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ABSTRACT

Recent image super-resolution(SR) studies leverage very deep convolutional neu-
ral networks and the rich hierarchical features they offered, which leads to better
reconstruction performance than conventional methods. However, the small re-
ceptive fields in the up-sampling and reconstruction process of those models stop
them to take full advantage of global contextual information. This causes prob-
lems for further performance improvement. In this paper, inspired by image recon-
struction principles of human visual system, we propose an image super-resolution
global reasoning network (SRGRN) to effectively learn the correlations between
different regions of an image, through global reasoning. Specifically, we propose
global reasoning up-sampling module (GRUM) and global reasoning reconstruc-
tion block (GRRB). They construct a graph model to perform relation reasoning
on regions of low resolution (LR) images.They aim to reason the interactions be-
tween different regions in the up-sampling and reconstruction process and thus
leverage more contextual information to generate accurate details. Our proposed
SRGRN are more robust and can handle low resolution images that are corrupted
by multiple types of degradation. Extensive experiments on different benchmark
data-sets show that our model outperforms other state-of-the-art methods. Also
our model is lightweight and consumes less computing power, which makes it
very suitable for real life deployment.

1 INTRODUCTION

Image Super-Resolution (SR) aims to reconstruct an accurate high-resolution (HR) image given its
low-resolution (LR) counterpart. It is a typical ill-posed problem, since the LR to HR mapping is
highly uncertain. In order to solve this problem, a large number of methods have been proposed,
including interpolation-based (Zhang & Wu., 2006), reconstruction-based(Zhang et al., 2012), and
learning-based methods (Timofte et al., 2013; 2014; Peleg & Elad., 2014; Schulter et al., 2015; Dong
et al.; Huang et al., 2015; Tai et al., 2017; Tong et al., 2017; Zhang et al., 2018a; Dong et al., 2016).

In recent years, deep learning based methods have achieved outstanding performance in super-
resolution reconstruction. Some effective residual or dense blocks (Huang et al., 2017; Zhang et al.,
2018b; Wang et al., 2018; Lim et al., 2017; Ledig et al., 2017; Ahn et al.; Li et al., 2018) have been
proposed to make the network wider and deeper and achieved better results. However, they only pay
close attention to improving the feature extraction module, ignoring that the upsampling process
with smaller receptive fields does not make full use of those extracted features. Small convolution
receptive field means that the upsampling process can only perform super-resolution reconstruction
based on local feature relationships in LR. As we all know, different features interact with each other,
and features which are in different regions have corresponding effects on upsampling and reconstruc-
tion of a certain region. That is to say that a lot of information is lost in the process of upsampling
and reconstruction due to the limitation of the receptive field, although the network extracts a large
number of hierarchical features which are from low frequency to high frequency.

Chariker et al. (2016; 2018) show that the brain generates the images we see based on a small
amount of information observed by the human eye, ranther than acquiring the complete data from
the point-by-point scan of the retina. This process of generating an image is similar to a SR process.
According to their thought, we add global information in SR reconstruction and propose to use
relational reasoning to implement the process that the human visual system reconstructs images with
observed global information. In general, extracting global information requires a large receptive
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field. A large convolution receptive field usually requires stacking a large number of convolutional
layers, but this method does not work in the upsampling and reconstruction process. Because this
will produce a huge number of parameters.

Based on the above analysis, we propose an image super-resolution global reasoning network (SR-
GRN) which introduces the global reasoning mechanism to the upsampling module and the recon-
struction layer. The model can capture the relationship between disjoint features of the image with
a small respective field, thereby fully exploits global information as a reference for upsampling and
reconstruction. We mainly propose global reasoning upsampling module (GRUM) and global rea-
soning reconstruction block (GRRB) as the core structure of the network. GRUM and GRRB first
convert the LR feature map into N nodes, each of which not only represents a feature region in the
LR image, but also contains the influence of pixels in other regions on this feature. Then they learn
the relationship between the nodes and fuse the information of each node in a global scope. After
that, GRUM learns the relationship between the channels in each node and amplifies the number of
channels for the upsampling process. And then they convert N nodes into pixels with global reason-
ing information. Finally, GRUM and GRRB complete the upsampling and reconstruction process
respectively.

