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ABSTRACT

Importance sampling is a common approach to off-policy learning in reinforce-
ment learning. While it is consistent and unbiased, it can result in high variance
updates to the parameters for the value function. Weighted importance sampling
(WIS) has been explored to reduce variance for off-policy policy evaluation, but
only for linear value function approximation. In this work, we explore a resam-
pling strategy to reduce variance, rather than a reweighting strategy. We propose
Importance Resampling (IR) for off-policy learning, that resamples experience
from the replay buffer and applies a standard on-policy update. The approach
avoids using importance sampling ratios directly in the update, instead correcting
the distribution over transitions before the update. We characterize the bias and
consistency of the our estimator, particularly compared to WIS. We then demon-
strate in several toy domains that IR has improved sample efficiency and parameter
sensitivity, as compared to several baseline WIS estimators and to IS. We conclude
with a demonstration showing IR improves over IS for learning a value function
from images in a racing car simulator.

1 INTRODUCTION

An important component of many learning systems is learning value functions for many policies.
Some examples of such systems are the Horde architecture composed of General Value Functions
(GVFs) (Sutton et al., 2011; Modayil et al., 2014), systems that use options (Sutton et al., 1999;
Schaul et al., 2015a), predictive representation approaches (Sutton et al., 2005; Schaul and Ring,
2013; Silver et al., 2017) and systems with auxiliary tasks (Jaderberg et al., 2017). For each target
policy, the value function returns the expected return from a state, and can provide useful information
about (long-term) outcomes under different behaviors. Off-policy learning is critical for learning
many value functions with different policies at scale, because it enables data to be generated from
one behavior policy to update the values for each target policy in parallel.

The typical strategy for off-policy learning is to use importance sampling (IS). For a given state s,
with action a selected according to behaviour p, the importance sampling ratio is the ratio between

the probability of the action under the target policy 7 and the behaviour: ZEZB The update is
multiplied by this ratio, adjusting the action probabilities so that the expectation of the update is as
if the actions were sampled according to the target policy w. Though the IS estimator is unbiased
and consistent (Kahn and Marshall, 1953; Rubinstein and Kroese, 2016), it can suffer from high or
even infinite variance due to large magnitude IS ratios, in theory (Andradottir et al., 1995) and in

practice (Precup et al., 2001; Mahmood et al., 2014; 2017).

There have been some attempts to modify policy evaluation algorithms to mitigate this variance.!
Weighted IS (WIS) algorithms have been introduced (Precup et al., 2001; Mahmood et al., 2014;
Mahmood and Sutton, 2015), which normalize each update by the sample average of the ratios.
These algorithms did improve learning over standard IS strategies, but are not straightforward to
extend to nonlinear function approximation. In the offline setting, a reweighting scheme, called
importance sampling with unequal support (Thomas and Brunskill, 2017), was introduced to account

"There is substantial literature on variance reduction for another area called off-policy policy evaluation,
but which estimates only a single number or value for a policy (e.g., see (Thomas and Brunskill, 2016)). The
resulting algorithms differ substantially, and are not easily applicable for learning the value function.
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for samples where the ratio is zero, in some cases significantly reducing variance. Another strategy
has been to use rescaling or truncation of IS ratios, such as in V-trace (Espeholt et al., 2018). Several
other methods have introduced bias similarly for algorithms with eligibility traces by truncating or
scaling IS ratios to maintain stability of the eligibility trace vector, including Tree-Backup (Precup
et al., 2000), Retrace (Munos et al., 2016) and ABQ (Mahmood et al., 2017). Truncation of IS-ratios
in V-trace can incur significant bias, and this additional truncation parameter does need to be tuned.

An alternative to reweighting updates is to instead correct the distribution before updating the estima-
tor using weighted bootstrap sampling: resampling a new set of data from the previously generated
samples (Smith et al., 1992; Arulampalam et al., 2002). Consider a setting where a buffer of data is
stored, generated by a behavior policy. Samples for policy 7 can be obtained by resampling from this

buffer, proportionally to ZEZ}Z; for state-action pairs (s, @) in the buffer. In the sampling literature,
this strategy has been proposed under the name Sampling Importance Resampling (SIR) (Rubin,
1988; Smith et al., 1992; Gordon et al., 1993), and has been particularly successful for Sequential
Monte Carlo sampling (Gordon et al., 1993; Skare et al., 2003). Such resampling strategies have
also been popular in classification, with over-sampling or under-sampling typically being preferred

to weighted (cost-sensitive) updates (Lopez et al., 2013).

