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ABSTRACT

Common approaches to Reinforcement Learning (RL) are seriously challenged
by large-scale applications involving huge state spaces and sparse delayed reward
feedback. Hierarchical Reinforcement Learning (HRL) methods attempt to ad-
dress this scalability issue by learning action selection policies at multiple levels
of temporal abstraction. Abstraction can be had by identifying a relatively small
set of states that are likely to be useful as subgoals, in concert with the learn-
ing of corresponding skill policies to achieve those subgoals. Many approaches
to subgoal discovery in HRL depend on the analysis of a model of the environ-
ment, but the need to learn such a model introduces its own problems of scale.
Once subgoals are identified, skills may be learned through intrinsic motivation,
introducing an internal reward signal marking subgoal attainment. In this paper,
we present a novel model-free method for subgoal discovery using incremental
unsupervised learning over a small memory of the most recent experiences of
the agent. When combined with an intrinsic motivation learning mechanism, this
method learns subgoals and skills together, based on experiences in the environ-
ment. Thus, we offer an original approach to HRL that does not require the ac-
quisition of a model of the environment, suitable for large-scale applications. We
demonstrate the efficiency of our method on two RL problems with sparse delayed
feedback: a variant of the rooms environment and the ATARI 2600 game called
Montezuma’s Revenge.

1 INTRODUCTION

The reinforcement learning problem suffers from serious scaling issues. Hierarchical Reinforcement
Learning (HRL) is an important computational approach intended to tackle problems of scale by
learning to operate over different levels of temporal abstraction (Sutton et al., 1999). The acquisition
of hierarchies of reusable skills is one of the distinguishing characteristics of biological intelligence,
and the learning of such hierarchies is an important open problem in computational reinforcement
learning.

A number of general approaches have been suggested towards this end. One approach focuses on
action sequences, subpolicies, or “options” that appear repeatedly during the learning of a set of
tasks. Such frequently reused subpolicies can be abstracted into skills that can be treated as individ-
ual actions at a higher level of abstraction. A somewhat different approach to temporal abstraction
involves identifying a set of states that make for useful subgoals. This introduces a major open
problem in HRL: that of subgoal discovery.

A variety of researchers have proposed approaches to identifying useful subpolicies and reifying
them as skills (Pickett & Barto, 2002; Thrun & Schwartz, 1995). For example, Sutton et al. (1999)
proposed the options framework, which involves abstractions over the space of actions. At each step,
the agent chooses either a one-step “primitive” action or a “multi-step” action policy (an option).
Each option defines a policy over actions (either primitive or other options) and comes to completion
according to a termination condition.

Other researchers have focused on identifying subgoals — states that are generally useful to attain
— and learning a collection of skills that allow the agent to efficiently reach those subgoals. Some
approaches to subgoal discovery maintain the value function in a large look-up table (Sutton et al.,
1999; Goel & Huber, 2003; Şimşek et al., 2005), and most of these methods require building the
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state transition graph, providing a model of the environment and the agents possible interactions with
it (Machado et al., 2017; Şimşek et al., 2005; Goel & Huber, 2003). Formally, the state transition
graph is a directed graph G = (V,E) with a set of vertices, V ⊆ S and set of edges E ⊆ A(S),
where S is the set of states and A(S) is the set of allowable actions. Since actions typically modify
the state of the agent, each directed edge, (s, s′) ∈ E, indicates an action that takes the agent from
state s to state s′. In nondeterministic environments, a probability distribution over subsequent
states, given the current state and an action, p(s′|s, a), is maintained as part of the model of the
environment. Previously proposed subgoal discovery methods have provided useful insights and
have been demonstrated to improve learning on relatively small tasks, there continue to be challenges
with regard to scalability and generalization. Scaling to large state spaces will generally mandate
the use of some form of nonlinear function approximator to encode the value function, rather than
a look-up table. More importantly, as the scale of reinforcement learning problem increases, the
tractability of obtaining a good model of the environment, capturing all relevant state transition
probabilities, precipitously decreases.