In general, our work mainly has the following three contributions:

• We propose an image super-resolution global reasoning network (SRGRN) which draws on
the idea of image reconstruction principles of human visual system. We mainly focus on
the upsampling module and the reconstruction module. The model reconstructs SR images
based on relational reasoning in a global scope.

• We propose a global reasoning upsampling module (GRUM) and global reasoning recon-
struction block (GRRB), which construct a graph model to implement the relational rea-
soning among the feature regions in an image via 1D and 2D convolution, and finally adds
the information obtained by global reasoning to each pixel. It can provide more contextual
information to help generate more accurate details.

• Our proposed GRUM and GRRB are lightweight, which makes it suitable for real life
deployment. More importantly, GRUM and GRRB balance the number of parameters and
the reconstruction performance well. They can be easily inserted into other models.

2 RELATED WORKS

Deep CNN for SR and upsampling methods. Deep learning has achieved excellent performance
in image super-resolution tasks. For the first time, Dong et al. applied convolutional neural networks
to image SR. After this, Kim et al. proposed VDSR (Kima et al., 2016) and DRCN (Kim et al., 2016)
which introduced residual learning to make the network depth reach 20 layers achieved significant
improvement. And then more and more researchers are starting to pay attention to the improvement
of the network feature extraction part. Lim et al. (2017) proposed EDSR and MDSR, which intro-
duce residual scaling and remove unnecessary modules from the residual block. Concerned that
the previous models only adopt the feather of the last CNN, Zhang et al. (2018b) proposed residual
dense network to make full use of hierarchical features from each Conv layer. The above and most of
the subsequent networks implement the upsampling based on either transposed convolution (Zeiler
et al., 2010; Zeiler & Fergus., 2014) or sub-pixel convolution (Shi et al., 2016). Although these mod-
els have achieved good results, there exists a problem that these upsampling methods have only a
small receptive field. This means that upsampling can only take advantage of contextual information
within a small area.

Recently, researchers propose some new super-resolution upsampling process. LapSRN (Lai et al.,
2017) allows low-resolution images to be directly input into the network for step-by-step amplifica-
tion. Haris et al. (2018) exploit iterative up-and-down sampling layers and propose DBPN. Li et al.
(2019) further explore the application of feedback mechanism (weight sharing) in SR and propose
the SRFBN. These models have achieved a better reconstruction performance. However, the Conv
layers in these upsampling modules still have only a small receptive field.

Global reasoning machansim. Recently, graph-based deep learning methods have begun to be
widely used to solve relation reasoning. Santoro et al. propose Relation Networks (RN) (Santoro

2



Under review as a conference paper at ICLR 2020

et al., 2017) to solve problems that depend on relational reasoning. Liu et al. (2018) propose SIN,
which implement a object detection using a graph model for structure inference. Furthermore, Chen
et al. (2018) model a Global Reasoning unit that consists of five convolutions for image classification,
semantic segmentation and video action recognition task. Considering that the human visual system
generates images based on the observed global information is also a reasoning process. Moreover,
correlation between feature regions can be obtained through relational reasoning, which makes each
pixel in the generated SR image jointly determined by the information in a global scope. Therefore,
we propose a global reasoning network for SR. We will detail our SRGRN in next section.

