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ABSTRACT

Machine learning thrives on leveraging structure in data, and many breakthroughs
(e.g. convolutional networks) have been made by designing algorithms which ex-
ploit the underlying structure of a distribution. Reinforcement Learning agents
interact with worlds that are similarly full of structure. For example, no sequence
of actions an agent takes will ever cause the laws of physics to change, there-
fore an agent which learns to generalize such laws through time and space will
have an advantage. Sample efficient reinforcement learning can be accomplished
when assuming that the world has structure and designing learning algorithms
which exploit this assumption without knowing the actual structure beforehand.
Posterior Sampling for Reinforcement Learning (PSRL) (Strens, 2000) is such a
method which assumes structure in the world and exploits it for learning. A PSLR
learning agent first samples models of the environment which conform to both
prior assumptions on the world’s structure and past observations and then inter-
acts with the true environment using a policy guided by the sampled model of the
environment. While PSRL delivers theoretical Bayesian regret bounds, there are
many open issues which must be addressed before PSRL can be applied to current
benchmark continuous reinforcement reinforcement tasks. In this work, we iden-
tify these issues and find practical solutions to them leading to a novel algorithm
we call Neural-PSRL1. We validate the algorithm’s effectiveness by achieving
state-of-the-art results in the HalfCheetah-v3 and Hopper-v3 domains.

1 INTRODUCTION

In Reinforcement Learning (RL) an agent interacts with an environment by taking a sequence of ac-
tions, making observations and collecting rewards along the way. The goal in classic Reinforcement
Learning is to find an agent that is able to maximize its accumulated rewards over time. This task is
challenging since the agent is interacting with an unknown environment, and the agent must balance
efficiently exploring the environment while collecting rewards, a trade-off known as the exploration
exploitation trade-off.

Strategies for solving this problem fall into two broad classes: model-based RL and model-free
RL. In the model-based case, a model of the true environment is learned, and actions are selected
based on this model. Some examples of model-based methods include Dyna (Sutton, 1990), Monte
Carlo Tree Search (MCTS) and PILCO (Deisenroth & Rasmussen, 2011). In the model-free case,
no model of the environment is learned, instead generally a value function or Q-function is learned
directly from interactions with the environment. Some examples of model free include Q-Learning
(Watkins & Dayan, 1992), DQN (Mnih et al., 2015), Actor Critic Methods (Mnih et al., 2016) and
Soft Actor Critic (Haarnoja et al., 2018).

Model-free Reinforcement Learning has delivered impressive results on many tasks, including tasks
with high dimensional state spaces. Nevertheless, such algorithms are not sample efficient, requiring
millions of observations to achieve human level performance (Hessel et al., 2018; Jin et al., 2018).

Viewed from a certain light, the millions of observations required shouldn’t be a surprise since if
the agent interacts with a discrete Markov Decision Process (MDP), the expected regret (i.e. the
difference between the reward under an agent learned by a RL algorithm and the reward under an

1See supplementary material for videos and code which will be published
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optimal agent) of an arbitrary unknown environment is lower bounded by O(
√
SAT ) (Osband &

Van Roy, 2016b; Jaksch et al., 2010), where S is the number of possible states, A is the number of
possible actions and T is the number of interactions with the environment. Therefore, as the number
of possible states and number of possible actions grow, so does the regret. Transferring this to the
continuous state space case would imply an exponential growth in regret as the dimensionality of
the state and action spaces increases. Making weak assumptions on the problem’s structure could
improve this bound vis-à-vis the tabula rasa setting, i.e. settings where only information about the
state and action spaces are known. Examples of such weak assumptions include assuming that
transition and reward dynamics can be modeled with a parameterizable model (Osband & Van Roy,
2014a) or that the conditional reward and transition probabilities factor (Osband & Van Roy, 2014b).
Since agents generally interact with worlds that have structure (for example, the same physical laws
apply everywhere) such structure assumptions are justified.

A framework to integrate such assumptions comes from Osband & Van Roy (2014a), where they
assume the true environment is a sample from a know prior over all possible environments. This
prior can then be chosen so that all environments sampled have structure, even if the underlying
structure isn’t yet known. For example, if we want to sample environments with linear structure,
we can assume there is a linear mapping from the previous state-action pair to the next state and
sample linear weight matrices. By assuming knowledge of such a prior, one can assume that the true
environment is likely to have desirable properties. We note that restricting the possible environments
to reduce regret is not a new strategy, for example the Linear Quadratic Regulator Bemporad et al.
(2002) is able to find an optimal policy when assuming linear dynamics. Imposing a prior over all
possible environments is an extremely general and adaptable extension of this idea.