Once useful subgoals are discovered, an HRL agent should be able to learn the skills to attain those
subgoals through the use of intrinsic motivation — artificially rewarding the agent for attaining se-
lected subgoals. The nature and origin of “good” intrinsic reward functions is an open question
in reinforcement learning, however, and a number of approaches have been proposed. Singh et al.
(2010) explored agents with intrinsic reward structures in order to learn generic options that can
apply to a wide variety of tasks. Value functions have also been generalized to consider goals along
with states (Vezhnevets et al., 2017). Such a parameterized universal value function, q(s, a, g;w), in-
tegrates the value functions for multiple skills into a single function approximator taking the current
subgoal, g, as an argument.

Recently, Kulkarni et al. (2016) proposed a scheme for temporal abstraction that involves simulta-
neously learning options and a control policy to compose options in a deep reinforcement learning
setting. Their approach does not use separate Q-functions for each option, but instead treats the op-
tion as part of the input. However, the method of Kulkarni et al. (2016) does not include a technique
for automatic subgoal discovery, forcing the system designer to specify a set of promising subgoal
candidates in advance. The approach proposed in this paper is inspired by Kulkarni et al. (2016),
which has advantages in terms of scalability and generalization, but incorporates automatic subgoal
discovery.

It is important to note that model-free HRL, which does not require a model of the environment,
still often requires the learning of useful internal representations of states. When learning the
value function using a nonlinear function approximator, such as a deep neural network, relevant
features of states must be extracted in order to support generalization at scale. A number of meth-
ods have been explored for learning such internal representations during model-free reinforcement
learning Tesauro (1995); Rafati & Noelle (2017); Mnih et al. (2015).

In this paper, we seek to address major open problems in the integration of internal representation
learning, temporal abstraction, automatic subgoal discovery, and intrinsic motivation learning, all
within the model-free HRL framework. We propose and implement efficient and general meth-
ods for subgoal discovery using unsupervised learning methods – such as K-means clustering and
anomaly (outlier) detection. These methods do not require information beyond that which is typi-
cally collected by the agent during model-free reinforcement learning, such as a small memory of
recent experiences.

Our methods are fundamentally constrained in three ways, by design. First, we remain faithful to a
model-free reinforcement learning framework, eschewing any approach that requires the learning or
use of an environment model. Second, we are devoted to integrating subgoal discovery with intrin-
sic motivation learning. Specifically, we conjecture that intrinsic motivation learning can increase
appropriate state space coverage, supporting more efficient subgoal discovery. Lastly, we focus on
subgoal discovery algorithms that are likely to scale to large reinforcement learning tasks. The result
is a unified algorithm that incorporates the learning of useful internal representations of states, auto-
matic subgoal discovery, intrinsic motivation learning of skills, and the learning of subgoal selection
by a “meta-controller”, all within the model-free hierarchical reinforcement learning framework.
We demonstrate the effectiveness of this algorithm by applying it to a variant of the rooms task
(illustrated in Figure 2(a)), as well as a classic and difficult ATARI 2600 game called Montezuma’s
Revenge (illustrated in Figure 3(a)).
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2 REINFORCEMENT LEARNING PROBLEM

The Reinforcement Learning (RL) problem is learning through interaction with an environment
Sutton & Barto (1998). At any time step the agent receives a representation of the environment’s
state, s ∈ S, where S is the set of all possible states, and, on that basis, the agent selects an action,
a ∈ A, whereA is the set of all available actions. One time step later as a consequence of the agent’s
action, the agent receives a reward r ∈ R and also an update on the agent’s new state, s′, from the
environment. Each cycle of interaction is called a transition experience, e = (s, a, r, s′). At each
time step, the agent implements a mapping from states to possible actions, π : S → A, called its
policy. The goal of the RL agent is to find an optimal policy that maximizes the expected value of
the return, i.e. the cumulative sum of future rewards, Gt =

∑T
t′=t γ

t′−trt′+1, where γ ∈ (0, 1]
is the discounted factor and T is a final step. The Temporal Difference (TD) learning approach is
a class of model-free RL methods that attempt to learn a policy without learning a model of the
environment. It is often useful to define a value function qπ : S × A → R to estimate the expected
value of the return, following policy π. When the state space is large, or not all states are observable,
we can use a function approximator Q(s, a;w), such as an artificial neural network, to estimate the
value function qπ . Q-learning is a TD algorithm that attempts to find the optimal value function by
minimizing the loss function L(w), which is defined as the expectation of squared TD error over a
recent transition experience memory D:

L(w) , E(s,a,r,s′)∼D

[(
r + γmax

a′
Q(s′, a′;w)−Q(s, a;w)

)2]
.