3 PROPOSED MODEL

According to Chariker et al. (2016; 2018), there is only little information transmitted from the retina
to the visual cortex, and then the brain will reconstruct the real-world images based on the informa-
tion received. We regard it as a reasoning process in a global scope. For image SR, the upsampling
module constructs SR images base on features in LR images, which is substantially similar to de-
tecting the category of each pixel of a SR image and generating these pixels based on contextual
information of corresponding LR image. Due to the limitation of the convolution receptive field,
only a small amount of contextual information can be utilized to generate HR images in most other
models. This leads that many details in the HR image are not fine. Similarly, the above problem also
exists in the reconstruction process. To solve these problems, we simulate the reasoning process that
exists in human visual system, and then propose SRGRN to make full use of the contextual informa-
tion to recover accurate details, which is achieved by constructing graph model and reasoning the
relationship between these regions in an image.

Figure 1: Super-resolution global reasoning network (SRGRN) architecture
3.1 ARCHITECTURE

As shown in Figure 1, our SRGRN includes feature extraction part, global reasoning upsample
module(GRUM) and global reasoning reconstruction block(GRRB). Let’s denote ILR and ISR as
the input and output of SRGRN. The feature extraction part can use the relevant architecture of most
other models. Here we introduce the feature extraction part of the RDN (Zhang et al., 2018b) as an
example.

FL = HFEX(ILR) (1)
where HFEX(·) denotes a series of operations of feature extraction part.

As with the previous work (Lim et al., 2017), the number of GRUM depends on the scaling factor,
The GRUM receives FL as input. FS represents the output of the GRUM. GRUM can be expressed
by the following mathematical formula:

FS = HGRUM (FL) (2)
where HGRUM (·)denotes a series of operations of GRUM. More details about GRUM will be given
in Section 3.2.

We further conduct global reasoning reconstruction block(GRRB) to utilize the global contextual
information to generate the output image. GRRB can be expressed by the following mathematical
formula:

ISR = HGRRB(FS) (3)
where HGRRB(·) denotes a series of operations of GRRB. More details about GRRB will be given
in Section 3.3. After the above operations, we get the corresponding SR image.

3.2 GLOBAL REASONING UPSAMPLING MODULE

In this section, we present details about our proposed global reasoning upsample module(GRUM)
in Figure 2. In order to help achieve relation reasoning, we map each image to a graph model
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Figure 2: Global reasoning upsampling module (GRUM) architecture

G = (V,E, u), where nodes in graph represent different regions in the image, E represents the
relationship weight between the different regions, stored in the adjacency matrix of the graph, and u
is the global information of the entire image.

We first need a function to construct N nodes in the oriented graph, each of which represents a region
in the image. In GRUM, we obtain relationship weights between these pixels through a 2D 1 × 1
convolution, and then convert the input FL into N nodes via element-wise product. The benefits of
this approach are mainly reflected in the following aspects: (1) It can not only aggregates a feature
region of the input FL into a node, but also dig out the influence of other pixels in the image on
this region. This is equivalent to adding global guidance of the image to each node. (2) Using
convolution means that these relationship weights are trainable. This process can be expressed by
the following mathematical formula:

Wn = Vd(Conv(FL)) (4)

YW = Wn · (Vd(FL))
T (5)

where FL ∈ RC×H×W denotes the input tensor, Vd(·) denotes the operation of converting the vector
shape from N×H×W to N×HW , Wn ∈ RN×HW denotes relationship weights and YW ∈ RN×C

refers to N nodes with C channels.

After that, we use the 1D Conv - Leaky ReLu - 1D Conv (CLC) structure to implement reasoning
and interaction between N nodes in the graph. The parameters in CLC refer to the adjacency matrix
of the weighted oriented complete graph, which store the correlations between the nodes. CLC can
learn and reason the complex nonlinear relationship between nodes better than only one 1D Conv.
We use the following formula to describe the reasoning process between nodes:

YN = Conv(LRelu(Conv(YW ))) (6)

where Conv(·) and LRelu(·) denote 1D convolution along node-wise and Leaky ReLU (Maas et al.,
2013) operation respectively.

