 107, 2014. ISSN 1063-5203. doi: https://
doi.org/10.1016/j.acha.2013.03.001. URL http://www.sciencedirect.com/science/
article/pii/S1063520313000225.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic
Analysis, 21(1):5–30, 2006.

Alexander Dubbs, James Guevara, and Rafael Yuste. Moco: fast motion correction for calcium
imaging. Frontiers in neuroinformatics, 10:6, 2016.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via Maximum
Mean Discrepancy optimization. ArXiv e-prints, May 2015.

Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. An application of recurrent neural
networks to discriminative keyword spotting. In Proceedings of the 17th International Conference
on Artificial Neural Networks, ICANN’07, pp. 220–229, Berlin, Heidelberg, 2007. Springer-Verlag.
ISBN 3-540-74693-5, 978-3-540-74693-5.

Niels Geijsen, Melissa Horoschak, Kitai Kim, Joost Gribnau, Kevin Eggan, and George Q Daley.
Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 427
(6970):148–154, 2004.

Anirudh Goyal, Nan Ke, Surya Ganguli, and Yoshua Bengio. Variational walkback: Learning a
transition operator as a stochastic recurrent net. In Advances in Neural Information Processing
Systems, pp. 4395–4405, 2017.

10

http://www.sciencedirect.com/science/article/pii/S1063520313000225
http://www.sciencedirect.com/science/article/pii/S1063520313000225

Under review as a conference paper at ICLR 2019

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

Laleh Haghverdi, Maren Buettner, F Alexander Wolf, Florian Buettner, and Fabian J Theis. Diffusion
pseudotime robustly reconstructs lineage branching. Nature Methods, 13(10):845, 2016.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. CoRR, abs/1602.02410, 2016.

Gabriela Kania, Przemyslaw Blyszczuk, Andrea Jochheim, Michael Ott, and Anna M Wobus.
Generation of glycogen-and albumin-producing hepatocyte-like cells from embryonic stem cells.
Biological chemistry, 385(10):943–953, 2004.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference for Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2014.

Kevin R Moon, David van Dijk, Zheng Wang, Daniel Burkhardt, William Chen, Antonia van den
Elzen, Matthew J Hirn, Ronald R Coifman, Natalia B Ivanova, Guy Wolf, and Smita Krishnaswamy.
Visualizing transitions and structure for high dimensional data exploration. bioRxiv, pp. 120378,
2017.

Toru Nakano, Hiroaki Kodama, and Tasuku Honjo. In vitro development of primitive and definitive
erythrocytes from different precursors. Science, 272(5262):722, 1996.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

Manu Setty, Michelle D Tadmor, Shlomit Reich-Zeliger, Omer Angel, Tomer Meir Salame, Pooja
Kathail, Kristy Choi, Sean Bendall, Nir Friedman, and Dana Pe’er. Wishbone identifies bifurcating
developmental trajectories from single-cell data. Nature Biotechnology, 34(6):637, 2016.

Uri Shaham, Kelly P Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Montgomery, and Yuval
Kluger. Removal of batch effects using distribution-matching residual networks. Bioinformatics,
33(16):2539–2546, 2017.

Ronen Talmon and Ronald R. Coifman. Intrinsic modeling of stochastic dynamical systems
using empirical geometry. Applied and Computational Harmonic Analysis, 39(1):138 – 160,
2015. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2014.08.006. URL http://www.
sciencedirect.com/science/article/pii/S106352031400116X.

Joanna Urban-Ciecko and Alison L Barth. Somatostatin-expressing neurons in cortical networks.
Nature Reviews Neuroscience, 17(7):401, 2016.

D. van Dijk, R. Sharma, J. Nainys, K. Yim, P. Kathail, A. Carr, C. Burdsiak, K.R. Moon, C. Chaffer,
D. Pattabiraman, B. Bierie, L. Mazutis, G. Wolf, S. Krishnaswamy, and D. Pe’er. Recovering gene
interactions from single-cell data using data diffusion. Cell, 2018.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using time-delay
neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3):328–339,
1989.