Such a resampling strategy, however, has yet to be proposed for policy evaluation, though there are
several potential benefits. By correcting the distribution before updating, standard on-policy updates
can be used, without needing to modify or re-derive with IS ratios. This simplifies application of
different optimizers, such as those with momentum terms. Another benefit is that the magnitude of
the updates will vary less—because updates are not multiplied by very small or very large impor-
tance sampling ratios—potentially reducing variance of stochastic updates and simplifying stepsize
selection. Resampling should have larger benefits for learning approaches, as compared to averaging
or numerical integration problems, because updates accumulate in the weight vector and change the
optimization trajectory of the weights. For example, very large importance sampling ratios could
destabilize the weights. Such a problem does not occur for resampling, as instead the same tran-
sition will simply be resampled multiple times, spreading out the large magnitude update across
multiple updates. On the other extreme, with small ratios, IS will waste updates on transitions with
very small IS ratios. Resampling, therefore, should have better sample efficiency. Two important
questions, therefore, are if these hypothesized advantages manifest in practice in off-policy learning,
and how SIR can be extended for use in policy evaluation.

In this work, we investigate the use of SIR for online off-policy policy evaluation. We first introduce
Importance Resampling (IR), which uses an SIR strategy to sample transitions from a buffer of
(recent) transitions. These sampled transitions are then used for on-policy updates. We show that
IR, with a sliding-window buffer, is a consistent estimator of the one-step on-policy updates, with
the same bias as WIS. We then empirically investigate IR on three toy domains and a racing car
simulation learning from images. We find that IR is more sample efficient—learning more quickly
in terms of number of updates—and has reduced sensitivity in terms of learning rate parameters, for
both fixed parameters and within the RMSProp optimizer.

2 BACKGROUND

We consider the problem of learning General Value Functions (GVFs) (Sutton et al., 2011). The
agent interacts in an environment defined by a set of states S, a set of actions .4 and Markov transi-
tion dynamics, with probability P(s’|s, a) of transitions to state s’ when taking action « in state s. A
GVF is defined for policy 7 : S x A— [0, 1], cumulant ¢ : S x . Ax S — R and continuation function
7:SXAXS = [O, 1], with ¢y - c(St, Ag, Spr1) and iy q o ~v(St, A, Sty1), with values

i—1

K2

V(s) “ Er [ci41 + Yeg1C42 + Veg1Vig2Ciqs + ... |Se = s] = Ex [Z ( ’Yt+j)0t+i|5t = S}
i=0

=1 3

The operator [E; indicates the actions are selected according to policy 7 for the expectation. GVFs
encompass standard definitions of value functions, where the cumulant is a reward and the contin-
uation function is a constant. Otherwise, they specify a broader set of value functions, that enable
predictions about discounted sums of others signals into the future, when following a target policy
m. These values are typically estimated using parametric function approximation, with parameters
6 € R? defining approximate values Vp(s).



Under review as a conference paper at ICLR 2019

In off-policy learning, transitions are sampled according to behaviour policy, rather than the target
policy. To get an unbiased sample of an update to the parameters, the action probabilities need to

be adjusted. Consider on-policy temporal difference (TD) learning, with update c;d; Vg Vp(s) for a

given S; = s, for stepsize oy € R™ and TD-error 6; o Cir1+ 741 Vo(Se+1) — Vo (s). If actions are

instead sampled according to a behaviour policy i : S x A — [0, 1], then we can use importance
sampling (IS) to modify the update, giving the off-policy TD update «;p;6:VgVp(s) for IS ratio

o & 2522123 Given state S; = s, if u(als) > 0 when 7(a|s) > 0, then the expected value of these

two updates are equal. To see why, notice that

E, [aipi6:VaVy(s)|St = s] = s Vo Vy(s)E, [p:0¢| St = ]

and we have

E, [p+0¢]S: = 5] = Z w(al$)E [psds|Se = s, Ay =a] = Z ,u(a|s)ﬂ-EZ§§E [0¢|S: = s, At = a]
acA acA K
= ZW(CL|S)E [5t|5t :S,At :a] :]Eﬂ— [(St'St :S].
acA

Other on-policy updates can also be modified with IS ratios to adjust these action probabilities.

Though unbiased, IS can be high-variance, and so weighted IS ratios are typically preferred. For

a batch consisting of transitions {(s;, a;, Si+1, Ci+1, pi) }7_1, batch WIS uses a normalized estimate

for the update. For example, an offline batch WIS TD algorithm would use update at%"v;(s).
i=1F?

When learning online, an efficient WIS update is less straightforward, and has resulted in algorithms
specialized to the tabular setting (Precup et al., 2001) or linear functions (Mahmood et al., 2014;
Mahmood and Sutton, 2015). We nonetheless use WIS as baseline, in the experiments and theory.

3 RESAMPLING STRATEGIES FOR OFF-POLICY POLICY EVALUATION

In this section, we introduce resampling, as an alternative to importance sampling for off-policy
learning. We first introduce the algorithm, Importance Resampling (IR). We then prove consistency
and characterize the bias. We conclude with a discussion about its variance properties.