By assuming that the true environment is a sample from a prior over all environments, we can use
posterior sampling for reinforcement learning (PSRL), a variant of Thompson Sampling (Thompson,
1933) for Markov Decision Processes, to find a policy. It’s known that the expected regret of the
PSRL learning rule (Strens, 2000; Osband et al., 2013) is upper bounded by Õ(

√
dKdET ) (Osband

& Van Roy, 2014a). Here dK is the Kolmogorov dimension and dE is the Eluder dimension (Russo
& Van Roy, 2013) of the space of possible environments that can be sampled from the prior. In this
way, the regret is now bounded by the complexity of the prior we assume the true environment to
be sampled from, and not the dimensionality of the state and action spaces. A corollary is then if
we know the true environment to be highly structured then the regret can be bounded by choosing a
prior which accurately reflects the structure.

Equivalent to Thompson Sampling, PSRL happens in three alternating steps. First, an environment
is sampled from a posterior constructed from the prior and all previous environment observations.
Next, the optimal policy for this sampled environment is found. Since the sampled environment is
fully known, this step can be done with computing power alone and does not require environment
interactions. Finally, the policy found in the last step interacts with the true environment for an
episode, and the resulting observations are saved.

While this method seems very appealing from a theoretical perspective, to the best of our knowledge
it hasn’t been applied to benchmark continuous reinforcement learning tasks. This could very well
be because two of the three PSRL steps are themselves very challenging machine learning problems.
In order to sample environments from a posterior, one must come up with a generative model of en-
vironments, and generative modeling is very much a very active research area in Machine Learning.
Further, finding a policy which is optimal with respect to a sampled MDP is computationally com-
plex (Sidford et al., 2018), and this computational overhead must also be addressed in order to apply
PSRL to challenging reinforcement learning tasks.

In this paper, we address both challenges and propose methods for learning a generative model
of MDPs, and for finding an optimal policy for an MDPs sampled from this generative model.
We refer to this suite of solutions as Neural-PSRL. Our method is then applied to the benchmark
HalfCheetah-v3 and Hopper-v3 MuJoCo continuous control tasks (Todorov et al., 2012) and match
the performance of current sample-efficient methods in both domains. Our work demonstrates that
PSRL is more than just a theoretically appealing method, but is a framework which can leverage
assumptions on a problem’s structure to achieve state-of-the-art results.
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2 NOTATION, DEFINITIONS AND ASSUMPTIONS

In the following section, we largely use the notation from Osband et al. (2013). For simplicity we
assume interactions with the environment occur in episodes of fixed length τ ∈ N. Environments
where an episode can end early, e.g. Hopper-v3 (Erez et al., 2012), can easily be adapted to the
fixed length setting by adding an absorbing state. Such an environment is formalized by a Markov
Decision Processes M = (S,A, RM , PM , τ, ρ) where S and A are vector-valued state and action
spaces, RM ( · |s, a) is a reward distribution over the real numbers R, and PM ( · |s, a) is the transi-
tion probability over S conditioned on state s and action a. Finally, τ ∈ N is the episode length and
ρ is an initial state distribution over S.

A policy µ( · |s, i) is a probability measure over the action space conditioned on a state s ∈ S and
the current step in the episode i ∈ {1, . . . , τ}, meaning when the environment is in state s and is
about to take the i-th action in this episode, the policy determines with what probability an action
a ∈ A is then taken.

Given a policy µ and an MDP M = (S,A, RM , PM , τ, ρ), we can recursively define the value
function of policy µ at time i ∈ {1, . . . , τ} starting with VMµ,τ+1(s) := 0 and working backwards
from i = τ to i = 1 via

VMµ,i(s) := Ea∼µ( · |s,i)
[
RM (s, a) + Es′∼PM ( · |s,a)[V

M
µ,i+1(s′)]

]
.

Intuitively, the value function is the expected future reward under policy µ; at the end of an episode
no more reward will come, thus VMµ,τ (s) := 0, and for every previous step the expected future value
is the reward at the current step plus all future rewards.

A policy µ is said to be the optimal policy for MDP M if VMµ,1(s) = maxµ′ V
M
µ′,1(s) for all s ∈ S.

