Under review as a conference paper at ICLR 2019

END-TO-END LEARNING OF PHARMACOLOGICAL AS-
SAYS FROM HIGH-RESOLUTION MICROSCOPY IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting the outcome of pharmacological assays based on high-resolution mi-
croscopy images of treated cells is a crucial task in drug discovery which tremen-
dously increases discovery rates. However, end-to-end learning on these images
with convolutional neural networks (CNNSs) has not been ventured for this task
because it has been considered infeasible and overly complex. On the largest
available public dataset, we compare several state-of-the-art CNNs trained in an
end-to-end fashion with models based on a cell-centric approach involving seg-
mentation. We found that CNNs operating on full images containing hundreds
of cells perform significantly better at assay prediction than networks operating
on a single-cell level. Surprisingly, we could predict 29% of the 209 pharma-
cological assays at high predictive performance (AUC > 0.9). We compared a
novel CNN architecture called “GapNet” against four competing CNN architec-
tures and found that it performs on par with the best methods and at the same time
has the lowest training time. Our results demonstrate that end-to-end learning on
high-resolution imaging data is not only possible but even outperforms cell-centric
and segmentation-dependent approaches. Hence, the costly cell segmentation and
feature extraction steps are not necessary, in fact they even hamper predictive per-
formance. Our work further suggests that many pharmacological assays could
be replaced by high-resolution microscopy imaging together with convolutional
neural networks.

1 INTRODUCTION

High-resolution microscopy fluorescence imaging is an increasingly important biotechnology in the
field of drug discovery (Pepperkok and Ellenberg, 2006; Starkuviene and Pepperkok, 2007). This
imaging biotechnology captures morphological changes induced by chemical compounds on cell
cultures in a very cost- and time-efficient way (Yarrow et al., 2003) and is viewed as remedy for
the current drug discovery crisis (Dorval et al., 2018). However, exploiting the wealth of informa-
tion contained in those images for drug discovery is still a challenge (Simm et al., 2018) and it is
important to lower entry barriers for the analysis of such data (Scheeder et al., 2018).

A typical step of conventional microscopy image analysis pipelines is to segment images into single
cells and then extract cell-level feature vectors (Carpenter et al., 2006). Individual steps in the
pipeline of such approaches usually require optimization of the segmentation and feature extraction
procedure to the specific cell culture or assay. This is a time-consuming process in which each step
potentially introduces errors and uncertainty. Furthermore, parameters for each step are typically
adjusted independently of subsequent steps (Finkbeiner et al., 2015; Sommer and Gerlich, 2013).
Conventional microscopy image analysis is centered on single cells and thus involves segmentation
and feature extraction.

Predicting pharmacological assays on the basis of high-resolution microscopy data has first been
undertaken by Simm et al. (2018) using a cell-centric approach and has led to a tremendous increase
of discovery rates, 250-fold and 60-fold, in two ongoing drug discovery projects. In principle,
the authors replaced the chemical features of quantitative structure-activity relationship (QSAR)
models with image-derived features. However, while the authors compare several machine learning
methods, they use a traditional pipeline of first segmenting individual cells and deriving features



Under review as a conference paper at ICLR 2019

from these. This might explain why all methods they compared performed equally well, as important
information is already discarded during pre-processing.

Using cell-centric approaches implies that the local neighborhood of cells, their spatial arrangement,
and relation to other cells are lost. However, Bove et al. (2017) show that the neighborhood of cells
and their relative orientation plays an important role for biological processes. This information is not
accessible to a model which gets features based on single cells as input. Thus, learning a model in an
end-to-end fashion directly from images would be highly desirable, not only because it removes the
time-consuming and computationally demanding segmentation step, but also allows learning from
the cell neighborhood and spatial arrangement of cells.