3 A UNIFIED MODEL-FREE HRL FRAMEWORK

In Hierarchical Reinforcement Learning (HRL), a central goal is to support the learning of represen-
tations at multiple levels of abstraction. As a simple example, consider the task of navigation in the
4-room environment with a key and a lock in Figure 2(a). This is a variant of the rooms task intro-
duced by Sutton et al. (1999). The 4-room is a grid-world environment consisted of 4 rooms. Each
grid square is a state, and the agent has access to the Cartesian location of each grid square. Actions
allow the agent to move to an adjacent grid square. The 4 rooms are connected through doorways.
The agent is rewarded for entering the grid square containing the key, and it is more substantially
rewarded for entering the grid square with the lock after obtaining the key. Learning this task based
on sparse delayed feedback is challenging for a reinforcement learning agent.

Our intuition, shared with other researchers, is that hierarchies of abstraction will be critical for
successfully solving problems of this kind. To be successful, the agent should represent knowledge
at multiple levels of spatial and temporal abstraction. Appropriate abstraction can be had by identi-
fying a relatively small set of states that are likely to be useful as subgoals and jointly learning the
corresponding skills of achieving these subgoals, using intrinsic motivation.

In this section, we introduce a unified method for model-free HRL. The major components of our
framework, and the information flow between them, are sketched in Figure 1(a). Before describing
the unified method, we introduce the various components of our framework.

3.1 META-CONTROLLER AND CONTROLLER FRAMEWORK

Inspired by Kulkarni et al. (2016), we use two levels of hierarchy for learning internal representations
for value function approximation. The more abstract level of this hierarchy is managed by a meta-
controller and this system guides the action selection processes of the controller. Separate value
functions are learned for the meta-controller and the controller, but they jointly learned, together.
The process is illustrated in Figure 1(b). At time step t, the meta-controller that receives a state
observation, s = st, from the environment. It has a policy for selecting a subgoal, g = gt, from
a set of subgoals, G. In our implementation, the policy arises from estimating the value of each
subgoal, Q(s, g;W), and selecting the goal of highest estimated value (except when performing
random exploration). With the current subgoal selected, the controller uses its policy to select an
action, a ∈ A, based on the current state, s, and the current subgoal, g.

In our implementation, this policy involves selecting the action that results in the highest estimate of
the controller’s value function, q(s, g, a;w). Actions continue to be selected by the controller while

3



Under review as a conference paper at ICLR 2019

an internal critic monitors the current state, comparing it to the current subgoal, and delivering an
appropriate intrinsic reward, r̃, to the controller on each time step. Each transition experience,
(s, g, a, r̃, s′), is recorded in the controller’s experience memory set, D1, to support learning. When
the subgoal is attained, or a maximum amount of time has passed, the meta-controller observes the
resulting state, st′ = st+T+1, and selects another subgoal, g′ = gt+T+1, at which time the process
repeats, but not before recording a transition experience for the meta-controller, (s, g,G, st′) in the
meta-controller’s experience memory set, D2. The parameters of the value function approximators
are adjusted based on the collections of recent experiences. For training the meta-controller value
function, we minimize a loss function based on the reward received from the environment:

Li(W) , E(s,g,G,st′ )∼D2

[(
Y −Q(s, g;W)

)2]
, (1)

where G =
∑t+T
t′=t γ

t′−trt′ is the accumulated external reward (return) between the selection of
consecutive subgoals. Y = G + γmaxg′ Q(s′, g′;W) is the target value for the expected return at
the time that the meta-controller selected subgoal g. The controller improves its subpolicy, π(a|s, g),
by learning its value function, q(s, g, a;w), over the set of recorded transition experiences. The
controller updates its value function approximator parameters, w, so as to minimize its loss function:

Li(w) , E(s,g,a,r̃,s′)∼D1

[(
y − q(s, g, a;w)

)2]
, (2)

where y = r̃ + γmax′a q(s
′, g, a′;w) is the target expected intrinsic return value.