Kilian Q Weinberger, Fei Sha, and Lawrence K Saul. Learning a kernel matrix for nonlinear
dimensionality reduction. In Proceedings of the twenty-first international conference on Machine
learning, pp. 106. ACM, 2004.

Guy Wolf and Amir Averbuch. Linear-projection diffusion on smooth euclidean submanifolds.
Applied and Computational Harmonic Analysis, 34(1):1 – 14, 2013. ISSN 1063-5203. doi: https://
doi.org/10.1016/j.acha.2012.03.003. URL http://www.sciencedirect.com/science/
article/pii/S1063520312000425.

11

http://www.sciencedirect.com/science/article/pii/S106352031400116X
http://www.sciencedirect.com/science/article/pii/S106352031400116X
http://www.sciencedirect.com/science/article/pii/S1063520312000425
http://www.sciencedirect.com/science/article/pii/S1063520312000425

Under review as a conference paper at ICLR 2019

Guy Wolf, Aviv Rotbart, Gil David, and Amir Averbuch. Coarse-grained localized diffusion. Applied
and Computational Harmonic Analysis, 33(3):388 – 400, 2012. ISSN 1063-5203. doi: https://
doi.org/10.1016/j.acha.2012.02.004. URL http://www.sciencedirect.com/science/
article/pii/S1063520312000383.

Iryna Yavorska and Michael Wehr. Somatostatin-expressing inhibitory interneurons in cortical circuits.
Frontiers in neural circuits, 10:76, 2016.

A BACKGROUND

Markov Processes: Markov processes are stochastic memoryless models that describe dynamic
systems, i.e., each state depends only on the last state. However, higher order processes can be
modeled by making the state dependent on several previous states. A deterministic Markov chain
maps each state to only one next state whereas a stochastic Markov chain models a probabilistic
transition such that at each state multiple transitions are possible. DyMoN is a neural network trained
to replicate a stochastic (with input noise) or deterministic (no input noise) Markov process.

Maximum Mean Discrepancy: Divergences, such as KL divergence, are used to measure distances
between probability distributions. However, they require density estimation and as such divergences
are hard to compute for high dimensional systems. Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012) offers a solution by using the kernel trick to circumvent the curse of high dimensionality.
Instead of comparing empirical distributions, MMD is defined on the inter- and intra-sample pairwise
affinities, which are computed using a kernel. With MMD we can therefore compute the distributional
distance (i.e. divergence) between two samples, without the need for density estimation. This distance
is defined as

MMD2(µ, ν) =

∫∫
k(x, x′)dµdµ+

∫∫
k(y, y′)dνdν − 2

∫∫
k(x, y)dµdν

where k(·, ·) is a kernel function and x and y are sampled from the two distributions represented by
the probability measures µ and ν. In practice, this distance is estimated using summation over two
finite sets of samples.

MMD has been used in Dziugaite et al. (2015) to translate samples from one distribution into another
distribution using a deep neural network architecture. Samples were generated by sampling random
values from some simple distribution, e.g. Gaussian, and running them through a deep neural network.
The network was trained by minimizing the MMD between generated samples and real samples.
In Shaham et al. (2017) this architecture was extended by using a residual network with the application
of removing undesirable batch effects that are associated with measurements. We use MMD to learn
a conditional distribution that represents the possible next states in the Markov chain.