Since 2012, convolutional neural networks (CNNs) have been shown in several applications to out-
perform conventional methods in the field of image analysis especially where large datasets are
available. CNNs can have a vastly better performance than expert systems at classifying images
into thousands of categories (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; He et al.,
2015), recognizing traffic signs (Ciresan et al., 2011) and even pixel-accurate segmentation of im-
ages (Long et al., 2015). As CNNs learn features from images automatically they can easily be
adapted to other domains and indeed have been applied to cellular image data, for example, to seg-
ment cells achieving higher accuracy than human experts (Ronneberger et al., 2015). Therefore,
CNNs are a promising method for extracting biological knowledge from high-resolution imaging
data for the purpose of drug design.

However, applying CNNs to high-resolution microscopy imaging data in the field of drug design
poses unique challenges. State-of-the-art CNN architectures are designed for and evaluated on
benchmark datasets such as ImageNet (Everingham et al., 2010; Lin et al., 2014; Russakovsky
et al., 2015) in which images are of a much lower resolution than typical microscopy images. This
poses a problem as increased image resolution immediately results in vastly increased memory con-
sumption, especially for very deep architectures, making training infeasible with full resolution
microscopy images while scaling or cropping such images results in loss of information. Another
challenge arises from the fact that labels for microscopy images are often noisy, as typically whole
images are assigned a label by experts but not all individual cells conform to this label. In Kraus
et al. (2016) the authors combine methods from Multiple Instance Learning and convolutional neural
networks to alleviate this problem and in the process learn to focus on correctly labeled cells. Over-
all, the main challenges of high-resolution image analysis of cells are handling the high resolution
of the images and that typically the whole image rather than a single cell is labeled.

We use the largest public dataset, Cell Painting (Bray et al., 2017), which consists of high-resolution
fluorescence microscopy images of cells treated with chemical compounds, to benchmark and com-
pare convolutional neural networks against each other and against the best feature-based method.
This dataset comprises 919,265 five-channel microscopy images across 30,610 tested compounds
as well as single-cell features extracted using a CellProfiler (Carpenter et al., 2006) pipeline. We
augmented this dataset with drug activity data for 10,574 compounds integrated from ChEMBL
(Gaulton et al., 2017). However, we do not restrict activity information from ChEMBL to specific
assays as that would reduce the amount of data available drastically. Therefore, the resulting labels
must be viewed as noisy and learning meaningful patterns from this dataset is no easy task.

We introduce a novel network architecture that is able to cope with the characteristics of typical
microscopy images, GapNet. Our architecture extracts features from full resolution images such
that there is no need for scaling or cropping the input images. It then combines features from
different levels of abstraction and spatial resolution before feeding the resulting features into a fully-
connected classification network. We combine the features in such a way that the network can handle
arbitrarily large input images.

In Section 3, we provide details on the datasets, we describe competing state-of-the-art methods
previously used for similar data and the evaluation criteria, and we introduce our novel network
architecture. Finally, in section 4 we present and discuss results.

2 DATASET

To assess our method we use a dataset released by Bray et al. (2017) which we refer to as Cell-
painting Dataset. This dataset contains 919,265 five-channel microscopy images (using the U20S
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cell-line) across 30,610 tested compounds as well as single-cell features extracted using a CellPro-
filer (Carpenter et al., 2006) pipeline. For our comparison we used the most recent version of the
pre-computed features, where for each image 1,783 features were extracted.

The fact that the cells in each image were treated with a specific chemical compound allows to
automatically obtain labels for this dataset without the need of labeling by a human expert. We
identify each chemical compound in the large bioactivity database ChEMBL (Gaulton et al., 2017).
This database provides outcomes of biochemical tests, called assays, such as a compound’s ability
to inhibit a certain receptor or whether a compound exhibits a certain toxic effect. In this way,
we obtained labels for this dataset as drug activity data for 10,574 compounds across 209 assays.
Consequently, we created a large dataset of high-resolution images together with chemical activity
data.