Importance Resampling requires access to a buffer of samples, from which we can resample. Re-
playing experience from a buffer was introduced as a biologically plausible mechanism to reuse old
experience (Lin, 1992; 1993), and has since become common for improving sample efficiency, par-
ticularly for control (Mnih et al., 2015; Schaul et al., 2015b). In the simplest case—which we assume
here—the buffer is a sliding window of the most recent n samples, {(s;, a;, Si41, Ci+1, Pi) }ey_ o at
time step ¢ > n. These samples are generated by taking actions according to behaviour y, and so the
tuples are generated with probability d,,(s)u(a|s)P(s|s,a), where d,, : S — [0, 1] is the stationary
distribution for policy p. The goal is to obtain samples instead according to d,(s)m(a|s)P(s|s, a),
as if we had taken actions according to policy 7 from state s ~ d,,. This assumption—that states are
still sampled from d,,—underlies most off-policy learning algorithms; very few attempt to use IS to
adjust probabilities d,, to d, (Precup et al., 2001).

The IR algorithm is simple: resample a mini-batch of size £ on each step ¢ from the buffer of size
n, proportionally to p; in the buffer. Standard on-policy updates, such as on-policy TD or on-policy
gradient TD, are then used on this resample. The key difference to IS and WIS is that the sampling
distribution itself is corrected (see Theorem C.1), before the update, whereas IS and WIS correct the
update itself. This small difference, however, can have larger ramifications practically, particularly
with updates that accumulate in the parameters.

We consider two variants of IR: with and without bias correction. For point ¢; sampled from the
buffer, let A, be the on-policy update for that transition. For example, for TD, Ay, = ¢, VoV (sy; ).
The first step for either variant is to sample a mini-batch of size k from the buffer, proportionally to
pi, as described above. The standard IR update simply uses a mini-batch, whereas Bias-Corrected
IR (BC-IR) pre-multiplies with the average ratio in the buffer p; = % Z?:l Dis

k k
IR: at > Ay BC-IR: apig Y Ay,
j=1 j=1
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BC-IR negates bias introduced by the average ratio in the buffer deviating significantly from the
true mean. For reasonably large buffers, p, will be close to 1 making IR and BC-IR have near-
identical updates. In practice, we find the two variants of IR perform similarly. Nonetheless, they
do have different theoretical properties, particularly for small buffer sizes n, so we characterize
both. Though BC-IR has better bias properties, IR is simpler—not requiring any modification to the
updates—which may be more important than the small amount of bias introduced by the IR without
bias correction. For this reason, we advocate for and analyze both variants.

Across all results, we make the following assumption.
Assumption 1. Transition tuples X; = (S;, A;, Si+1) are sampled i.i.d. according to the distribu-
tion p(z = (s,a,s")) = d,(s)u(als)P(s'|s,a), fori =1,2,3,.. ..

To distinguish expectations under p(z) =d,,(s)u(a|s)P(s’|s,a) and g(z) =d,(s)m(a|s)P(s'|s,a),
we overload the notation from above, using operators [E,, and £ respectively. To reduce clutter, we
will typically write [E to mean [E,,, because most expectations are under the sampling distribution.

3.1 BiasoOFIR

We first show that IR is biased, and that its bias is actually equal to batch WIS (in Theorem 3.1).
This bias is small for reasonably large n, because it is proportional to 1/n. In terms of mean-squared
error, composed of squared bias and variance, this term is 1/n2 and is relatively negligible compared
to the variance. Nonetheless, for smaller buffers, such bias could have an impact. We show that with
a simple modification, in BC-IR, we obtain an unbiased estimate of the update (Corollary 3.1.1).

Theorem 3.1. [Bias for a fixed buﬁ‘er of size n] Assume a buffer B of n transitions is sampled i.i.d.,
def 1

according to d,(s)u(als)P(s'|s,a). Let Xir = Z] 1 Ay, for transitions iy, ..., i sampled
randomly from the buffer proportionally to p;. Let Xwrs« d—Ef Dy S 2 A be the batch WIS

estimator of the update, with p; o W(AZ-\Si)/,u(AASi). Then, E[X1r] = E[XWIS*], and so the bias
of Xir is proportional to )
Bias(X1r) = E[X1r] — Ex[A] E(]E“ [Alo2 — 0p,00,04)

where E[A] is the expected update across all transitions, with actions from S taken by the tar-

get policy w; o5 = Var(+ 3" | p;); ox = Var(L Y\, pii); and covariance o(, ny =

COV(%Z] lpﬂ’nZz 1 Pildi).