Calcium Imaging Data (Urban-Ciecko & Barth, 2016) Details: To express GCaMP in SOM+
cells, the mouse was anesthetized with 1- 2% isoflurane mixed with pure oxygen, and we injected
the two 100nL injections of adenoassociated virus AAVdj-EF1a-fDIO-GCaMP6m in primary visual
cortex (V1) at a rate of 75nL/min. For implantation of the imaging window, the mouse was anes-
thetized using a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg), and a 3 mm diameter
craniotomy was opened over V1, where we inserted and fixed a small rectangular glass piece attached
to a 5mm circular cover glass into the craniotomy. A custom titanium head post was secured to the
skull with Metabond. Two weeks after implantation, mice were placed on the wheel and head-fixed
under the microscope objective. Imaging was performed using a resonant scanner-based two-photon
microscope (MOM, Sutter Instruments) coupled to a Ti:Sapphire laser (MaiTai DeepSee, Spectra
Physics) tuned to 920 nm for GCaMP6. Images were acquired using ScanImage at 30 Hz, 512x512
pixels (580x580 um). Imaging of layer 2/3 was performed at 150-300 um depth relative to the brain
surface. Mice ran freely on the wheel, and after 10 mins of recording, were presented with visual
stimuli (drifting gratings with vary contrasts) for 50 mins (40 presentations of each contrast, contrasts
ranging from 0%, i.e. gray screen, to 100%, steps of 10%). After the stimulation session was done,
we recorded for another 10 mins of spontaneous activity. Analysis of imaging data was performed
using ImageJ and custom routines in MATLAB. Motion artifacts and drifts in the Ca 2+ signal were
corrected with the moco plug-in in ImageJ (Dubbs et al., 2016), and regions of interest (ROIs) were
selected as described in (Chen et al., 2013). All pixels in a given ROI were averaged as a measure of
fluorescence, and the neuropil signal was subtracted.

12

http://www.sciencedirect.com/science/article/pii/S1063520312000383
http://www.sciencedirect.com/science/article/pii/S1063520312000383

Under review as a conference paper at ICLR 2019

Figure 10: Alternative DyMoN architectures. The stochastic output can be generated in the ambient
space (1) or the latent space of an autoencoder (2, 3). Chains of samples are generated by feeding
DyMoN output back in as a new input; this can be passed additionally through the encoder and
decoder as a denoising step (3).

B RELATED WORK

Recurrent Networks (RNNs): RNNs are trained to predict the next state of a sequence and have
been used for text analysis (Fernández et al., 2007), speech recognition (Amodei et al., 2016), and
language modeling (Józefowicz et al., 2016), as well as other tasks that operate on time series data.
In contrast to DyMoN, RNNs typically require a sequence or history to predict the next state.

Stochastic Generative Networks: There have been other networks that use stochasticity to learn
conditional distributions. For example, given an input X and a stochastic input to a middle layer, a
variational autoencoder (VAE) (Kingma & Welling, 2014) learns to transform these inputs into a
Gaussian centered at a maximum likelihood point from which X is derived. Thus the variational
network can denoise samples and also generate samples “like” given samples. However, VAEs
focus on generating data points instead of transitions. Several stochastic RNNs have also been
proposed (Bowman et al., 2016; Chung et al., 2015). For example, in Goyal et al. (2017), a stochastic
generative RNN is trained to learn a process that converges to the full data distribution within a small
number of steps given a simple initialization. In contrast, DyMoN learns the transitional probabilities
from state to state of a Markov process instead of its stationary distribution.

Time Delay Neural Networks: DyMoN also has some conceptual connection to Time Delay Neural
Networks (TDNNs) which include a contextual window samples as input. However, the main focus of
TDNNs are to classify patterns with shift-invariance, such as recognizing phenomes in speech (Waibel
et al., 1989). TDNNs generally achieve this by taking a time convolution through windows of time
to train a classifier. In contrast, we focus on learning Markov processes with the goal of generating
plausible next-states and analyzing the dynamics that drive these transitions.

C DYMON DETAILS

DyMoN architecture: One could envision many neural network architectures which fit the schema
of the DyMoN that we propose. In this paper, we use three alternative models; these are shown
in Figure 10. The first architecture generates transitions on the ambient space, most suitable to
data of low dimensionality. The other two architectures generate transitions on the latent space of
an autoencoder, which learns a latent space which, due to gradient descent propagating through
the encoder and decoder, learns a latent space more suited to generating transitions than either the
ambient space or latent spaces learned by other dimensionality reduction methods. Additionally, the
generation of points in a sampled trajectory can be passed through the encoder and decoder in order
to prevent accumulation of error over the course of many samples.