Concretely, our computational pipeline for labeling the images comprises the following steps: We
first convert the SMILES representation of compounds into the InChiKey (Heller et al., 2013) for-
mat. We then query the ChEMBL database for compounds matching these InChiKeys resulting in
11,585 hits. For these compounds we extract two values from the database, namely pChEMBL, a
numerical value on log scale indicating bioactivity, and activity comment, where the researcher or
lab technician creating the entry on ChEMBL marked a compound as either active or inactive.

We obtain the first part of our label matrix by extracting all measurements with a pChEMBL value
between 4 and 10 for IC50 (inhibitory effect) or EC50 (stimulatory effect). However, due to the high
amount of noise in these labels, we aim at binary prediction tasks (active/inactive) and therefore
threshold this matrix similar to other works on assay or target prediction (Mayr et al., 2018). We
apply not only one but three increasing thresholds, namely 5.5, 6.5 and 7.5. As the pChEMBL value
is on a log scale these thresholds represent increasingly confident activity indicators. Applying
all three thresholds allows us to obtain more labeling information, hence we concatenate the three
resulting matrices along the assay dimension. This means that an assay can occur multiple times in
the final label matrix but at different thresholds.

The second part we obtain by extracting all compounds with a valid activity comment. We only
allow a defined set of comments (such as "active" or "inactive" with slight variations in spelling and
casing). We combine the results of both the thresholded pChEMBL values as well as the activity
comment along the assay dimension and filter only for those assays, or in case of the first part
assay/threshold combinations, where at least 10 active and 10 inactive compounds are present and
remove compounds without any measurements in the remaining assays.

The final label matrix consists of 10,574 rows corresponding to compounds, 209 columns corre-
sponding to bioactivity assays with 0.87% positive labels (active), 1.64% negative labels (inactive)
and 97.49% missing labels (NA). Upon publication we will release our label matrix containing
bioactivity data for the Cellpainting Dataset, for which images and pre-computed features are pub-
licly available.

From the Cellpainting Assay dataset we extract images corresponding to compounds for which we
have activity information in our label matrix. As the dataset contains multiple screens per compound
we have several images per row in the label matrix. Furthermore, each screen is comprised of six
adjacent images, called views, with a resolution of 692x520 and 5 channels, each channel corre-
sponding to a stain used for the microscopy screen. Since individual views already contain a large
number of cells we do not combine these images to obtain one large image per screen but rather use
each view image individually for training and only combine the network outputs by averaging pre-
dictions. Figure 1 shows examples of images from the assay "Gametocytocidal compounds screen"
labeled as (a) active and (b) inactive (for illustrative purposes, each image is a full screen image
comprised of six views).

The final dataset consists of 284,035 view images which we split into training-, validation- and test
set making sure that multiple images from the same sample are in the same fold. We used 70% of
compounds for training (corresponding to 198,609 images), 10% as a validation set (28,632 images)
and the remaining 20% (56,794 images) were held out for testing the final performance.

Due to the sparseness of the label matrix, the majority of output units for a given sample should
not receive an error signal. Therefore, the loss for all output units for unlabeled assays for a given
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(a) Active (b) Inactive

Figure 1: Illustrative examples from the assay "Gametocytocidal compounds screen” that are (a)
labeled as active, and (b) labeled as inactive. Cells treated with active compounds are decreased
in number and show a distinct morphology, which is clearly visible on the images. However, cell
segmentation and feature extraction can be hampered because of the strong morphological changes.
The samples shown here are reconstructed by combining six view images to one image.

sample are masked by multiplying it with zero before performing back-propagation to update the
parameters of the network during training.

3 METHODS

We compare seven network architectures that were suggested for or that we could adapt to this task.
For all compared methods, we manually optimized its most important hyperparameters, such as
learning rate, on a validation set. We consider this setting as a multi-task problem of 209 binary
prediction tasks, therefore all networks comprise 209 output units with sigmoid activations. The
batch size was chosen such that the video memory of an Nvidia GTX 1080 TI was fully utilized
during training.