And then we use the bottleneck to achieve channel amplification. The bottleneck receives YN ∈
RN×C as input and redistributes these channels by modeling the relationship between the channels
of each node, amplifying the number of channel to C × r2, where r is the upscaling factor.

The first convolution in bottleneck makes channel C drop to C̄ = C/α, where α represents reduction
ratio. Then the second convolution makes the channel dimension C̄ grow to C × r2. The bottleneck
not only fits the complex relationships between channels better and redistributes channels more
accurately, but also greatly reduces the number of parameters compared to the method of utilizing a
single convolution. We use the following formula to describe channel amplification:

YNC = Conv(LRelu(Conv((YN )T ))) (7)

where YNC ∈ Rr2C×N refers to the output tensor.

In order to expand the resolution by pixelshuffle like ESPCN (Shi et al., 2016), we need to re-
transform the N nodes (r2C × N ) which have implemented the relational reasoning into a space
whose shape is C ×H ×W . As above, we still learn a function to get a weight matrix whose shape
is N×HW through a 1 × 1 2D convolution, and then normalize the weight matrix along the column
with softmax. Finally, YrC and WP can be obtained through:

WP = Softmax(Vd(Conv(FL))) (8)

YrC = Vu(YNCWP ) (9)
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where Vu(·) denotes the operation of reshaping N ×HW to N ×H ×W . YrC ∈ Rr2C×H×W is a
feature map where each pixel is associated with N nodes. WP ∈ RN×HW is the normalized weight
matrix. The value of these weights ranges from 0 to 1. This means that the reconstruction of each
pixel is affected by N nodes to varying degrees. Each pixel in the feature map contains information
which is generated by global reasoning.

After pixelshuffle, the output is multiplied by a parameter γ1 and added to the upsampling result
without global reasoning. The initial value of γ1 is set to 0. As the global reasoning module trains,
the network will gradually learn to assign values to the γ1, thereby fully exploiting global reasoning.
This process can be expressed by the following formula:

YS = HPS(YrC) · γ1 +HUP (FL) · (1− γ1) (10)

where HPS(·) denotes the operations of pixel shuffle and HUP (·) denotes the operations of sub-
pixel convolution.

Finally, FS can be obtained by:
FS = Conv(YS) (11)

Figure 3: Global reasoning reconstruction block (GRRB) architecture
3.3 GLOBAL REASONING RECONSTRUCTION BLOCK

As shown in Figure 3, the specific details are similar to GRUM. We also construct a graph model for
reconstruction block.

In GRRB, we first obtain the relationship weights WRN ∈ RN×rHrW between pixels of FS by 2D
1x1 convolution, and then aggregate the regions in FS into N nodes by element-wise product. The
output of this process YRW ∈ RN×C can be formulated as:

YRW = WRN · (Vd(FS))
T = Vd(Conv(FS)) · (Vd(FS))

T (12)

After that, we use CLC to achieve the relationship reasoning between nodes. Then we exploit the
weight matrix WRP ∈ RN×rHrW = Softmax(Vd(Conv(FS))) obtained by learning to redis-
tribute the information of N nodes to the pixels. The output of this process YRrC ∈ RC×rH×rW can
be obtained by:

YRrC = Vu((FCLC(YRW ))T ·WRP ) = Vu((FCLC(YRW ))T · Softmax(Vd(Conv(FS)))) (13)

where FCLC refers to the operations of CLC. In addition, we apply the idea of residual connection
in GRRB, which multiplys the information generated via global reasoning by a parameter γ and
then add it to the input feature map. The output is given by:

YRS = γ · YRrC + FS (14)

The initial value of γ is set to 0. As the training progresses, the network assigns more weight to γ.
Finally, we input the feature map with global reasoning into the two Convs for reconstruction. We
can get the final output through:

ISR = HRL(YRS) (15)
where HRL(·) denotes the operations of two Convs.