Generally the optimal policy need not be unique; for the sake of simplicity we will not consider the
whole set of optimal policies but use µM to denote some arbitrary policy from the set of policies
which are optimal for M .

The regret of a policy µ under a MDP M is the difference between the reward that will on average
be collected by policy µ vs. the optimal policy µM . Formally, the regret is defined as

∆M
µ := Es∼ρ[VMµM ,1(s)− VMµ,1(s)].

Lower regret policies are generally desirable, since such policies collect on average more rewards.

Interaction with the MDP M happens in episodes of length τ , and at the beginning of the k-th
episode, we wish to use past observations to find a policy µ which will collect both rewards and new
knowledge about the environment. A sequence of conditional distributions over policies (πk)k∈N =
π0, π1, . . . where each πk is conditioned on all past observations from the past k episodes is called
a learning rule or learning agent. We denote with Hk all observations from the first k episodes.
Although other evaluation criteria are possible, We evaluate a learning rule on an MDP M by it’s
sum of expected regrets

Regret(T, π,M) :=

bT/τc∑
k=1

Eµ∼πk(Hk)[∆
M
µ ] (1)

The rest of this paper will be devoted to motivating, developing and evaluating such a learning rule.

3 NEEDLE IN A d-DIMENSIONAL HAYSTACK

The fundamental problem with reinforcement learning in higher dimensions without any prior as-
sumptions can be illustrated with the following extremely simple example adapted from Russo &
Van Roy (2013) for the continuous case. Figure 1 is a visual representation of the example for the
d = 2 case. Assume we have a family of deterministic, finite time horizon MDPs

(Mϑ)ϑ∈[0,1]d = {(S,A, P,Rϑ, τ, ρ) | ϑ ∈ [0, 1]d}
where S = {s0}, A = [0, 1]d, ρ({s0}) = 1, τ = 1 (so the episode only has length 1). Further
assume Rϑ(s, a) = max(1 − L‖a − ϑ‖2), 0). In this simple example, an agent takes an action by
exploring a point in the d-dimensional hypercube. If the distance between the point explored and ϑ
is smaller than 1/L, a strict positive reward is collected. If not, a reward of zero is collected and the
agent doesn’t learn much useful information about the environment.
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Figure 1: Reward function Rϑ(s0, ·).
Any agent will struggle to learn the rele-
vant information of this function (the lo-
cation of the point) Samples from other
areas yield little relevant information.

Even if an agent knows everything about this environment
except for ϑ, the agent’s best strategy will be some variant
of grid search, which will take O(Ld) episodes before a
non-zero reward is found. Regret in the sense of Eq. 1 for
any agent will therefore grow exponentially with d and
polynomially with L, and higher dimensional problems
will require billions of episodes for a reasonably good
policy to be found.

Thankfully, the world we live in (and consequently most
reinforcement learning tasks we wish to solve) has a more
generalizable structure than the needle in a haystack. For
example, the same laws of physics apply everywhere, in-
dependent of time and space. Therefore physical laws
learned in one area of the state space can be applied to
other parts of the state space.

We can therefore safely make many prior assumptions
about our environment (an example for such an assump-
tion is that the world is generalizable) before the agent
executes even one interaction. Nearly all successful deep-
learning RL algorithms implicitly make such prior as-
sumption by assuming that true transition dynamics (in the model-based case) and Q-and value-
functions (in the model-free case) can be modeled with a neural network of limited capacity.

3.1 ACCURATE PRIOR ASSUMPTIONS BOUND REGRET

Now that we have established that no prior assumptions results in (almost) unbounded regret, one
asks oneself if the converse is true: can one use prior assumptions to derive regret bounds in the
continuous state and action space MDP setting? In Russo & Van Roy (2013), such bounds can be
derived for the infinite-arm bandit setting, and the proof concept is expanded upon in Osband &
Van Roy (2014a) to bound the Bayesian regret for finite time horizon continuous Markov Decision
Processes.