Convolutional Multiple Instance Learning (MIL-Net) In Kraus et al. (2016) the authors intro-
duce a CNN designed specifically for microscopy data with a focus on the problem of noisy labels,
i.e. that microscopy images not only contain cells of the target or labeled class but also outliers. The
authors propose to tackle this problem with multiple instance learning (MIL), where cells belonging
to the class label of an image are identified automatically while the influence of other cells on the
result of the model is down-weighted by using a special pooling function called noisyAND. The au-
thors implement their model using a fully convolutional approach (FCN) allowing them to train on
full images with noisy labels and apply this model to images of single-cell crops. We used a learning
rate of 0.01, SGD optimizer with momentum of 0.9, L2 weight decay of 0.0001 and a batch size of
64. The model specific parameter a for the noisyAND pooling function was set to 10 as suggested
by the authors.

Multi-scale Convolutional Neural Network (M-CNN) The approach of Godinez et al. (2017)
processes the input at several different resolutions simultaneously and fuses the resulting feature
maps late in the network. Specifically the input is processed at seven scales, from original resolution
to downscaled by a factor of 64. Then, the intermediate features are pooled to be of equal size and
concatenated before a final convolutional layer with 1x 1 kernel to combine them. This architecture
was designed specifically for phenotype prediction directly from microscopy images. We used a
learning rate of 0.001, SGD optimizer with momentum of 0.9, L2 weight decay of 0.0005 and a
batch size of 100.

ResNet The work of He et al. (2015) enabled training of very deep networks with hundreds of
layers. This is enabled by residual connections, which are identity connections bypassing several
convolutional layers allowing gradients to flow unencumbered through the network. Networks based
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on this architecture are still state-of-the-art today. We use the variant ResNet-101 for our compar-
isons. We used a learning rate of 0.001, SGD optimizer with momentum of 0.9, L2 weight decay
of 0.0001 and a batch size of 24. However, this batchsize was only possible on an Nvidia Quadro
GV100 with 32GB of video memory. Even with this powerful graphics card, the training time of
this model was approximately 13 days.

DenseNet Densely Connected Convolutional Networks (Huang et al., 2017) are state-of-the-art
for various image processing tasks. The basic idea of DenseNet is to re-use features learned on early
layers of a network, containing fine-grained localized information, on higher layers which have a
more abstract representation of the input. This is achieved by passing feature maps of a layer to all
consecutive layers (within certain boundaries). A stated benefit of this architecture is that it does not
have to re-learn features several times throughout the network. Hence, the individual convolutional
layers have a relatively small number of learned filters. We used the variant DenseNet-121 with a
learning rate of 0.01, SGD optimizer with momentum of 0.9, L2 weight decay of 0.0001 and a batch
size of 12.

Baseline Fully Connected Network (FNN) In Simm et al. (2018), the best performing method
was the fully-connected deep multi-task neural network. We re-implemented this architecture to-
gether with the best hyperparameters and used it as a baseline model to compare the convolutional
networks against. We used parameters given by the authors, without dropout schedule, which im-
proved the results.

GapNet While abstract features from deep convolutional layers are semantically strong, they lack
spatial information necessary for detecting or taking into account smaller objects or input features.
In Lin et al. (2017) the authors leverage features from multiple scale levels of the convolutional
network by combining feature maps via scaling and subsequent 1x1 convolution while Godinez
et al. (2017) process the input at different scales and combine the resulting feature maps late in the
network. In Huang et al. (2017), feature maps from all scale levels are carried over to subsequent
levels within so-called Dense-Blocks and thus can be re-used by higher layers of the network.
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Figure 2: Schematic representation of the GapNet architecture. A standard CNN architecture with a
sequence of 2D convolutions and max pooling is combined with global average pooling operations
of particular feature maps. The resulting feature vectors are concatenated and fed into two fully-
connected layers and an output layer.