(a) (b)

Figure 1: (a) The information flow in the unified Model-Free Hierarchical Reinforcement Learning
Framework. (b) Temporal abstraction in the meta-controller/controller framework.

3.2 INTRINSIC MOTIVATION LEARNING

The acquisition of hierarchies of reusable skills is one of the distinguishing characteristics of biolog-
ical intelligence, and the learning of such hierarchies is an important open problem in computational
reinforcement learning. In humans, these skills are learned during a substantial developmental pe-
riod in which individuals are intrinsically motivated to explore their environment and learn about
the effects of their actions (Vigorito & Barto, 2010).

Intrinsic motivation learning is the core idea behind the learning of value functions in the meta-
controller and the controller. In some tasks with sparse delayed feedback, a standard RL agent
cannot effectively explore the state space so as to have a sufficient number of rewarding experiences
to learn how to maximize rewards. In contrast, the intrinsic critic in our HRL framework can send
much more regular feedback to the controller, since it is based on attaining subgoals, rather than
ultimate goals. As an example, our implementation typically awards an intrinsic reward of +1 when
the agent attains the current subgoal, g, and −1 for any other state transition. Successfully solving a
difficult task not only depends on such an intrinsic motivation learning mechanism, but also on the
meta-controller’s ability to learn how to choose the right subgoal for any given state, s, selecting the
subgoals from a set of candidate subgoals. Indeed, identifying a good set of candidate subgoals is
an additional prerequisite for success.

3.3 UNSUPERVISED SUBGOAL DISCOVERY

The performance of the meta-controller/controller framework depends critically on selecting good
candidate subgoals for the meta-controller to consider.
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What is a subgoal? In our framework, a subgoal is a state, or a set of closely related states, that
satisfies at least one of these conditions:

1. It is close (in terms of actions) to a rewarding state. For example, in the rooms task in
Figure 2(a), the key and lock are rewarding states.

2. It represents a set of states, at least some of which tend to be along a state transition path to
a rewarding state.

For example, in the rooms task, the red room should be visited to move from the purple room to the
blue room in order to pick up the key. Thus any state in the red room is a reasonably good subgoal
for an agent currently in the purple room. Similarly, the states in the blue room are all reasonably
good subgoals for an agent currently in the red room. The doorways between rooms can also be
considered as good subgoals, since entering these states allows for the transition to a set of states
that may be closer to rewarding states.

Our strategy involves leveraging the set of recent transition experiences that must be recorded for
value function learning, regardless. Unsupervised learning methods applied to sets of experiences
can be used to identify sets of states that may be good subgoal candidates. We focus specifically on
two kinds of analysis that can be performed on the set of transition experiences. We hypothesize that
good subgoals might be found by (1) attending to the states associated with anomalous transition
experiences and (2) clustering experiences based on a similarity measure and collecting the set of
associated states into a potential subgoal. Thus, our proposed method for subgoal discovery merges
anomaly (outlier) detection with online K-means clustering of experiences.

3.3.1 ANOMALY DETECTION

The anomaly (outlier) detection process identifies states associated with experiences that differ sig-
nificantly from the others. In the context of subgoal discovery, a relevant anomalous experience
would be one that includes a substantial positive reward in an environment in which reward is sparse.
We propose that the states associated with these experiences make for good candidate subgoals. For
example, in the rooms task, transitions that arrive at the key or the lock are quite dissimilar to most
transitions, due to the large positive reward that is received at that point.

Since the goal of RL is maximizing accumulated (discounted) rewards, these anomalous experi-
ences, involving large rewards, are ideal as subgoal candidates. Large changes in state features can
also be marked as anomalous. In some computer games, like the ATARI 2600 game Montezuma’s
Revenge, each screen represents a room, and the screen changes quickly when the agent moves
from one room to another. This produces a large distance between two consecutive states. Such
a transition can be recognized simply by the large instantaneous change in state features, mark-
ing the associated states as reasonable candidate subgoals. There is a large literature on anomaly
detection, in general, offering methods for applying this insight. Heuristic meta-parameter thresh-
olds can be used to identify dissimilarities that warrant special attention, or unsupervised machine
learning methods can be used to model the joint probability distribution of state variables, with low
probability states seen as anomalous.