Theorem 1 (Regret for PSRL in parameterized MDPs, from Osband & Van Roy (2014a)) Fix
real state and action spaces S and A and two function families R and P of bounded mappings
from S × A → R and S × A → S . Let M∗ be an MDP with state space S, action space A,
reward distribution equal to R∗ + εR where R∗ ∈ R and εR a sub-Gaussian random variable
with variance σR and similarly for transition probability equal to P ∗ + εP with P ∗ ∈ P . If φ is
the distribution of M∗ and K∗ = KM∗ is a global Lipschitz constant for the future-value function,
then

E[Regret(T, πPS,M∗)] = Õ(σR
√
dK(R)dE(R)T + E[K∗]σP

√
dK(P)dE(P)T ) (2)

where Õ ignores terms logarithmic in T and dK and dE are the Kolmogorov and Eluder dimensions.

The main takeaway from this theorem is that the expected regret of the PSRL learning rule πPS

(defined in subsection 4.1) is bounded by the complexity of the classes of functions from which
reward and transition dynamics are drawn. This result shouldn’t be a surprise, if we know that the
reward and transition distributions are drawn from a simple class of functions (e.g. linear functions)
then the problem will be easier than if for example we only know that the environment dynamics are
merely Lipschitz continuous. Work on analogous bounds for the infinite-time horizon MDP case is
inconclusive, Abbasi-Yadkori & Szepesvári (2015) claims to have found such bounds, but Osband
& Van Roy (2016a) points out a fault in their proof.

4 METHOD

Although the PSRL method is well understood in theory, the method assumes one can sample MDPs
from a posterior distribution and find an optimal policy for said sampled MDPs, both non-trivial
problems. Our contribution is to demonstrate Neural-PSRL, a suite of methods which address these
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challenges in the continuous setting, thus opening a novel path to solve continuous reinforcement
problems. The effectiveness of this approach is experimentally demonstrated in section 6

4.1 POSTERIOR SAMPLING FOR REINFORCEMENT LEARNING

The learning rule which achieves the desirable regret bounds in Eq. 2 is the Posterior Sampling
for Reinforcement Learning rule πPS, an extension of Thompson Sampling to Markov Decision
Processes first proposed by Strens (2000). The learning rule assumes access to a prior over MDPs
φ, and that the true MDP M∗ is a sample from said prior. It is exactly this prior into which the
practitioner can integrate prior knowledge about the environment. For example, by choosing a prior
which when sampled returns for a transition dynamics model a neural network of limited capacity,
the practitioner assumes the true transition dynamics are simple enough to be modeled by a neural
network of limited capacity. Clearly, if the practitioner selects a prior from which the true MDP M∗
cannot be sampled, the PSRL learning rule πPS is not guaranteed to find a good policy.

Algorithm 1 Posterior Sampling for Reinforcement Learning (PSRL)

INPUT: Prior distribution φ for M∗ , t = 1, Ht = {}
for episodes k = 1, 2, . . . do

sample Mk ∼ φ(· | Ht)
compute µk = µMk

for timestep j = 1, . . . , τ do
perform action at ∼ µk(st)
observe rt and st+1

Ht+1 ← Ht ∪ {(st, at, rt, st+1)}
t← t+ 1

end for
end for

The PSRL algorithm is outlined in Algorithm 1. At its heart, it is analogous to Thompson sampling
in that given past observations Ht, an environment Mk is sampled which fits both the prior assump-
tions and past observations Ht. In the next step a policy µk which is optimal for Mk is found and
executed, and the observations are saved to the history. Since the MDP setting is more expressive
than the simple bandit setting in which Thompson Sampling was developed, both these steps be-
come more challenging. On the one hand, reward and transition dynamics are more complex than
returns from a stateless multi-armed bandit which necessitates a more complex prior φ from which
one can sample MDPs conditioned on past observations. This is nothing more than a generative
model from which one can sample different transition and reward dynamics. In addition, while the
optimal strategy given a known bandit is obvious (simply pull the arm that gives the highest expected
return), discovering the optimal policy given a known MDP is often non-trivial (Azar et al., 2013).
In the following two subsections, we will propose solutions to both these problems.

4.2 GENERATIVE MODELING OF POSTERIOR φ(· | Ht)

Constructing models from which complex distributions can be sampled is an active area of research,
with many proposed methods including Variational Auto-Encoders (Kingma & Welling, 2014), Re-
stricted Boltzmann Machines (Hinton, 2002) and Generative Adversarial Networks (Goodfellow
et al., 2014). Generative modeling has already found applications in reinforcement learning (Deisen-
roth & Rasmussen, 2011; Ha & Schmidhuber, 2018; Chua et al., 2018).