Proof. Notice first that when we weight with p;, this is equivalent to weighting with
dpu(Si)m(Ai]Si)P(Siy1]Si,A4)
d (Si)u(A;]1S:)P(Siy1]Si,A:)°

E[Xix] = E [E[Xi|B]] = E[E[} ZAi B]] =E [;iE[AmB]}

n

= E{Z LAJ = E[Xwis«] > because E[A;;|B] = Z Z

and so we are applying the correct IS ratio for the transition.

i=1 2 i1 j=1 p]
This bias of XR is therefore the same as batch WIS, which is characterized in (Owen, 2013, Section
2.7), completing the proof. [

This bias of IR will be small for reasonably large n, both because it is proportional to 1/n and
because larger n will result in lower variance of the average ratios and average update for the buffer.
In particular, as n grows, these variances decay proportionally to n.

Corollary 3.1.1. Bias-corrected IR, with estimator Xpc o g Z?:l A;, for p = %L Z?:l pj, Is

unbiased: E[Xpc] = EL[A].

Proof.
E[Xpc] = E ﬁi]E[ E *Z | =E 1i A;| = 1iE m(AilS) A,
nel B[ 7m0 Bl =E[p 3 oo oa] =E[r 3o J—ni_l as)
T (ST (A Si)P(Siv1]Si, A
oo ZlE{ZL(Si;UEAASl;g( 711:*?“14 } ZE «[A]- O

4
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3.2 CONSISTENCY OF IR

Consistency of IR in terms of an increasing buffer, with n — oo, is a relatively straightforward
extension on results for SIR, with or without bias correction (see Theorem C.1 in Appendix C). More
interesting is consistency in terms of increasing interactions with the environment, ¢ — oo, with a
fixed length buffer, as will be the case in practice. IR, without bias correction, is asymptotically
biased in this case; in fact, its asymptotic bias is the one characterized above for a fixed length buffer
in Theorem 3.1. This asymptotic bias, though, is proportional to 1/n, which is negligible for typical
buffer sizes. BC-IR, on the other hand, is consistent, even with a sliding window, as we show in the
following theorem.

Theorem 3.2. Let B; = {X;_p+1,..., Xi} be the buffer of the most recent n transitions sampled
by time 1, i.i.d. as specified in Assumption 1. Let Xé% be the bias-corrected IR estimator, with k

samples from buffer B;. Define the sliding-window estimator X, o % Zle Xé%. Assume there

exists a ¢ > 0 such that Var(X](;()j) < ¢ Vi. Then, as t — oo, X, converges in probability to E.[A].

Proof. Notice first that X ](3% is random because B; is random and because transitions are sampled
from B;. Therefore, given B;, X ](3% is independent of other random variables B; and X ](30) for j # 1.
Now, using Corollary 3.1.1, we can show that BC-IR is unbiased for a sliding window

t

BIX) =E[; Y X = 1 S EEXDIB) =Bl (4],

=1

Next, we show that lim; ;| COV(XS%,X]%]%) = 0. For |i — j| > m, B; and B; are inde-
pendent, because they are disjoint sets of i.i.d. random variables. Correspondingly, X1(3ic is in-
dependent of Xgé. Explicitly, using the law of total covariance, we get that Cov(Xg%, X](gjg) =
COV(XI(B%, Xl(gjg|Bi, B;) + COV(E[X]g%lBi], ]E[Xg();|Bj]) = 0. The first term is zero because XE(;%
is independent of X ](3]% given B;, and the second term is zero because B; and B; are independent.
Therefore, lim; ;|00 COV(X](B%, Xgé) =0.

Using the assumption on the variance, we can apply Lemma C.3 to X, to get the desired result. [

3.3 VARIANCE AND EFFECTIVE SAMPLE SIZE

In this section, we provide some intuition on the variance properties of the discussed off-policy
estimators. Similarly to bias, we can characterize the variance of the IR estimator relative to batch
WIS. Xyy1s« is able to use a batch update on all the data in the buffer, which should result in a low-
variance estimate but is an unrealistic algorithm to use in practice. Instead, it provides a benchmark,
where the goal is to obtain similar variance to Xyis«, but within realistic computational restrictions.
Because of the clear relationship between IR and WIS, as used in Theorem 3.1, we can easily
characterize the variance of Xig relative to Xvyrs. using the law of total covariance:

V(Xir) = V[E[X1r|B]] + E[V[Xir|B]]
=V [Xwis«] + E [V[Xir|B]]

where the variability is due to having randomly sampled buffers B and random sampling from B.
The second term corresponds to the noise introduced by sampling a mini-batch of % transitions
from the buffer B, instead of using the entire buffer like WIS. For more insight, we can expand

this second term, E [V[Xr|B]] = E [(% Z?:l Ay =LAy Ai)2|B], where we consider the
variance independently for each element of A; and so apply the square element-wise. The variability
is not due to IS ratios, and instead arises from variability in the updates themselves. Therefore,

the variance of IR corresponds to the variance of WIS, with some additional variance due to this
variability around the average update in the buffer.
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This variance contrasts the variance of the corresponding mini-batch IS estimator:

