
Proceedings of Machine Learning Research 1:1–5, 2019 NeurIPS2019 Disentanglement Challenge

Improved Disentanglement through Learned Aggregation of
Convolutional Feature Maps

Maximilian Seitzer contact@max-seitzer.de

Andreas Foltyn andreas.foltyn@iis.fraunhofer.de

Felix P. Kemeth felix.kemeth@iis.fraunhofer.de

Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

Abstract

We present and discuss a simple image preprocessing method for learning disentangled
latent factors. In particular, we utilize the implicit inductive bias contained in features
from networks pretrained on the ImageNet database. We enhance this bias by explicitly
fine-tuning such pretrained networks on tasks useful for the NeurIPS2019 disentanglement
challenge, such as angle and position estimation or color classification. Furthermore, we
train a VAE on regionally aggregate feature maps, and discuss its disentanglement perfor-
mance using metrics proposed in recent literature.

1. Introduction

Fully unsupervised methods, that is, without any human supervision, are doomed to fail
for tasks such as learning disentangled representations (Locatello et al., 2018). In this
contribution, we utilize the implicit inductive bias contained in models pretrained on the
ImageNet database (Russakovsky et al., 2014), and enhance it by finetuning such models
on challenge-relevant tasks such as angle and position estimation or color classification.
In particular, our submission for challenge stage 2 builds on our submission from stage
11, in which we employed pretrained CNNs to extract convolutional feature maps as a
preprocessing step before training a VAE (Kingma and Welling, 2013). Although this
approach already results in partial disentanglement, we identified two issues with the feature
vectors extracted this way. Firstly, the feature extraction network is trained on ImageNet,
which is rather dissimilar to the MPI3d dataset used in the challenge. Secondly, the feature
aggregation mechanism was chosen ad-hoc and likely does not retain all information needed
for disentanglement. We attempt to fix these issues by finetuning the feature extraction
network as well as learning the aggregation of feature maps from data by using the labels
of the simulation datasets MPI3d-toy and MPI3d-realistic.

2. Method

Our method consists of the following three steps: (1) supervised finetuning of the feature
extraction CNN (section 2.1), (2) extracting a feature vector from each image in the dataset
using the finetuned network (section 2.2), (3) training a VAE to reconstruct the feature
vectors and disentangle the latent factors of variation (section 2.3).

1. Accessible at https://openreview.net/forum?id=ryxOvH86SH

c© 2019 M. Seitzer, A. Foltyn & F.P. Kemeth.

https://openreview.net/forum?id=ryxOvH86SH


Improved Disentanglement through Learned Aggregation of Feature Maps

2.1. Finetuning the Feature Extraction Network

In this step, we finetune the feature extraction network offline (before submission to the
evaluation server). The goal is to adapt the network such that it produces aggregated feature
vectors that capture the latent variables well. In particular, the network is finetuned by
learning to predict the value of each latent factor from the aggregated feature vector of
an image. To this end, we use the simulation datasets MPI3d-toy and MPI3d-realistic2,
namely the images as inputs and the labels as supervised classification targets.

For the feature extraction network, we use the VGG19-BN architecture (Simonyan and
Zisserman, 2014) of the torchvision package. The input images are standardized using
mean and variance across each channel computed from the ImageNet dataset. We use
the output feature maps of the last layer before the final average pooling (dimensionality
512 ˆ 2 ˆ 2) as the input to a feature aggregation module which reduces the feature map
to a 512-dimensional vector3. This aggregation module consists of three convolution layers
with 1024, 2048, 512 feature maps and kernel sizes 1, 2, 1 respectively. Each layer is followed
by batch normalization and ReLU activation. We also employ layerwise dropout with rate
0.1 before each convolution layer. Finally, the aggregated feature vector is `2-normalized,
which was empirically found to be important for the resulting disentanglement performance.
Then, for each latent factor, we add a linear classification layer computing the logits of each
class from the aggregated feature vector. These linear layers are discarded after this step.