Fortunately, in a meta-study of deep Baysian networks for Thompson sampling (Riquelme et al.,
2018), it was shown that a relatively simple Bayesian linear regression model similar to Snoek et al.
(2015) generally performs well on a broad range of reinforcement learning tasks. In that model, a
neural network is trained to predict the next state (or reward), and the last layer of the network is
then replaced with a Bayesian linear regression model; by sampling a new weight matrix from the
Bayesian linear regression model one samples a new transition (or reward) model.

We use this model as a basis for our model, in which the predicted next state ŝt+1 is given by
ŝt+1 := Wz(st,at) + st where z(st,at) is the output of the last hidden layer of a network trained
to predict st+1 − st given the previous state action pair (st, at) as input. Further, W is a weight
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matrix sampled via Bayesian linear regression to regress z(st,at) to st+1 − st for all state-action-
observation sets in our history. We predict not the next state but the difference to the previous state,
as suggested in Deisenroth et al. (2013). Thus, dynamics models PMk (and by extension whole
MDPs Mk) are sampled conditioned on past observations Hk by sampling only the last layer of a
next-state prediction network. Note that in contrast to Chua et al. (2018), we sample deterministic
next-state predictions, which allows us learn a policy with gradient based methods without the need
to sample multiple trajectories (see below).

In a final fine-tuning step, we compose multiple copies of the sampled network from above to predict
the n-next states and then backpropagate the errors through the composed-together network. This
allows the network to not just predict the next state, but accurately predict the next n-states despite
errors in next-state predictions. To both increase the generalization ability of the network, and
integrate assumptions about the structure of the true environment, we use weight decay with the
AdamW optimization algorithm.

4.3 POLICY FINDING

Given a known MDP Mk, the expected returns of a proposed policy µ can be evaluated via brute
force Monte Carlo sampling, so in theory finding a (near) optimal policy is possible via trial and
error. Unfortunately, in Azar et al. (2013) it’s shown that even in the setting described in Kakade
et al. (2003) with an oracle which returns a sample of the next observation conditioned on arbitrary
state action pairs, finding an ε-optimal policy with probability 1− δ has a complexity of

O
[
|S||A|

(1− γ)3ε2

]
We are not aware of any analogous bounds for the continuous state-action space setting, but already
this result would indicate that finding µMk entails a high computational complexity. See Sidford
et al. (2018) for an analogous bound for the finite-horizon case.

Fortunately, we have access not just to samples from the transition function but also to the gradients
thereof, suggesting we should make use of an established policy gradient method (Silver et al., 2014;
Sutton & Barto, 2018), offering a practical method to deal with large continuous actions spaces. One
such method that has a proven track record is Soft Actor Critic (Haarnoja et al., 2018).

Soft Actor Critic learns a stochastic policy µ where actions sampled from the policy achieve a high
reward with respect to the value function (here called the critic). Further, the entropy of sampled
actions is enforced to match a pre-defined target, thereby ensuring the policy’s actions are a bit
random and explore nicely. SAC already brings a large bag of tricks to finding an optimal policy.
For example the update uses a target value network Vθ′ where θ′ is the exponential moving average
of the value function weights θ (Mnih et al., 2015). Second, they two value functions to minimize
the positive bias that degrades performance of value based methods (Hasselt, 2010; Fujimoto et al.,
2018). These two value functions are neural networks parameterized with parameters θ1 and θ2 and
trained independently with standard next-step predictions provided byMk (in contrast to Mnih et al.
(2015) which uses a replay buffer) and Bellmann updates. To update the policy, the minimum of the
two value functions is used.

We modify SAC in a few key points. First, assume that executing n steps of the policy µ starting
in state s0 ∈ S leads to state s1, . . . , sn ∈ S. With TD(0) updates (i.e. Vµ(si) ← (1 − λ)Vµ(si) +
λ(ri + γVµ(si+1))) it will take exponentially long in n for values from Vµ(sn) update Vµ(s0)
(Arjona-Medina et al., 2019). We therefore elect to predict the next T states and update according
to Vµ(si)← (1− λ)Vµ(s0) + λ(

∑T−1
t=0 γtrt + γTVµ(si+1))

This is a multi player game (the policy, value function and transition + reward dynamics interact
together) where the gradients from the value function and environment dynamics are used to update
the policy. Such a setting is strongly reminiscent of Generative Adversarial Networks (Goodfellow
et al., 2014). In this context it has been shown that low-variance gradient estimates are conducive
for the multiple players to quickly reach a steady equilibrium (Seward et al., 2018). As networks
grow deeper, errors in gradient estimation compound. Therefore, although we use a large rollout to
update the value function, we elect to obtain policy gradient with a short, i.e. one-step rollout.