3.4 IMPLEMENTATION DETAILS

In our proposed SRGRN, like the previous method (Lim et al., 2017), the number of GRUM depends
on the scaling factor. For Conv layers with kernel size 3 × 3, we pad zeros to keep size fixed. We
set the reduction ratio in bottleneck as α. The number of nodes in the graph model is set to N. We
utilize Leaky ReLu (Maas et al., 2013) with a negative slope of 0.2 as non-linear activation function.
The feature extraction part of the network are the same as the RDN (Zhang et al., 2018b) settings.
The final Conv layer has 1 or 3 output channels, as we output gray or color HR images.
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4 EXPERIMENTS

4.1 SETTINGS

Datasets and Metrics. We train all our models using 800 training images in the DIV2K (Agustsson
& Timofte., 2017) dataset, which contains high-quality 2K images that can be used for image super-
resolution task. And We use five standard benchmark datasets to evaluate PSNR and SSIM (Wang
et al., 2004) metrics: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), B100 (Martin et al.,
2001), Urban100 (Huang et al., 2015) and Manga109 (Y.Matsui et al., 2017). The SR results are
evaluated on Y channel of transformed YCbCr space.

Degradation Models. In order to make a fair comparison with existing models, bicubic dowmsam-
pling(denoted as BI) is regarded as a standard degradation model. We use it to generate LR images
with scaling factor ×2, ×3, and ×4 from ground truth HR images. To fully demonstrate the effec-
tiveness of our model, we also use two other degradation models and conduct special experiments
for them. Our second model, we defined it as BD, which blurs HR images with a Gaussian kernel of
size 7 × 7 and a standard deviation of 1.6, and then downsamples the image with scaling factor ×3.
In addition to BI and BD, we also built the DN model, which first performs bicubic downsampling
with scaling factor ×3 and then adds Gaussian noise with a noise level of 30.

Training Setting. In each training batch, 16 LR RGB patches of size 48 × 48 are extracted as
inputs. We perform data enhancement on the training images, which are randomly rotated by 90◦,
180◦, 270◦ and flipped horizontally. We use the Adam optimizer to update the parameters of the
network with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. For all layers in the network, the initial learning
rate is set to 0.0001, and then the learning rate is halved every 200 epochs. We use the Pytorch
framework to implement our model with Tesla P100.

4.2 ABLATION INVESTIGATION AND STUDY OF PARAMETERS

Global reasoning upsampling module. In order to verify the importance of the GRUM, we remove
the GRUM from the network, leaving only the GRRB in the network for relation reasoning. As
shown in Table 1, after removing GRUM, the performance of the network drops from 32.45 dB to
32.40 dB. When the Case Index is equal to 1, the corresponding model is the baseline model. We
can observe that after GRUM is added to the baseline model, the network performance is improved
from 32.31 dB to 32.42 dB. It can be seen that although our baseline model has achieved quite good
results, GRUM can still improve the performance by relation reasoning in upsample module. This
also indicates that relation reasoning can indeed result in better prformance. These comparisons
fairly demonstrate the effectiveness of the GRUM for SR tasks.

Global reasoning reconstruction block. Then, we continue to study the effectiveness of GRRB
for the network. After we add the GRRB to the baseline model, GRRB improves the performance
of the model from 32.31 dB to 32.40 dB. Furthermore, the model with GRUM has achieved good
performance. And it is difficult to obtain further improvements. But when we add the GRRB to it,
the network performance shows a significant improvement, and the PSNR value on Set5 increases
from 32.42 dB to 32.45 dB. These indicates that it is very essential for our network.

Basic parameters. Moreover, we also study the effects of two basic parameters N and α on the
performance of the model. As shown in Table 1, we observe that larger N and smaller α would lead
to higher performance. Considering that larger N and smaller α will also bring more computation,
we set 10 and 8 as the value of N and α respectively.