Y3 m) B[ S )]

j=1 j=1
For large importance sampling ratios, this mini-batch can deviate significantly around the mean
update. Further, this deviation around the mean update is across all transitions, unlike E [V[X g |B]]
which reflects the expected deviation for a buffer of size n. The IS estimator is unbiased, as opposed
to IR and WIS which both introduce some bias. A more fair comparison is to BC-IR, which is

unbiased, with variance
ok 2
V(XBC> = E[(% Z A — Ew[A]) }
j=1

It is difficult to state generally that the variability of the IS estimator will be greater than Xpc,
because it depends on the properties of the update vector A;; itself. However, the key difference
between them is that Xpc multiplies all the updates by the averaged ratio, whereas IS includes
individual (potentially high magnitude) ratios inside the sum.

Finally, the variance of IR will be affected by what is known as the effective sample size. For
data with several high magnitude ratios, and many small ratios, the IS estimator will likely suffer
from high-variance updates. IR, however, will not be completely robust to this setting either: it
will prevent high magnitude updates, but will be sampling from an effectively smaller dataset. This
effective size is smaller because IR will repeatedly sample the same transitions, and potentially never
sample some of the transitions with small IS ratios. With less data, we typically incur more variance.

n )2
One common estimator of effective sample size is (2232171’;2) (Kong et al., 1994; Martino et al.,
i=1Fi
2017). This estimate lies between 1 and n. When the effective sample size is low, this indicates that
most of the probability is concentrated on a few samples, which could be problematic. An important
next step is to better understand theoretically the implications of effective sample size. Here, we now
turn to experiments to gain more insight into the relative efficacy of IR to IS, in settings including

such skewed ratios.

4 EXPERIMENTS

In this section, we present results for predictions made with difficult polices in three domains. We
compare IR and BC-IR 2 to an importance sampling approach using uniformly sampled experiences
from the replay buffer (ER+IS), and three variants of weighted importance sampling (WIS). The
three variants of WIS considered are WIS-Batch, WIS-Buffer, and WIS-Optimal discussed further in
the appendix® #. For tabular domains, we don’t average over the mini-batch updates, although doing
so won’t change results significantly. We report parameter studies and learning curves, excluding
buffer size studies, on a single buffer size shared between all the methods. Although results from
other buffer sizes (not shown here) have similar conclusions. We show 95% confidence intervals on
all results unless otherwise specified.

4.1 SETTINGS

Random Walk Markov Chain We use a typically constructed random walk Markov chain (Sutton
and Barto, 2018) with 8 non-terminating states and 2 terminating, with a reward of 1 on the transition
to the right-most terminal state and O everywhere else. The agent follows a policy p and learns
the value function according to a target policy m. We compute the root mean squared value error
(RMSVE) on every training step with a value function found using dynamic programming with
threshold 10715,

2While BC-IR is included in the results and used for the simulated car experiments, we found IR and BC-IR
to perform almost exactly the same with BC-IR having lower sensitivity to learning rate in some instances.

*Due to computational complexity we only test WIS-Optimal in the markov chain.

*We forgo evaluating any variants of the WIS update in the Torcs race car simulator based on the perfor-
mance in the simpler domains.
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IR

ER+IS WIS-Batch WIS-Buffer = = =  WIS-Optimal = —

1.0

0.8

0.6

0.4

~0.00 0.25 0.50 0.75 100 0.00 0.25 0.50 0.75 1.00 0.00
Learning Rate

Figure 1: Learning rate sensitivity study in the Random Walk Markov Chain with buffer size n =

15000, batch size b = 16 For simplicity we write the policies as follows: p = [u(left|-), p(right|).
left = [0.5,0.5], 7 = [0.1,0.9], center p = [0.9,0.1], 7 = [0.1,0.9], right » = [0.99,0.01], 7 =
[0.01,0.99]. Additional results using V-Trace and Sarsa can be found in the appendix B.1

IR ER+IS WIS-Batch WIS-Buffer = = = WIS-Optimal = —
1.0 1.0 1.0
RMSVE 0.8 0.8
0.6 | 0.6 0.6

0.0
0 10000 20000 30000 40000 50000 00 0 10000 20000 30000 40000 50000 0.00 0.25 0.50 0.75 1.00

Buffer Size Buffer Size Learning Rate

Figure 2: left and center Buffer size study for the random walk markov chain and four rooms
domain respectively. We select the best settings for each buffersize and report the average RMSVE
right Four rooms domain learning rate sensitivities parameter study.

Four Rooms Environment The four rooms domain is a well known hard domain used for training
options (Stolle and Precup, 2002). The behavior policy followed by the agent is equiprobable every-
where except for 25 randomly selected states which take the action down with probability 0.05 with
remaining probability split equally amongst the other actions. The 25 random states are the same
for all runs, but we also evaluated different states for each run (see appendix). The target policy of
interest is to take the down action deterministically, inducing highly variant IS ratios. The cumulant
for the value function is 1 when the agent hits a wall and 0 otherwise. The continuation function is
~v = 0.9 terminating when the agent hits a wall. We calculate the RMSVE similarly to the Markov
Chain.