Policy gradient methods for continuous control problems can converge to locally optimal policies
(Tessler et al., 2019). We observed this to be an issue in our experiments, with different runs under
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Figure 2: Training curves for Neural-PSRL and both model-free SAC (Haarnoja et al., 2018)
and model-based (Janner et al., 2019) baselines on continuous control benchmarks Hopper-v3 and
HalfCheetah-v3 Each environments is evaluated with the canonical 1000-step variant of the task.
Thin curves indicate individual training curves, thick curves indicate the mean of the training runs
and the shaded area is the standard deviation among trials. We see that in such a sample-constrained
environment, the model based methods outperform the model-free SAC. Our method matches the
performance of the current state-of-the-art model based method.

the same conditions converging to very different policies with very different average episode returns.
This is a well documented issue in reinforcement learning (Henderson et al., 2018). We found using
an ensemble of policies was a helpful heuristic to tackle this issue. There, multiple policies are
initialized, and the value function is updated by performing separate rollouts with each policy and
as a reward estimate the maximum of the reward estimates from all rollouts.

With this, we were able to reliably and find policies µMk for sampled MDPs µk. Our method is
summarized in Algorithm 2 in the Appendix.

5 RELATED WORK

At this point, we’d like to showcase two similar methods which both solve continuous reinforcement
learning tasks by learning models of the true environment and interacting with said environment
guided by the learned world model. In the first method by Chua et al. (2018) called Probabilistic En-
sembles with Trajectory Sampling (PETS) they first train an ensemble of models of the world using
all past observations, then alternate between sampling action sequences at:t+T from a cross-entropy
method (Botev et al., 2013), predicting trajectories given action sequence at:t+T and updating the
CEM distribution from which action sequences are sampled. Once a satisfactory action sequence
has been found, the first action in the sequence is performed.

An open question from Chua et al. (2018) is how long trajectories should be. An overly long trajec-
tories will be inaccurate, while an overly short trajectories won’t capture long-term consequences of
an action. In Janner et al. (2019) this issue is addressed and a method for optimal Trajectory length
is developed. Like in (Chua et al., 2018) they learn an ensemble of probabilistic neural networks,
and sample trajectories from these probabilistic neural networks. The difference is that the actions
for the trajectory samples are from a policy, and the policy is learned with SAC (Haarnoja et al.,
2018) applied to the sampled trajectories.

6 EXPERIMENTS

The goal of our experimental evaluation is to demonstrate the applicability of Neural-PSRL to sam-
ple efficient learning in benchmark reinforcement learning tasks. We evaluate Neural-PSRL on the
popular and widely studied MuJoCo continuous control tasks (Todorov et al., 2012) of HalfCheetah-
v3 and Hopper-v3 (Erez et al., 2012), comparing our method to Model Based Policy Optimization
(MBPO) (Janner et al., 2019). To the best of our knowledge, MBPO is the current state-of-the-art
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Figure 3: Cumulative training curves of runs from figure 2. To maximize cumulative reward (or
equivalently minimize regret), learning must quickly learn a good policy and constantly improve it.

Table 1: Mean and 95% confidence bounds of training reward for DDPG Lillicrap et al. (2016),
ACKTR Wu et al. (2017), TRPO Schulman et al. (2015), PPO Schulman et al. (2017), SAC Haarnoja
et al. (2018), MBPO Janner et al. (2019) and Neural-PSRL when trained to convergence. Numbers
for first four methods are from Henderson et al. (2018), see Appendix section A.2 for details.

DDPG ACKTR TRPO PPO SAC MBPO Neural-PSRL

HalfCheetah 5037 3888 1254 3043 11820 12543 13885
(3664, 6574) (2288, 5131) (999, 1464) (1920, 4165) (2636, 21005) (11299, 13787) (11171, 16599)

Hopper 1632 2546 2965 2715 3030 3123 3347
(607, 2370) (1875, 3217) (2854, 3076) (2589, 2847) (2009, 4050) (2301, 3944) (2883, 3811)

on these tasks when the number of environment evaluations allowed is restricted (≤ 500K steps).
Since MBPO clearly outperforms by a wide margin other reinforcement learning methods such as
PPO (Schulman et al., 2017) and PETS (Chua et al., 2018), we compare only to the model-based
MBPO and the model-free SAC. Like in MBPO, we use the canonical 1000-step horizon with early
termination versions of both tasks, and assume knowledge of the termination criteria, and for the
sake of simplicity also assume knowledge of the reward distribution instead of learning it.