Table 1: Ablation investigation of global reasoning upsampling method and global reasoning recon-
struction block, study of N and α. We observe the best PSNR values on Set5 with scaling factor ×4
in 200 epochs

Case Index 1 2 3 4 5 6 7 8
Global reasoning upsampling module × ✓ × ✓ ✓ ✓ ✓ ✓
Global reasoning reconstruction block × × ✓ ✓ ✓ ✓ ✓ ✓

Number of Node (N) - 10 10 10 8 6 8 6
reduction ratio (α) - 8 8 8 8 8 16 16

PSNR on Set5 (4×) 32.31 32.42 32.40 32.45 32.43 32.42 32.42 32.40

4.3 NETWORK PARAMETERS

Several state-of-the-art methods are compared with our SRGRN in this section. We show compar-
isons about model size and performance in Figure 4. Although our SRGRN has less parameter
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number than that of EDSR, MDSR and D-DBPN, our SRGRN and SRGRN+ achieve higher perfor-
mance, having a better tradeoff between model size and performance. This demonstrates our method
can well balance the number of parameters and the reconstruction performance.

Figure 4: The results are evaluated on the Set5 dataset for 4 × SR. The proposed SRGRN strikes a
balance between the number of parameters and the reconstruction effect.

Table 2: Average PSNR/SSIM for scale factors ×2, ×3 and ×4 with BI degradation model. Best
results are highlighted

Method scale Set5 Set14 BSDS100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

×2

33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663
DRRN 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 37.60 0.9736

LapSRN 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740
EDSR 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RDN 32.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

SRFBN 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
SRGRN(ours) 38.25 0.9614 34.06 0.9214 32.37 0.9022 33.12 0.9367 39.31 0.9783

SRGRN+(ours) 38.31 0.9616 34.15 0.9220 32.43 0.9027 33.32 0.9382 39.51 0.9786

Bicubic

×3

30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556
SRCNN 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
DRRN 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378 32.42 0.9359

LapSRN 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350
EDSR 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RDN 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484

SRFBN 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
SRGRN(ours) 34.72 0.9297 30.60 0.8474 29.29 0.8102 28.95 0.8675 34.28 0.9491

SRGRN+(ours) 34.79 0.9301 30.69 0.8487 29.36 0.8114 29.11 0.8705 34.58 0.9506

Bicubic

×4

28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
DRRN 31.68 0.8888 28.21 0.7721 27.38 0.7284 25.44 0.7638 29.18 0.8914

LapSRN 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900
EDSR 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RDN 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

SRFBN 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
SRGRN(ours) 32.56 0.8997 28.84 0.7880 27.75 0.7428 26.73 0.8053 31.13 0.9164

SRGRN+(ours) 32.68 0.9009 28.95 0.7903 27.83 0.7445 26.94 0.8106 31.52 0.9197

4.4 RESULTS WITH BI DEGRADATION MODEL

For BI degradation model, we compare our proposed SRGRN and SRGRN+ with other seven state-
of-the-art image SR methods in quantitative terms. Following the previous works (Lim et al., 2017;
Zhang et al., 2018b; Li et al., 2019), we also introduced a self-ensemble strategy to further improve
the performance. We denote the self-ensemble method as SRGRN+.

A quantitative result for ×2, ×3, and ×4 is shown in Table 2. We compare our models with other
state-of-the-art methods on PSNR and SSIM. It can be seen that our proposed SRGRN outperforms
other methods on all datasets without adding self-ensemble. After adopting self-ensemble, the per-
formance further improves on the basis of SRGRN, and it achieved the best on all datasets. It is
worth mentioning that SRFBN (Li et al., 2019) uses DIV2K+Flickr2K as their training set, which
employs more training images than us. Previous research has come to a conclusion that more data in
training set leads to a better result. However, their results are still not comparable to ours. Although
RDN (Zhang et al., 2018b) is a state-of-the-art method, our SRGRN can achieve better performance
in all datasets through relational reasoning in upsampling and reconstruction parts. The quantitative
results indicate that our GRUM and GRRB play a vital role in improving network performance.
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4.5 RESULTS WITH BD AND DN DEGRADATION MODELS