Simulated Car Domain We use the TORCs race car simulator to perform scaling experiments using
neural networks. We set up the simulator to produce 64x128 cropped grayscale images. We have an
underlying deterministic steering controller that produces steering actions aq.: € [—1, +1] and take
an action with probability defined by a Gaussian a N (aget, 0.1). We show a demonstration learning
a single GVF with cumulant 1 when the car is near the center of the road (signal provided by Torcs),
continuation function with 0.9 everywhere with terminating condition the same as the cumulant, and
a target policy modeled as a gaussian A/(0.15,0.0075), which corresponds to steering left.

4.2 RESULTS

In each of the domains tested we see significant improvements in the range of effective learning
rates. The most stark example is seen in the right plot of figure 1. Here the behaviour policy induces
importance sampling ratios as high as 99 while also having very few effective samples from which
to train. After 1000 training epochs only a single learning rate seemed to not diverge using ER+IS
and WIS-Buffer. In this same setting, IR performs very similar to the value function trained with on
policy daga. We also see lower sensitivity to learning rate in the four rooms environment, rightmost
figure 2. -

Another benefit of IR is the gains in sample efficiency, and the focus on potentially rare samples
following the target policy. We show this with the learning curves found in figure 3. In the random

5 Additional results in the Mountain Car Domain using a three layer neural network can be found in the
appendix.
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IR BC-IR = =— ER+IS WIS-Batch WIS-Buffer = = = WIS-Optimal = —
1.0 1.0 0.50
RMSVE 0.8 RMSRE
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Figure 3: left Markov Chain Random Walk with n = 15000, b = 16, x = [0.99,0.01],7 =
[0.01,0.99], optimal learning rates from above parameter study center Four rooms environment
n = 10000, b = 32 with optimal settings from below parameter studies. We report 70% confidence
bands for ease of comparison. right Torcs racing car simulator learning curves of RMSRE calculated
over a pre-collected evaluation set. apcqr = le %, ar = le %, as = 1le~° selected from a
parameter study using RMSProp and the NVIDIA network designed for self-driving cars (Bojarski
et al., 2016)

walk and four rooms domains we see WIS-Buffer and WIS-Batch perform approximately the same
as ER+IS with IR outperforming the competitors. This can be attributed to IR’s resampling scheme,
where we see more samples important to training. This is especially apparent in the four rooms
experiments, where we may only get a few chances to train from certain hard to reach states. The
uniform sampling methods will more likely miss out on rare examples, or only see them once making
learning slow. We also note that WIS-Batch is unable to learn in the hardest of settings for the
Markov chain, potentially due to the bias incurred from only performing WIS on a subsample of
the entire data. One interesting observation is in the Baird’s Star Problem where IR results in better
weights and lower value error (see appendix).

The experiments in the Torcs domain show faster learning using a deep learning system. While the
results are promising, they are not as stark as we would have expected given the prior experiments
and the variance in final performance is much larger for BC-IR and IR. There are several contributing
factors to learning off-policy using IR and IS that need to be considered. First by using RMSProp
or other adaptive learning rate algorithms we are potentially gaining WIS like benefits, reducing the
variance of the updates considerably. IR may improve performance when the behaviour and target
policies cause even more variant importance ratios, but with an adaptive learning rate algorithm
this becomes less problematic when using IS. More needs to be understood about the interactions
between adaptive algorithms and off-policy learning with importance sampling ratios.

5 CONCLUSIONS

Resampling for off-policy learning has been unconsidered, to our knowledge, up until now. This may
be due to a focus on learning from only the most recent experiences and throwing away transitions
once used. The resampling approach is now viable because of the increased prominence of the
experience replay buffer in deep reinforcement learning. Previous approaches have exploited the
experience replay buffer for orthogonal purposes including Prioritized Experience Replay (Schaul
et al., 2015b), which prioritizes training examples according to the temporal difference error w; =
|0;] + €. A possible extension to IR is to sample from an intermediate sampling distribution which
eases high variant importance sampling ratios (see Appendix B.5).

In this paper we introduced a new approach to off-policy learning: resampling. We explored the
theoretical implications of importance resampling, including a correction term to guarantee consis-
tency in the moving window setting. We provided a number of empirical studies in hard off-policy
learning settings outperforming the realistic competitors often by a wide margin, while also being
less sensitive to learning rate in the mini-batch stochastic gradient update. We found IR to outper-
form IS in cases with potentially high importance sampling ratios suggesting a possible reduction in
variance. Finally, we show improvements in learning rate performance for IR and BC-IR methods
using deep learning within a challenging racing car simulator environment. There remains a number
of both theoretical and empirical questions surrounding the benefits of the resampling approach to
off-policy learning worth exploring in future work.
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A  WEIGHTED IMPORTANCE SAMPLING

We consider three weighted importance sampling updates as competitors to IR. IV is the size of the
experience replay buffer, b is the size of a single batch.