Training the DyMoN: We train DyMoN using leaky ReLU activations on the hidden nodes and
linear activations on the residual output nodes. Stochastic DyMoNs are trained with Gaussian noise
inputs, and all DyMoNs are trained with Gaussian corruption noise. To compute the MMD loss, we

13

Under review as a conference paper at ICLR 2019

DATA SET ARCHITECTURE HIDDEN LAYERS STEP SIZE

CIRCLE 1 1X6 0 ± 20
PENDULUM 1 [8, 16, 8] 1
TEAPOT 2 2XCONV, 1X3, 2XDECONV 10
MIXTURE MODEL 1 3X64 1
TREE 1 [64, 128, 64] 100 ± 20
FREY FACES 1 [512, 1024, 512] 0 ± 12
DOUBLE PENDULUM 1 [64, 128, 64] 1
CALCIUM IMAGING 1 3X128 10
T CELL CYTOF 2 2X256, 3X256, 2X256 80 ± 20
HESC SCRNA-SEQ 3 2X128, 3X128, 2X128 DIFFUSION

Table 2: DyMoN architecture and training details. Architecture refers to alternative DyMoN ar-
chitectures shown in Figure 10. Where step size is given, samples are provided to DyMoN as
(xt, xt+step size).

DATA SET EPOCHS WITH WITHOUT

CIRCLE 2200 1.3E-8 4.7E-5
PENDULUM 750 1.9E-6 3.9E-5

Table 3: Training loss for DyMoN with and without skip connection.

use a multi-scale Gaussian kernel (Bousmalis et al., 2016) with 19 bandwidths ranging from 1e−6 to
1e6, evenly spaced on a log scale. The kernel is computed separately for each bandwidth and then
MMD is computed on the sum of the kernels. The Adam optimizer (Kingma & Ba, 2015) is used for
stochastic gradient descent in all cases.

Empirical validation of the skip connection: We trained a DyMoN on the circle and pendulum
datasets both with and without a skip connection. The resulting training losses are shown in Table 3.
Including a skip connection reduces the training loss.

Training time: Table 4 shows DyMoN training times for the datasets considered.

DATA SET EPOCHS TIME (MIN)

CIRCLE 2200 0.8
PENDULUM 500 3.7
TEAPOT 1000 8
MIXTURE MODEL 600 9
TREE 750 97
FREY FACES 1800 698
DOUBLE PENDULUM 1400 1801

Table 4: Training time for empirical tests. All networks were trained with 2617MB of RAM on a
NVIDIA Titan X Pascal GPU.

D METHODS COMPARISON

Competing methods were trained on the same dataset as for DyMoN, and with similar architecture
where possible. We used Hidden Markov Models provided by the hmmlearn Python package
and Kalman Filters provided by the pykalman package, in both cases learning all parameters by
Expectation-Maximization (EM). The EM algorithm was run with default parameters. Recurrent
Neural Networks were trained with the same number of hidden layers and convolutions as the DyMoN,
except in the teapot example where we found performance improved by adding an additional two
hidden layers of size 64. Performance of the competing methods using Earth Mover’s Distance

14

Under review as a conference paper at ICLR 2019

EMD TRAINING (CPU S) INFERENCE (CPU S / FORWARD PASS)

DYMON 0.150± 4e−4 9 MIN 19.7 S
MCMC 0.146± 4e−4 N/A 26.2 S
RNN 1.61± 3.4e−3 269 MIN 3209 S
KF 0.357± 1e−4 650 S 15.1 S
HMM 0.159± 3e−4 92 S 10.5 S

Table 5: Performance of various learning methods for dynamical systems on generating a distribution
of samples from the GMM dataset.

Figure 11: Examples of samples drawn from DyMoN, Recurrent Neural Network (RNN) given either
a full sequence of inputs (Sequence) or a single input padded by zeroes (Snapshot), Hidden Markov
Model (HMM) and Kalman Filter (KF) when trained on the teapot data.

(EMD) on the GMM example is shown in Table 5 and examples of generated frames from the teapot
data are shown in Figure 11.

15