To show the robustness of the model, we also show the SR results with BD degradation model and
further introduce DN degradation model. We compare 3 × SR results with other seven state-of-the-
art image SR methods in quantitative terms. And We re-train SRCNN (Dong et al.) and VDSR
(Kima et al., 2016) for BD and DN degradation model because of mismatched degradation model.
For BD and DN, there is no doubt that reconstruction has become more difficult. As shown in Table
3 and Table 4, in the case of images with a lot of artifacts and noise, our SRGRN can get a excellent
performance. This shows that SRGRN can effectively denoise and alleviate blurring artifacts. And
when added to self-ensemble, SRGRN+ can achieve a better improvement.

Table 3: Average PSNR/SSIM for scale factors ×3 with BD degradation model. Best results are
highlighted

Method scale Set5 Set14 BSDS100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

×3

28.78 0.8308 26.38 0.7271 26.33 0.6918 23.52 0.6862 25.46 0.8149
SRCNN 32.05 0.8944 28.80 0.8074 28.13 0.7736 25.70 0.7770 29.47 0.8924
VDSR 33.25 0.9150 29.46 0.8244 28.57 0.7893 26.61 0.8136 31.06 0.9234

IRCNN_G 33.38 0.9182 29.63 0.8281 28.65 0.7922 26.77 0.8154 31.15 0.9245
IRCNN_C 33.17 0.9157 29.55 0.8271 28.49 0.7886 26.47 0.8081 31.13 0.9236
SRMDNF 34.09 0.9242 30.11 0.8364 28.98 0.8009 27.50 0.8370 32.97 0.9391

RDN 34.57 0.9280 30.53 0.8447 29.23 0.8079 28.46 0.8581 33.97 0.9465
SRGRN(ours) 34.66 0.9286 30.60 0.8460 29.27 0.8090 28.71 0.8633 34.27 0.9480

SRGRN+(ours) 34.78 0.9295 30.71 0.8476 29.35 0.8104 28.96 0.8673 34.65 0.9498

Table 4: Average PSNR/SSIM for scale factors ×3 with DN degradation model. Best results are
highlighted

Method scale Set5 Set14 BSDS100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

×3

24.01 0.5369 22.87 0.4724 22.92 0.4449 21.63 0.4687 23.01 0.5381
SRCNN 25.01 0.6950 23.78 0.5898 23.76 0.5538 21.90 0.5737 23.75 0.7148
VDSR 25.20 0.7183 24.00 0.6112 24.00 0.5749 22.22 0.6096 24.20 0.7525

IRCNN_G 25.70 0.7379 24.45 0.6305 24.28 0.5900 22.90 0.6429 24.88 0.7765
IRCNN_C 27.48 0.7925 25.92 0.6932 25.55 0.6481 23.93 23.93 26.07 0.8253

RDN 28.46 0.8151 26.60 0.7101 25.93 0.6573 24.92 0.7362 28.00 0.8590
SRFBN 28.53 0.8182 26.60 0.7144 25.95 0.6625 24.99 0.7424 28.02 0.8618

SRGRN(ours) 28.62 0.8195 26.66 0.7151 25.99 0.6632 25.14 0.7462 28.11 0.8642
SRGRN+(ours) 28.67 0.8206 26.73 0.7168 26.07 0.6645 25.31 0.7496 28.31 0.8674

4.6 SUPER-RESOLUTION ON REAL-WORLD IMAGES

To prove that our SRGRN can be widely used in the real world and performs robustly, we also
conduct SR experiments on representative real-world images. We reconstruct some low resolution
images in the real world that lack a lot of high frequency information. Moreover, in this case, the
original HR images are not available and the degradation model is unknown either. Experiments
show our SRGRN can recover finer and more faithful real-world images than other state-of-the-art
methods under this bad condition. This further reflects the superiority of relation reasoning.