We introduce a novel convolutional neural network architecture designed for the unique challenges
of analyzing microscopy images for drug design. Since we make heavy use of Global Average Pool-
ing we refer to it as GapNet. It consists of an encoder part using convolutional and pooling layers
in a way that allows it to process high-resolution images efficiently while not losing information
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due to downscaling operations in a preprocessing step. Additionally, we use dilated convolutions
in the deepest layers of the encoder network tuned for a receptive field roughly equal to the di-
mensions of the input to the network to enable those layers to gather global information which has
shown to be beneficial for some tasks. Features extracted by this convolutional encoder at different
scales are then reduced via averaging over the individual feature maps, in effect producing feature
statistics from different layers of abstraction and spatial resolution. These pooled features are then
concatenated and processed by several fully-connected layers. Figure 2 shows the architecture with
the parameters of the variant used for our experiments. We use the SELU (Klambauer et al., 2017)
activation function throughout the network except for the output layer where we use the sigmoid
activation function. As for hyperparameters, we used a learning rate of 0.01, SGD optimizer with
momentum of 0.9, L2 weight decay of 0.0001 and a batch size of 128.

Single-Cell CNN (SC-CNN) We included a convolutional neural network operating on small
crops centered on single cells, SC-CNN. This method depends on a segmentation algorithm that
had already identified the cell centers (Bray et al., 2017). We extracted crops of size 9696 centered
on individual cells, whose coordinates are taken from this pre-computed cell-segmentation included
in the Cellpaining dataset. This crop-size was chosen such that the majority of cells are contained
within a crop regardless of orientation. Due to this greatly reduced input size we modified the Gap-
Net architecture slightly such that the dilated convolutions in the last block of the encoder have been
replaced by regular convolutions as the large receptive field is detrimental for such small images.
We used the same dataset split as for all other methods, resulting in 12.7 million crops for training,
with 1.8 million and 3.6 million crops in the validation- and test-sets respectively. During training
of the cell-centric model we randomly sampled a subset of 20% from the training-set each epoch.
We used a learning rate of 0.01, SGD optimizer with momentum of 0.2, L2 weight decay of 0.0001
and a batch size of 2048.

3.1 EVALUATION CRITERIA

We used the area under ROC curve (AUC) as main evaluation criterion. This is the most relevant
criterion in drug discovery, since compounds are selected from a ranked list for subsequent lab tests.
The AUC was calculated per task, such that each method is characterized by 209 performance values
across 209 prediction tasks. The difference between two methods is tested by a paired Wilcoxon
test across these 209 AUC values, where the null hypothesis is that the two methods have equal
performance.

4 RESULTS
Model Type AUC Fl1 AUC>0.9 AUC>0.8 AUC>0.7
MIL-Net end-to-end 0.726+0.20 0.485+0.36 66 86 109
ResNet end-to-end  0.722+0.21 0.516+0.32 69 88 119
GapNet end-to-end  0.721+£0.22  0.532+0.32 61 95 116
DenseNet end-to-end 0.718+0.22 0.536+0.33 60 100 119
M-CNN end-to-end  0.709+0.21 0.482+0.32 57 80 108
SC-CNN  cell-centric  0.6954+0.22 0.371+0.30 57 82 109
FNN cell-centric  0.677+0.22 0.3724+0.33 57 72 90

Table 1: Model performances in terms of different performance metrics: mean AUC, mean F1 score
and number of tasks (assays) that can be predicted with an AUC better than 0.9, 0.8, and 0.7. The
columns AUC and F1 report the average AUC and F1 and its standard deviation across the 209
prediction tasks. CNNs operating on full high-resolution images significantly outperform SC-CNN
which operates on cell-centric crops and the FNN operating on pre-computed features. End-to-end
CNN models perform on par. Performance values marked in bold indicate that the best performing
method does not significantly outperform the respective method.