3.3.2 K-MEANS CLUSTERING

The idea behind using a clustering algorithm is “spatial” state space abstraction and dimensionality
reduction with regard to the internal representations of states. If a collection of transition experiences
are very similar to each other, this might suggest that the associated states are all roughly equally
good as subgoals. Thus, rather than considering all of those states, the learning process might be
made faster by considering a representative state (or smaller set of states), such as the centroid of a
cluster, as a subgoal. Furthermore, using a simple clustering technique like K-means clustering to
find a small number of centroids in the space of experiences is likely to produce centroid subgoals
that are dissimilar from each other. Since rewards are sparse, this dissimilarity will be dominated
by state features. For example, in the rooms task, the centroids of the K-means clustering with
K = 4 lie close to the geometric center of each room, with the states within each room coming to
belong to the corresponding subgoal’s cluster. In this way, the clustering of transition experiences
can approximately produce a coarser representation of state space, in this case replacing the fine
grained “grid square location” with the coarser “room location”.
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3.4 UNIFYING UNSUPERVISED LEARNING WITH MODEL-FREE HRL

These conceptual components can be unified into a single model-free HRL framework. The major
components of this framework and the information flow between these components are schemati-
cally displayed in Figure 1(a). At time t, the meta-controller observes the state, s = st, from the
environment and chooses a subgoal, g = gt, either from the discovered subgoals or from a ran-
dom set of states (to promote exploration). The controller receives an input tuple, (s, g), and is
expected to learn to implement a subpolicy, π(a|s, g), that solves the subtask of reaching from s
to g. The controller selects an action, a, based on its policy, in our case directly derived from its
value function, q(s, g, a;w). After one step, the environment updates the state to s′ and sends a
reward r. The transition experience (s, g, a, r̃, s′) is then stored in the experience memory for the
controller, D1. If the internal critic detects that the resulting state, s′, is the current goal, g, the ex-
perience (st, g,G, st′) is stored in the meta-controller experience memory, D2, where st is the state
that prompted the selection of the current subgoal, and, st′ = st+T is the state when meta-controller
assigns the next subgoal g′ = gt′ . The experience memory sets are typically used to train the value
function approximators for the meta-controller and the controller by sampling a random minibatch
of recent experiences. The subgoal discovery mechanism exploits the underlying structure in the ex-
perience memory sets using unsupervised anomaly detection and experience clustering. A detailed
description of this process is outlined in Algorithm 1.

4 EXPERIMENTS

We conducted numerical experiments in order to investigate the ability of the unsupervised subgoal
discovery method in discovering useful subgoals, as well as the efficiency of the unified model-free
hierarchical reinforcement learning framework in learning robust representations. The simulations
were conducted in two environments with sparse delayed feedback: a variant of the rooms task in
Figure 2 and a classic ATARI 2600 game called “Montezumas Revenge”.

4.1 4-ROOMS TASK WITH KEY AND LOCK

Consider the task of navigation in the 4-rooms environment with a key and a lock as shown in Figure
2(a). At the beginning of each episode, the agent was initialized in an arbitrary location in an
arbitrary room. The agent received r = +10 reward for reaching the key and r = +40 if it moved to
the box while carrying the key. The agent could move either A = {North, South, East, West}
on each time step. Bumping into the wall boundaries was punished with a reward of r = −2. There
was no reward for exploring the space. Learning in this environment with sparse delayed feedback
is challenging for a reinforcement learning agent. To successfully solve the task, the agent should
represent knowledge at multiple levels of spatial and temporal abstractions. The agent should also
learn to explore the environment efficiently.