5 CONCLUSION

In this paper, inspired by the process of reconstructing images from the human visual system, we
propose an super-resolution global reasoning network (SRGRN) for image SR, which aims at com-
pleting the reconstruction of SR images through global reasoning. We mainly propose global reason-
ing upsampling module (GRUM) and global reasoning reconstruction block (GRRB) as the core of
the network. The GRUM can give the upsampling module the ability to perform relational reasoning
in a global scope, which allows this process to overcome the limitations of the receptive field and
recover more faithful details by analyzing more contextual information. The GRRB also enables the
reconstruction block to make full use of the interaction between the regions and pixels to reconstruct
SR images. We exploit SRGRN not only to handle low resolution images that are corrupted by three
degradation model, but also to handle real-world images. Extensive benchmark evaluations demon-
strate the importance of GRUM and GRRB. It also indicates that our SRGRN achieves superiority
over state-of-the-art methods through global reasoning.
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A APPENDIX

A.1 VISUAL RESULT

Visual comparison with BI degradtion model. As shown in Figure 5, we show a visual compari-
son on 4× SR. For image "img_078" from Urban100, we observe that most methods, even RDN and
SRFBN, cannot recover these lattices and suffer from extremely severe blurring artifacts. Only our
SRGRN can alleviate these blurring artifacts, recovers sharper and clearer edges and finer texture.
For image "MukoukizuNoChonbo" from Manga109, There are heavy blurrings artifacts in all com-
parison methods, and the outline of some letters are broken. However, our proposed SRGRN can
accurately recover these outlines, more faithful to the ground truth. The above comparison results
are mainly due to the fact that SRGRN can enable upsampling and reconstruction modules to utilize
more contextual information through relation reasoning.

Visual comparison with BD and DN degradtion model. In Figure 6, we show the comparison of
SRGRN with other models in visual results. For image "img_014", we use bicubic upsampling to
recover these images whose HR images are blurred with a Gaussian kernel before bicubic downsam-
pling, then we obtain SR images with a lot of noticeable blurring artifacts. We have also observed
that most methods, including RDN and SRFBN, do not clearly recover the lines around the window.
Only our SRGRN can suppress blurring artifacts and recover these clear enough lines close to the
ground truth by relation reasoning. For image "img_002", a large amount of noise corrupt the LR
image and make it loss some detail. It can be seen that when using bicubic for upsampling, the
obtained image not only has a large number of blurring artifacts but also a large amount of noise.
However, we find that our SRGRN has great potential for removing noise efficiently and recover
more detail. This fully demonstrates the effectiveness and robustness of our SRGRN for BD and
DN degradation models.

Visual comparison on Real-World Images. In figure 7, the resolution of these images is so small
that there is a lot of high frequency information missing from them. Moreover, in this case, the
original HR images are not available and the degradation model is unknown either. For image
"window"(with 200 × 160 pixels), only our SRGRN is able to recover sharper window edges and
produce clearer SR image. For image "flower"(with 256 × 200 pixels), most other methods recover
images whose upper left corner produces the edge of the pistil that looks unreal. And their edges
of the petals in the whole image are very blurry. Our SRGRN can recovers sharper edges and finer
details than other state-of-the-art methods. The above analysis indicate our model perform robustly
unknown degradation models. This further reflects the superiority of relation reasoning.

Figure 5: Visual comparison for 4× SR with BI model on "img_078" from Urban100 and
"MukoukizuNoChonbo" from Manga109.
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Figure 6: Visual comparison for 3× SR with BD model on "img_014" from Urban100 and for
3× SR with DN model on "img_002" from Urban100

Figure 7: Visual comparison for 4 × SR on real-world images. The two images show "flowers"
and "window" respectively.
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