We use both MPI3d-toy and MPI3d-realistic for training to push the network to learn
features that identify the latent factors in a robust way, regardless of details such as reflec-
tions or specific textures. In particular, we use a random split of 80% of each dataset as
the training set, and the remaining samples as a validation set. VGG19-BN is initialized
with a set of weights resulting from ImageNet training4, and the aggregation module and
linear layers were randomly initialized using uniform He initialization (He et al., 2015). The
network is trained for 5 epochs using the RAdam optimizer (Liu et al., 2019) with learning
rate 0.001, β0 “ 0.999, β1 “ 0.9, a batch size of 512 and a weight decay of 0.01. We use a
multi-task classification loss consisting of the sum of cross entropies between the prediction
and the ground truth of each latent factor. After training, the classification accuracy on the
validation set is around 98% for the two degrees of freedom of the robot arm, and around
99.9% for the remaining latent factors.

2.2. Feature Map Extraction and Aggregation

In this step, we use the finetuned feature extraction network to produce a set of aggregated
feature vectors. We simply run the network detailed in the previous step on each image
of the dataset and store the aggregated 512-dimensional vectors in memory. Again, inputs
to the feature extractor are standardized such that mean and variance across each channel
correspond to the respective ones from the ImageNet dataset.

2. Pretraining using any data was explicitly stated to be allowed by the challenge organizers.
3. Using aggregated feature vectors instead of feature maps is necessitated by the memory requirements of

the challenge.
4. https://download.pytorch.org/models/vgg19_bn-c79401a0.pth

2

https://download.pytorch.org/models/vgg19_bn-c79401a0.pth


Improved Disentanglement through Learned Aggregation of Feature Maps

2.3. VAE Training

Finally, we train a standard β-VAE (Higgins et al., 2017) on the set of aggregated feature
vectors resulting from the previous step. The encoder network consists of 4 fully-connected
layers with 1024 neurons each, followed by two fully-connected layers parametrizing mean
and log variance of the factorized Gaussian approximate posterior q pz | xq “ N

`

µ,σ2
˘

with C “ 16 latent factors. The number of latent factors was experimentally determined.
The decoder network consists of 4 fully-connected layers with 1024 neurons each, followed
by a fully-connected layer parametrizing the mean of the factorized Gaussian conditional
distribution p px | zq “ N pµ̂, Iq. The mean is constrained to range p0, 1q using the sigmoid
activation. All fully-connected layers but the final ones use batch normalization and are
followed by ReLU activation functions. We use orthogonal initialization Saxe et al. (2013)
for all layers and assume a factorized Gaussian prior p pzq “ N p0, Iq on the latent variables.

For optimization, we use the RAdam optimizer (Liu et al., 2019) with a learning rate of
0.001, β0 “ 0.999, β1 “ 0.9 and a batch size of B “ 256. The VAE is trained for N “ 100
epochs by minimizing

1

B

512
ÿ

i“1

pµ̂i ´ xiq
2
´ 0.5

β

BC

C
ÿ

j“1

1` logpσ2j q ´ µ
2
j ´ σ

2
j

where β is a hyperparameter to balance the losses of the MSE reconstruction and the
KLD penalty terms. As the scale of the KLD term depends on the numbers of latent factors
C, we normalize it by C such that β can be varied independently of C. It can be harmful
to start training with too much weight on the KLD term (Bowman et al., 2015). Therefore,
we use the following cosine schedule to smoothly anneal β from βstart “ 0.001 to βend “ 0.4
over the course of training:

βptq “

$

’

’

&

’

’

%

βstart for t ă tstart

βend ´
1
2 pβend ´ βstartq

´

1` cosπ t´tstart
tend´tstart

¯

for tstart ď t ď tend

βend for t ą tend

where βptq is the value for β in training episode t P t0, . . . , N ´ 1u, and annealing runs
from epoch tstart “ 10 to epoch tend “ 49. This schedule lets the model initially learn to
reconstruct the data well and only then puts pressure on the latent variables to be factorized
which we found to considerably improve performance.