A6 Zb WIS-Batch
j Pi
b .
g = 2 POV (5::6) WIS-Buffer
Zj P
N
. Pidi ;0 .
Af = 2 PidiVeV(si;0) WIS-Optimal

N
Zj Pj
B MORE EXPERIMENTAL RESULTS

B.1 MARKOV CHAIN

ER+IS

0.25 0.50 0.75 1.00
Learning Rate

Figure 4: Markov Chain results for V-Trace and Sarsa. Four clipping parameters were chosen
with different amounts of aggressiveness. They were calculated from the known max importance
sampling value, multiplied by the scalars 0.5 and 0.9. We also included a clipping value of 1.0
which is consistent with the recommendations made for retrace. The error for Sarsa was calculated
by deriving the state-value function from the current action-state value function, and following the
same error calculation as with the other methods.

We also include results in the random walk markov chain for V-Trace and Sarsa. V-Trace exhibited
the same issues as importance sampling, where we can see a clear disadvantage in the harder policies.
Also, we can clearly see a bias-variance trade off in V-Trace as the clipping parameter p became
more aggressive. Sarsa makes clear gains over ER+IS (and IR in the easiest setting), but fails to
learn the true value function for the hardest settings.

B.2 BAIRD’S STAR PROBLEM

We use a well known variant of the Star Problem (Baird, 1995; Sutton et al., 2009) proposed as a
counter example to the convergence of semi-gradient temporal difference learning in the off-policy
setting. We train using a batch version of TDC (Sutton et al., 2009). We calculate the RMSVE for
each state on every training step.

B.3 FOUR RoOMS DOMAIN
We also sampled new random states in which to act unfavorably for every run. We found the behavior

used in the experiments presented in the main text to be harder than many of the other policies
sampled randomly.

11
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Figure 5: Baird’s Star Problem.
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Figure 6: Four rooms experiments for new random states every run: left Learning rate sensitivity
center Buffer Size Sensitivity right Learning Curves

B.4 MOUNTAIN CAR

We use the standard mountain car domain described in (Sutton and Barto, 2018). To make the
simulations more realistic we collect experience from behavior policy learned through Q-learning
(Sutton and Barto, 2018) with a e-greedy exploration strategy. We code a GVF to predict whether
the agent will hit the back wall within a horizon of v = 0.9 while following the the persistent policy
accelerating forward. We use two exploration parameters ¢ = {0.1, 0.5} with maximum importance
sampling ratio values at p,,... = {6, 30} respectively.

We show comparisons for both a static step size SGD and with the Adam optimizer. These exper-
iments perform as expected, except for one configuration of the behavior policy using the Adam
optimizer. It is possible that the Adam optimizer is getting some benefit similar to WIS with the
recency averages of updates accounting for the high variance of the update.

0.08 0.08
0.07 0.07
0.06 0.06
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0.00 0.00
0.00 0.01 0.02 0.03 004 005 0.06 0.07 0.08 000 0.01 0.02 0.03 004 005 0.06 0.07 0.08

Figure 7: Mountain Car: Mini-batch Gradient Descent with constant learning rate © =
[0,0,1.0], |B| = 50000, Left ¢ = 0.1, Right ¢ = 0.5

B.5 SAMPLING ACCORDING TO INTERMEDIATE POLICIES
While intuitively it might seem sampling according to the target policy will produce the best value
functions, when making multiple predictions with the same training network it would be more con-

venient to sample from the experience replay buffer with an intermediate policy. We get the benefits
of less variant importance sampling ratios with the ability to use one IR buffer for multiple policies.

12
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Figure 8: Mountain Car: Mini-batch Gradient Descent with Adam Optimizer. x-axis: learning
rates, y-axis: RMSVE 7 = [0, 0, 1.0], | B] = 50000, Left ¢ = 0.1, Right ¢ = 0.5

0.040
0035
0.030
0.025 06 06
0020 0.4 04
0015 02 02 J
0.010 0.0 00 b

0.005

-0.2
10 15 20 25 30 35 11800 11825 11850 11875 11900 11925 11950 11975 12000 101800 102000 102200 102400 102600 102800

°

Figure 9: Mountain Car left Learning curve for optimal settings for Adam optimizer x-axis:
time(10%) y-axis: RMSVE center Early example of learned predictions x-axis: Time y-axis: Pre-
diction right Late example of learned predictions x-axis: Time, y-axis: Prediction

To combine the IR and importance sampling with a uniform experience replay we sample from the
buffer according to the PMF
ﬁi P 7Tsampl6<at|5t)