Method comparison across all assays The compared methods yielded mean AUCs from
0.677(£0.22) for FNNs to 0.726(40.20) for MIL-Net, see Table 1 and mean F1 scores ranging
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Figure 3: Boxplot comparing the performance of all methods. The x-axis displays the compared
methods and the y-axis displays the performance across the 209 different assays as boxplots. GapNet
exhibits the best median AUC value, whereas FNN exhibits the worst.

from 0.371+0.30 for SC-CNN to 0.536+0.33 for DenseNet. We report not only AUCs as assays are
typically heavily imbalanced, thus the AUC may overestimate performance. All end-to-end convolu-
tional networks performed significantly better than cell-centric methods while no CNN architecture
significantly outperformed all other CNN architectures in predictive performance (see Figure 3 and
Appendix Table A1). However, for the end-to-end approaches, GapNet exhibits the lowest training
time and MIL-Net has the lowest number of parameters (see Table 2).

Architecture  Parameters Time per Epoch

GapNet 3,694,545 662.04
MIL-Net 726,180 1344.18
M-CNN 11,230,929 4252.47
DenseNet 7,174,353 8519.91
ResNet 42,934,673 13208.64

Table 2: Number of Parameters and runtime (in seconds per epoch) of the end-to-end CNN archi-
tectures on an Nvidia GTX 1080 TI.

Method comparison at assay level We also investigated whether the difference in predictive per-
formance of the end-to-end approach of GapNet and the cell-centric approach using FNNss is related
to the type of the modeled assay. Overall, we found that the predictive performance of these two
approaches is highly correlated across assays (Pearson correlation of 0.72, see Figure 4). Often-
times, there is no significant difference in performance (Venkatraman’s test for difference in AUC
curves (Venkatraman, 2000)). However, for 29 assays, GapNet is significantly better than the FNN,
indicating that CNNs detect morphological characteristics that are not captured by the pre-computed
features. Furthermore, while for cell-centric activity prediction the number of measured compounds
strongly influences performance, the trend is less pronounced for image-based activity prediction
(see Appendix Figure Al).

5 DISCUSSION

We investigated the potential of end-to-end learning approaches on high-resolution microscopy
imaging data to predict pharmacological assays. Despite the common opinion that these data re-
quire a cell-centric approach involving a segmentation algorithm, we found that CNNs learned in
an end-to-end fashion not only are feasible but even outperform cell-centric approaches. Our results
indicate that CNNs are able to extract better features from images as every end-to-end CNN model
in our comparison outperformed the methods based on cell-centric crops. Our results demonstrate



Under review as a conference paper at ICLR 2019

AO1 Microtubule-associated protein tau
‘@AL2 A02 Thy.roid stimglating hormone receptor
Al4 AO3 Lysine-specific demethylase 4A
o0 A04 ATPase family AAA domain-containing protein 5
A19AL6 AO5 Cytochrome P450 2D6
° A06 Cytochrome P450 2C19
Al5 A07 Cytochrome P450 3A4
A08 Cytochrome P450 2C9
.AZU.AZZ A09 Vitamin D receptor
A10 Plasmodium falciparum
.Aze A1l Plasmodium falciparum
A3L A32 Al2 SN12C
Aosr.Aos. .. én Corticotropin-releasing factor receptor/binding protein
9@ 130 2
‘QAU A26 A28 Al4 DU-145
A23 A09 Al5 DMS-273
AL0 ° Al6 A549
AL @y, HCC 2998
®n04 SK-OV-3
A19 NCI-H460
.A25 A20 Geminin
A21 Hepatitis C virus inhibitors
A22 Ataxin-2
A23 Glucagon-like peptide 1 receptor
A24 Guanine nucleotide-binding protein G(s) subunit alpha
A25 TPD1 inhibitors
A26 Lassa virus blockers
A27 Marburg virus binding inhibitors
A28 Gametocytocidal compounds screen
A29 Foot and Mouth Disease virus antivirals
A30 Ebola Virus blockers screen 1
A31 Ebola Virus blockers screen 2
A32 Ebola Virus blockers screen 3

1.0-

0.8 -

©
o

FNN [AUC]
2

0.2-

0.0-
0.0 0.2 0.4 0.6 08 1.0
GapNet [AUC]

Figure 4: Comparison of FNN performance with GapNet over all tasks. The x-axis displays the per-
formance in terms of AUC of GapNet at the 209 assays, whereas the y-axis shows the performance
of FNN. For a large number of assays, there is no significant difference in predictive performance
(grey dots), whereas for 29 assays, GapNet significantly outperformed FNN (blue dots) and for 3
assays FNN significantly outperformed GapNet (red dots). Overall, predictive performance of the
two compared methods is highly correlated across assays, which indicates that if a biological effect
expresses in morphological changes in the cells, both approaches capture it to a certain degree.