3. Discussion

On the public leaderboard (i.e. on MPI3D-real), our best submission achieves the first rank
on the FactorVAE (Kim and Mnih, 2018), and DCI (Eastwood and Williams, 2018) metrics,
with a large gap to the second-placed entry. See appendix A for a discussion of the results.

Unsurprisingly, introducing prior knowledge simplifies the disentanglement task consid-
erably, reflected in improved scores. To do so, our approach makes use of task-specific
supervision obtained from simulation, which restricts its applicability. Nevertheless, it con-
stitutes a demonstration that this type of supervision can transfer to better disentanglement
on real world data, which was one of the goals of the challenge.

3



Improved Disentanglement through Learned Aggregation of Feature Maps

References

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and
Samy Bengio. Generating Sentences from a Continuous Space. In CoNLL, 2015.

Tian Qi Chen, Xuechen Li, Roger Baker Grosse, and David Kristjanson Duvenaud. Isolating
Sources of Disentanglement in Variational Autoencoders. In ICLR, 2018.

Cian Eastwood and Christopher K. I. Williams. A Framework for the Quantitative Evalu-
ation of Disentangled Representations. In ICLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification. 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1026–1034, 2015.

Irina Higgins, Löıc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic Vi-
sual Concepts with a Constrained Variational Framework. In ICLR, 2017.

Hyunjik Kim and Andriy Mnih. Disentangling by Factorising. In ICML, 2018.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. ArXiv,
abs/1312.6114, 2013.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational Inference
of Disentangled Latent Concepts from Unlabeled Observations. ArXiv, abs/1711.00848,
2017.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao,
and Jiawei Han. On the Variance of the Adaptive Learning Rate and Beyond. ArXiv,
abs/1908.03265, 2019.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging Common Assumptions in the Unsupervised
Learning of Disentangled Representations. In RML@ICLR, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision, 115:211–252, 2014.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. ArXiv, abs/1312.6120, 2013.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. ICLR, 2014.

Raphael Suter, ore Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Robustly Disentan-
gled Causal Mechanisms: Validating Deep Representations for Interventional Robustness.
In ICML, 2019.

4



Improved Disentanglement through Learned Aggregation of Feature Maps

Table 1: Summary of scores and ranks of our best submission on the public leaderboard
at the end of stage 2. For comparison, we also include the private leaderboard
scores of our phase 1 submission. The normalized score is provided to show the
performance relative to the best submission and is calculated by dividing the score
by the highest achieved score on each metric.

FactorVAE DCI SAP IRS MIG

Score 0.992 0.809 0.223 0.547 0.297
ř

2.868
Normalized Score 1 1 0.949 0.627 0.786

ř

4.362
Rank 1 1 2 11 3 I 3.6

Score Phase 1 0.792 0.527 0.166 0.623 0.292
ř

2.400

Appendix A. Discussion of Results on the Public Leaderboard

We summarize the results of our best submission on the public leaderboard in table 1. Our
method achieves the first rank on FactorVAE (Kim and Mnih, 2018) and DCI (Eastwood
and Williams, 2018). For both metrics, there is a large absolute difference to the second
ranked entry, namely 0.37 for FactorVAE and 0.26 for DCI. For SAP (Kumar et al., 2017),
our method is almost tied with the first ranking entry, with 0.01 absolute difference. For
MIG (Chen et al., 2018) and IRS (Suter et al., 2019), our method falls behind the best
method, with an absolute distance of 0.08 and 0.13 respectively.

Compared to our phase 1 submission which does not use supervised finetuning, met-
rics for which our approach was already good (FactorVAE and DCI), became even better,
while other metrics for which our approach performed subpar, stayed the same (MIG) or
even became worse (IRS). It seems that adding supervised finetuning to our pretrained
features approach enhances the already existing strengths and weaknesses. A more detailed
investigation why each metric behaves the way it does for our method is needed.

5


	Introduction
	Method
	Finetuning the Feature Extraction Network
	Feature Map Extraction and Aggregation
	VAE Training

	Discussion
	Discussion of Results on the Public Leaderboard