Since the goal set out Eq. 1 was to minimize the sum of regrets over all episodes, we report a closely
related metric: the cumulative reward over episodes since the cumulative reward after n episodes is n
times the expected reward of the unknown optimal policy minus the cumulative regret. In contrast to
many experimental evaluations, we report the reward with respect to the number of episodes, not the
number of environment interactions. When reporting cumulative reward with respect to the number
of environment interactions, it is impossible to distinguish between undesirable policies that achieve
a high per-interaction reward but often terminate early and more desirable policies which achieve
similarly high per-interaction reward and rarely terminate early. We report the reward received
during learning, not the reward that would have been received in an offline evaluation of the policy.

Since PSRL can be split into separate tasks (building a model of the world, sampling from the model
with an eye to optimal exploration-exploitation trade-off, finding an optimal policy for sampled
models) we leave the questions of optimizing the individual tasks to specific domains to future
work, and restrict ourselves to demonstrating that Neural-PSRL works.

7 NEXT STEPS

Neural-PSRL shows that the highly-adaptable PSRL framework is an important tool in the Rein-
forcement Learner’s toolbox, and indeed our experiments confirm that PSRL can match state-of-the
art performance with a relatively small number of samples. Still, our experiments are not yet a fair
head-to-head comparison with other methods. For example, we employ the the ensemble of poli-
cies trick which could also improve other off-policy policy-gradient based methods such as MBPO,
SAC, and PPO. In addition, the effect of an expanded Neural-PSRL which also learns the reward
dynamics has not yet been explored and is something we would like to investigate.
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A APPENDIX

A.1 METHOD

Algorithm 2 The policy ensemble algorithm we use to find a near optimal policy µM for an MDP
M . The Hϑk

(a) measures the entropy of the sampled actions a, see Haarnoja et al. (2018) for
details.

Input: MDP (S,A, PM , RM , γ), previous states S, rollout length T , learning rates λP , λV , λM
Initialize: ensemble policy weights ϑ1, . . . ϑn
Initialize: value function weights θ1, θ2
set θ′1 ← θ1, θ′2 ← θ2
for each iteration do

sample a state s0 uniformly from S
// Update the value functions
for j = 1, 2 do

for k = 1, . . . , n do
v̂k ←

∑T
t=0 γ

tRM (st, at) + γT V̂θ′j (sT ) at ∼ µϑk
(st) and st+1 ∼ PM (· | st, at)

end for
end for
θj ← θj − λV ∇̂θj (maxk v̂k − V̂θ′j )2

θ′j ← (1− λM )θ′j + λMθj // θ′j is the moving average of θ′j
// Update the policy functions
for k = 1, . . . , n do
ϑk ← ϑk + λP ∇̂ϑk

RM (s, a) + minj V̂θ′j (s′) +Hϑk
(a) a ∼ µϑk

(s), s′ ∼ PM (· | s, a)

end for
end for

A.2 EXPERIMENTAL SETTING

Since the goal of our paper was to demonstrate the effectiveness of PSRL for benchmark continuous
state-space problems, we wished to avoid excessive complexity. Therefore, in all our experiments
we assume knowledge of the reward could easily be learned from past interactions. Further, in
keeping with Janner et al. (2019) we assume knowledge of the terminal conditions. Lastly, we use
the trick outlined in Chua et al. (2018) where in HalfCheetah, all states si which represent angles
are transformed to [sin(si), cos(si)].

The reported soft actor critic benchmark results are from experiments provided by the authors. Their
codebase https://github.com/haarnoja/sac provides the following link https://
drive.google.com/open?id=1I0NUrAzU7wwJQiX_MSmr1LvshjDZ4gSh which pro-
vides five runs of SAC on each benchmark discussed in Haarnoja et al. (2018).

For the results in table 1, we ran Neural-PSRL and MBPO for 400 epochs (so 400K steps), and used
the 3000 epoch (so 3M step) runs discussed above for SAC. For each run we averaged the last 50
(for Neural-PSRL and MBPO) and last 100 (for MBPO) returns, and take the average and standard
deviation of these five values to report both mean and 95% confidence intervals.