First, we conducted an experiment based on a random walk. The agent was allowed to explore
the rooms environment for 10,000 episodes. Each episode ended either when the rooms task was
completed or after reaching maximum steps 200. We collected the agent’s recent experiences e =
(s, a, s′, r) in an experience memoryD. The stream of external rewards for each transition was used
for detecting the anomalous subgoals (see Figure 2(c)). We applied a heuristic anomaly detection
method for the streaming rewards that was able to differentiate between the rare large rewards and
the regular small ones. These peaks, as shown in Figure 2(c), correspond to the experiences in which
the key was reached (r = +10), or the experience of reaching to the lock after holding the key. Then,
we implemented an incremental K-means clustering to the experience memory (See Algorithm 1).
The centroids of the K-means clusters with K = 4 is plotted in Figure 2(b). After a few iterations,
the centroid of clusters were interestingly found in the center of the rooms.

After the successful unsupervised subgoal discovery, we attempted to train a meta-controller and
a controller using the discovered subgoals G (see Algorithm 1). We used a total of 6 subgoals, 2
anomalous ones and 4 centroids. The value function approximators were implemented as multi-layer
artificial neural networks augmented to encourage the learning of sparse internal representations of
states. The controller network, q(s, g, a;w), takes the state, s, and the goal, g, as inputs. The
Gaussian representation was used for preprocessing s to input the network.
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Algorithm 1 Unified Model-Free Hierarchical Reinforcement Learning Algorithm
Initialize discovered subgoals set G ← ∅
Initialize controller and meta-controller experience memories D1 and D2

Initialize parameters of q(., ., .;w) and Q(., .;W) randomly
Inputs: learning rate α, exploration rate ε
for episode = 1, . . . ,M do

Initialize state s0 ∈ S, s← s0, episode return G← 0
if Phase I of learning (before diescovering subgoals) then

Choose a subgoal g randomly form S
else

Compute Q(s, g;W)
g ←EPS-GREEDY(Q(s, g;W), ε)

end if
Intrinsic Motivation Learning Algorithm:
repeat for each step t = 1, . . . , T

compute q(s, g, a;w)
a←EPS-GREEDYq(s, g, a;w), ε)
Take action a
Observe next state s′ and external reward r
Compute intrinsic reward r̃ from internal critic:
r̃ ← +1 if s′ reached to g and, r̃ ← min(−1, r) otherwise
Store controller’s transition experience e = {s, g, a, r̃, s′} to D1

Sample random minibatch of transitions J1 ⊂ D1 and J2 ⊂ D2

Compute gradients of losses for controller,∇L and meta-controller,∇L
Update controller’s parameters w and meta-controller’s parametersW:
w ← w − α∇L, W ← w − α∇L,
s← s′, G← G+ r
Anneal exploration rate ε

until s is terminal or intrinsic task is done
Store meta-controller’s transition experience e = {s0, g,G, s′} to D2

Unsupervised Subgoal Discovery Algorithm:
for each e = {s, a, r, s′} ∈ D1 do

if experience e is an outlier (anomoly) then
Store s′ to the subgoals set G
Remove e from D

end if
end for
Fit a K-means Clustering Algorithm on D
Store the centroids to the subgoals set G

end for

The k-Winners-Take-All mechanism (kWTA) was used to produce a sparse conjunctive represen-
tation for the state, s by only letting 10% of the hidden units have high activations (O’Reilly &
Munakata, 2001; Rafati & Noelle, 2015). The subgoals layer was connected only to the correspond-
ing row of hidden units. This mechanism was included in hopes of avoiding catastrophic interference
during training. The hidden layer is connected fully to the output units.

The training consisted of two phases. In the first phase, the controller was trained to navigate from
any arbitrary state s to reach the corresponding subgoal input g from the subgoals set for a total of
100,000 episodes. When a centroid was selected as a subgoal, if the agent entered the corresponding
cluster, the subgoal was considered attained. Thus, the controller essentially learned how to navigate
from any location to any clusters (room) and also to any anomalous subgoals (key and door). The
learning rate was α = 0.001, the discount factor was γ = 0.99, and the exploration rate was set
to ε = 0.2. The average success rate (over 10 consecutive episodes) for the first phase of intrinsic
motivation learning is shown in Figure 2(d). In the second phase of learning, we trained both meta-
controller and controller for 100,000 episodes. The meta-controller’s network consisted of two
layers. The first layer, was a one-hot encoding of the state computed by converting the state to the
index of the corresponding subgoal (cluster index or anomalous states) connected directly to the
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Figure 2: (a) The rooms task with a key and a box. (b) The results of the unsupervised subgoal
discovery algorithm with anomalies marked with black Xs and centroids with colored ones. (c)
Reward over an episode, with anomalous points corresponding to the key (r = +10) and the car
(r = +40). (d) The average success of the controller in reaching subgoals during intrinsic motivation
learning in the pretraining phase. (e) The average episode return for the unified model-free HRL
method. (f) The success of the unified model-free HRL in solving the rooms task.