Figure 5: Examples from the assay "Gametocytocidal compounds screen" treated with compounds
predicted and labeled as active. While cell density is not significantly different from untreated
samples, cells show distinct morphological changes. These changes can hamper segmentation and
feature extraction algorithms, thus ignoring these indicative cells.

that the complicated and costly cell segmentation and feature extraction step is not necessary, but
rather should be skipped to obtain better predictive performance.

With CNNs and high-resolution fluorescence imaging, many new relations between cell morphol-
ogy and biological effects could be detected and used to annotate chemical compounds at low cost.
Figure 5 shows examples treated with compounds predicted as active from the assay "Gametocytoci-
dal compounds screen" (see A28 in Figure 4) where the CNN performs significantly better than the
FNN. Here we see, that while overall cell density is not significantly different from samples treated
with inactive compounds some cells show clear morphological changes which might be indicative
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for the classification of the compound as active in the respective assay. Such drastic changes can be
a major problem for segmentation and feature extraction algorithms, which might result in missed
detection of these features. Even if these few abnormal cells are detected, their signal may be lost
when averaging across cells (Simm et al., 2018). We hypothesize that the increased performance of
CNN s arises from problems of cell segmentation and detection of sparse signals.

The fact that the Cellpainting assay protocol has been published and similar images could be pro-
duced in many labs across the world, opens the opportunity that our trained network could be used
to automatically annotate these images. With the currently available data, we were able to annotate
~230,000 compounds in 61 assays at high predictive performance (AUC>0.9), which amounts to ap-
proximately 1.8 million lab tests. We envision that this work could make world-wide drug discovery
efforts faster and cheaper.
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6 APPENDIX
6.1 WILCOXON TEST

MIL-Net ResNet  GapNet DenseNet M-CNN SC-CNN

ResNet 3.50e-01

GapNet 2.49e-01 5.34e-01

DenseNet 1.61e-01 1.52e-01 2.09e-01

M-CNN 3.75e-04 7.18¢-03 4.07e-02 1.54e-01

SC-CNN  2.02¢-07 5.32¢-06 4.98¢-06 6.98e-04 1.65¢-02

FNN 7.67e-12  7.11e-07 2.40e-05  6.29¢-04 1.08e-06 1.61e-02

Table Al: p-values of paired Wilcoxon test with the alternative hypothesis that the column method
has outperformed the row method. Significant values with o = 0.01 are marked in bold.

FNN GapNet
1.0 L] L] L] 1.0 L] L] ’
: L | s 3N .
o
0.8 - . . ° X .“ .o .o 0.8- . ....::.oo ~+— o .o’. o:.o
I O L4 0o, O (Y (]
. s %2 8°° o0 ®eo o 1 M LI !. o o° ® o %
0 . .". :'&\. -..0.;.' * 0.6 ..-.q’..“.\... ., 4
2 s .'0 a2 :...‘0 ] . S W ° S o .
04 e “eo . 0.4 esd
O o o . o % '..‘ °
0.2- oo — 0.2- O—1
L]
L[]
00- ® 00- ® .
3 4 5 6 7 8 3 a 5 6 7 8

Number of measured compounds in assav (loa-scale)

Figure A1: Relation between the number of measured compounds for each assay and the predictive
performance of the FNN (left) and GapNet (right). For the FNN approach the number of measured
compounds strongly influences performance while this thrend is less pronounced for the CNN based
end-to-end approach. Other end-to-end approaches look similar to GapNet.
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