The exact parameters used to learn the HalfCheetah policy:

python3 -u move_main.py \
--env_id="HalfCheetah-v3" \
--gym_server_ip=<IP of MuJoCo Server> \
--gym_server_port=$port \
--env_ctrl_cost_weight=0.1 \
--env_forward_reward_weight=1.0 \
--env_survival_reward=0.0 \
--num_epochs=400 \
--checkpoint_dir="cheetah_logs/${run_id}/checkpoints" \
--log_dir="cheetah_logs/${run_id}/logs" \
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--sample_dir="cheetah_logs/${run_id}/samples" \
--num_random_episodes=5 \
--is_fixed_episode_length=1 \
--max_episode_length=1000 \
--nl_num_layers=4 \
--nl_num_hidden=512 \
--nl_batch_size=256 \
--nl_lr=.0002 \
--nl_sigma=0.5 \
--nl_alpha=1.0 \
--nl_reg_scale=0.000001 \
--nl_base_num_update=8000 \
--nl_epoch_num_update=5 \
--nl_finetune_num_update=10000 \
--nl_finetune_epoch_num_update=2 \
--value_num_layers=3 \
--value_num_hidden=256 \
--value_weight_decay=0.000001 \
--policy_num_layers=3 \
--policy_num_hidden=256 \
--policy_weight_decay=0.000001 \
--a2c_batch_size=128 \
--a2c_base_num_update=2000 \
--a2c_epoch_num_update=2 \
--a2c_rollout_length=4 \
--a2c_gamma=.99 \
--a2c_policy_lr=.0003 \
--a2c_value_lr=.0003 \
--a2c_max_grad_norm=2000. \
--a2c_reward_scale=1. \
--a2c_action_pen=0. \
--a2c_val_update_eps=0.005 \
--a2c_target_entropy_mult=0.5 \
--a2c_value_push_down=0.0 \
--a2c_max_reward=20.0 \
--a2c_value_activation="lrelu" \
--a2c_policy_activation="elu" \
--a2c_num_ensemble_policies=3 \
--num_online_update=10 \
--render=0 \
--save_folder=$save_folder

The exact parameters used to learn the Hopper policy:

python3 -u move_main.py \
--env_id="Hopper-v3" \
--gym_server_ip="<IP of MuJoCo Server> \
--gym_server_port=$port \
--env_ctrl_cost_weight=0.001 \
--env_forward_reward_weight=1.0 \
--env_survival_reward=1.0 \
--num_epochs=800 \
--checkpoint_dir="cheetah_logs/${run_id}/checkpoints" \
--log_dir="cheetah_logs/${run_id}/logs" \
--sample_dir="cheetah_logs/${run_id}/samples" \
--num_random_steps=5000 \
--is_fixed_episode_length=0 \
--max_episode_length=1000 \
--nl_num_layers=4 \
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--nl_num_hidden=512 \
--nl_batch_size=256 \
--nl_lr=.0002 \
--nl_sigma=0.5 \
--nl_alpha=1.0 \
--nl_reg_scale=0.000001 \
--nl_base_num_update=8000 \
--nl_epoch_num_update=5 \
--nl_finetune_num_update=10000 \
--nl_finetune_epoch_num_update=2 \
--value_num_layers=3 \
--value_num_hidden=256 \
--value_weight_decay=0.000001 \
--policy_num_layers=3 \
--policy_num_hidden=256 \
--policy_weight_decay=0.000001 \
--a2c_batch_size=128 \
--a2c_base_num_update=8000 \
--a2c_epoch_num_update=2 \
--a2c_rollout_length=6 \
--a2c_gamma=.995 \
--a2c_policy_lr=.00005 \
--a2c_value_lr=.0003 \
--a2c_max_grad_norm=2000. \
--a2c_reward_scale=1. \
--a2c_action_pen=0. \
--a2c_val_update_eps=0.01 \
--a2c_target_entropy_mult=1.0 \
--a2c_value_push_down=0.0 \
--a2c_max_reward=5.0 \
--a2c_value_activation="lrelu" \
--a2c_policy_activation="elu" \
--a2c_num_ensemble_policies=1 \
--num_online_update=10 \
--render=1 \
--save_folder=$save_folder
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