output layer. The average return (over 10 consecutive episodes) of the training episodes is shown
in Figure 2(e). The agent learned very fast to converge the optimal policies by collecting maximum
+50 rewards. The exploration rate was ε = 0.2 and although this caused high stochasticity, the
meta-controller and controller could robustly solve the task more than 90% of the time and after
about 40,000 episodes, the success rate was 100% as shown in Figure 2(f). We also compared the
efficiency of learning representations in our unified HRL method with the results from training a
network with regular RL algorithms (TD SARSA method). The function approximator that we used
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for Q(s, a;W ) was similar to the controller, and we used the same values for the training hyper
parameters. Surprisingly, the regular RL could only reach the key before becoming stuck in that
region due to the high local reward. Although we used 20% exploration rate, the agent was not
motivated to explore the rest of the state space to reach the box and solve the task as shown in Figure
2(e) and (f) (red plots).

4.2 MONTEZUMA’S REVENGE

The first room of Montezuma’s Revenge (see Figure 3(a) is considered. The game is well-known to
be a challenging task for agents because the game requires solving many subtasks and avoiding traps.
Most challenging of all is the sparse delayed rewards feedback. The agent should learn to navigate
the man in red in order to reach the key by the sequence of: (1) passing the middle ladder (2) passing
the bottom right ladder (3) passing the bottom left ladder (4) reaching the key (5) After picking up
the key (r = +100), it should return back in the reverse sequence and attempt to reach the door
(r = +300) and exit the room. The moving skull makes reaching to the key extremely strenuous,
thus the random walk in this environment faces early failures. The agent requires the intrinsic
motivation learning in order to explore the environment in a more efficient way (Kulkarni et al.,
2016). The DeepMind’s Deep Q-Learning (DQN) algorithm (Mnih et al., 2015) which successfully
surpassed the human expert in most of the ATARI 2600 games, failed to learn this game since the
agent did not reach any rewarding state in the initial exploration stage.

Inspired by the work of Kulkarni et al. (2016), we used a two-stage meta-controller/controller frame-
work (Figure 1(b)) to learn the representations of the temporal abstractions. The meta-controller and
controller were trained in two phases. In the first phase of training, the controller was trained to nav-
igate the man from any location in the given frame s to any other location specified in a subgoal
frame g. An initial set of random locations based on a custom edge detection algorithm was used for
pretraining the controller through intrinsic motivation. Unsupervised object detection in the scene
using state of the art computer vision algorithms is a challenging task (Kulkarni et al., 2016; Fra,
2015), but we hypothesized that in most of the games the location of edges where the object is sep-
arated from their background can be good initial candidates. We used a variant of the DQN deep
Convolutional Neural Network (CNN) architecture (Figure 3(b)) for function approximation of the
controller’s state-action value function q(s, g, a;w). The input to the controller consisted of four
consecutive frames of size 84× 84) as state s, and an additional frame binary mask of the subgoal g
attained from the aforementioned random subgoals set. The concatenated state and subgoal frames
(s, g), were passed to q(s, g, a;w). The controller then took action from 18 different joystick choices
based on a policy derived from q(s, g, a;w).