— p -
Zj Py ' p(ast)

We would then us off-policy temporal difference methods with the effective importance sampling

ratio used as Peffective = __mladls) __ \We show initial results for this extension in the markov chain
Tsample (at ‘ St)

random walk in figure 10.

p(sampling d;) =
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Figure 10: Intermediate sampling policies in a random walk markov chain. (left) 7 = [0.1,0.9], u =
[0.9,0.1], (right) 7 = [0.01,0.99], = [0.99, 0.01]
C MORE THEORETICAL RESULTS

C.1 CONSISTENCY OF THE IR ESTIMATOR WITH GROWING BUFFER SIZE

We show the consistency of the IR estimator with n — oo for convenience, but our approach closely
follows that of (Smith et al., 1992).

13
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Theorem C.1. Let B = {x1,2, ..., } be a buffer of data sampled i.i.d. according to proposal
distribution p(x). Let q(x) be some distribution of interest and assume the proposal distribution
samples everywhere where q(x) is non-zero. Also, let Y be a discrete random variable taking values

x; with probability o ;Ei g

Then, Y converges in distribution to X ~ Q as n — oo.

Proof. Let p; = ZE“;; . From the probability mass function of Y, we have that:

P[Y < q] E:H” zi)1{z; < a}

n_l Yo pil{x; <a}
n-t Zz 1P
nooo. Eqlp(z)1{z < a}]
thimﬂ
I Oop(w z)de +0- [ 4X2) () da

p(@)P
J- Oooo p(a)da

= /_aoo q(z)dz

The above shows consistency. If we have a large enough buffer, then the importance resampling will
closely approximate sampling from the target distribution (). In particular, any expectation we want
to estimate under () can also be a well-approximated by using the defined sampling scheme.

O

C.2 CHANGING BEHAVIOUR POLICIES

We consider the importance sampling estimator under conditions of a changing policy.

Theorem C.2. Let P be a target distribution with density p and {x;}!_, be a dataset where each
x; is sampled from P; independently. Then, the weighted importance sampling estimator ji =
q(zi)

pi(zi)”

S ST £ g(xl) is consistent for E¢[g(X)] where g(.) is a function of interest and p; =

1
Proof. First, we rewrite [i = Mp”’;“ and let Y; = p;g(x;).

n 22j=1Pi

Next, we find the expectations of Y; and p;.

q(x
dx
/m@g (=)
E

Finally, since all Y; and all p; have the same expectation and are independent, we apply the law of
large numbers to obtain that

j— 1 Z:L 1 Pid 9(Ti) nooo Eq[g(X)]
12 =1Pj (1)
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as desired.

O

Theorem C.2 implies that, even if the behaviour policy is changing over time, as long as we use
an importance ratio corresponding to the policy that was used to select an action, we will retain an
unbiased estimate of the expected update.

C.3 CONSISTENCY UNDER A SLIDING WINDOW DATASET

Lemma C.3. Let Z,,...Z,, be random variables with mean (1. Suppose there exists a ¢ > 0 such
that V(Z;) < ¢ Vi and that lim;_ ;| Cov(X;, X;) =0

Then, as N — 00, % vazl Z; converges in probability to L.

Proof. Let Sy = Zivzl Z;.

N
V(Sn) =Y _V(Z +2Z Z Cov(Zs, Z;)
1=1

1=1 j=141
The first term is bounded by ¢/N from our assumption on the variance. Now, to bound the second
term.

Fix § > 0 and choose M such that V|i — j| > M, |Cov(Z;, Z;)| < 6 (such an M must exist since
lim;_j| o0 Cov(Xy, X;) = 0). Assuming that N > M, we can decompose the second term into

N N N i+M N

Z Z Cov(Z;, Z;) Z Z Cov(Z;, Z;) —I—Z Z Cov(Z;, Z;)
i=1 j=it+1 i=1 j=it+1 i=1 j=i+M+1

N N N i+M

SN cov(Zi,Z)| <> D [Cov(Zi, 2, |+Z Z |Cov(Zs, Z;))|
i=1 j=i+1 i=1 j=it+1 i=1 j=i+M+1

By the Cauchy-Schwarz inequality and our variance assumption, |Cov(Z;, Z;)| < c. So, we get

N N N i+M

Z Z Cov(Z;, Z;) <Z Z c—|—Z Z ]

i=1 j=i+1 =1 j=i+1 i=1 j=i+M+1
< NMc+ N?§

Altogether, our upper bound is
SN c Mec
< 4=
V() s g

Finally, we apply Chebyshev’s inequality. For a fixed € > 0,
S N 1 S N
P < N “‘ ) a’ (N>

< 1 c n Mc np
- N' N

Since we can choose J to be arbitrarily small (say § = %), the right-hand side goes to 0 as N — oo,

concluding the proof.

IN

O

15