During the intrinsic motivation learning, the recent experiences were saved in a experience memory
D with size of 106. In order to compare our results with the existing methods, we used the learning
parameters of Mnih et al. (2015). For example, the learning rate was set to to be 2.5 × 104, with a
discount rate of γ = 0.99. In the first phase, we only trained the network for a total of 2.56 time
steps. The epsilon decreased from 1.0 to 0.1 in the first one million steps of the training and remained
fixed after that. Every 100, 000 steps, we applied the incremental unsupervised subgoal discovery to
the experience memory to find the new subgoals in terms of anomalies and centroids. As shown in
the Figure 3(d), the unsupervised learning algorithm managed to discover the location of the key and
doors by the unsupervised anomaly detection algorithm and also the useful objects such as ladders,
stages and the rope by applying the incremental K-means clustering with K = 10 to the set of
locations of the man. In the second phase of learning after the successful subgoal discovery, we
trained the meta-controller and the controller jointly. We used an architecture based on the DQN
CNN (Mnih et al., 2015), as shown in Figure 3(c) for the meta-controller’s value functionQ(s, g;W .
We used the non-overlapping discovered subgoals G which resulted in a set of 11 subgoals, G. At
the beginning of each episode, the meta-controller assigned a subgoal g ∈ G based on an epsilon-
greedy policy derived from Q(s, g;W), after observing the four consecutive frames of the game.
The controller then attempted to reach these subgoals. The meta-controller’s experience memory,
D1 had a size of 106, and the meta-controller’s memory size was 5 × 104. The cumulative rewards
for the game episodes is shown in Figure 3(e). After about 1.5 million time steps, the controller
managed to reach the key subgoal more frequently. The success of the intrinsic motivation learning
is depicted in Figure 3(f). At the end of the second phase of learning, i.e. after 2.5 million learning
steps, the meta-controller chose the proper subgoals that led to more frequent success in solving the
first room and collecting the maximum rewards (+400).

9



Under review as a conference paper at ICLR 2019

(a) (b) (c) (d)

0 500000 1000000 1500000 2000000 2500000

Training steps

0

50

100

150

200

250

300

350

400

A
ve
ra
ge

re
tu
rn

ov
er

10
ep
is
d
es

Our Unified Model-Free HRL Method

DeepMind DQN Algorithm (Mnih et. al., 2015)

0 500000 1000000 1500000 2000000 2500000

Training steps

0

20

40

60

80

S
u
cc
es
s
in

re
ac
h
in
g
su
b
go
al
s
%

Our Unified Model-Free HRL Method

DeepMind DQN Algorithm (Mnih et. al., 2015)

(e) (f)

Figure 3: (a) A sample screen from the ATARI 2600 game Montezuma’s Revenge. (b) The CNN
architecture for the controller’s value function. (c) The CNN architecture for the meta-controller’s
value function. (d) The results of the unsupervised subgoal discovery algorithm. The blue circles
are the discovered anomalous subgoals and the red ones are the centroid subgoals. (e) The average
of return over 10 episode during the second phase of the learning. (f) The success of the controller
in reaching to the subgoals during the second phase of learning.

5 DISCUSSIONS

Research on human and animal behavior has long emphasized its hierarchical structure (Botvinick
et al., 2009). There is empirical and computational evidence that suggests how temporal abstraction
in the hierarchical reinforcement learning might map onto neural structures, in particular regions
within the dorsolateral and orbital Prefrontal Cortex (PFC) (Botvinick et al., 2009; Badre et al.,
2010). There are also studies on the interaction between the hippocampus and the PFC that is
directly related to our unsupervised subgoal discovery method. Preston & Eichenbaum (2013) illus-
trated how novel memories (like anomalous subgoals) could be reinforced into permanent storage.
Additionally, their studies suggest how PFC may play a major role in finding new meaningful rep-
resentations from replaying the memory — a process akin to the clustering of recent experience
memory D in our novel HRL framework. The latter mechanism is the essence of so-called temporal
abstraction that furthermore helps with optimizing brain’s large-scale memory retrieval processes.

6 CONCLUSION

We propose and implement a novel model-free method for subgoal discovery using incremental
unsupervised learning over a small memory of the most recent experiences of the agent. When
combined with an intrinsic motivation learning mechanism, this method learns subgoals and skills
together, based on experiences in the environment. Thus, we offer an original approach to HRL that
does not require the acquisition of a model of the environment, suitable for large-scale applications.
We conducted experiments using our method on large-scale RL problems, such as portions of the
difficult Atari 2600 game Montezuma’s Revenge.
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