
Under review as a conference paper at ICLR 2020

REINFORCEMENT LEARNING WITH CHROMATIC
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a neural architecture search algorithm to construct compact reinforce-
ment learning (RL) policies, by combining ENAS (Vinyals et al., 2015; Pham
et al., 2018; Zoph & Le, 2017) and ES (Salimans et al., 2017) in a highly scalable
and intuitive way. By defining the combinatorial search space of NAS to be the
set of different edge-partitionings (colorings) into same-weight classes, we rep-
resent compact architectures via efficient learned edge-partitionings. For several
RL tasks, we manage to learn colorings translating to effective policies parame-
terized by as few as 17 weight parameters, providing > 90% compression over
vanilla policies and 6x compression over state-of-the-art compact policies based
on Toeplitz matrices (Choromanski et al., 2018), while still maintaining good re-
ward. We believe that our work is one of the first attempts to propose a rigorous
approach to training structured neural network architectures for RL problems that
are of interest especially in mobile robotics (Gage, 2002) with limited storage and
computational resources.

1 INTRODUCTION

Consider a fixed Markov Decision Process (MDP) M and an agent aiming to maximize its total
expected/discounted reward obtained in the environment E governed byM. An agent is looking for
a sequence of actions a0, ..., aT−1 leading to a series of steps maximizing this reward. One of the
approaches is to construct a policy πθ : S → A, parameterized by vector θ, which is a mapping
from states to actions. Policy πθ determines actions chosen in states visited by an agent. Such a
reinforcement learning (RL) policy is usually encoded as a neural network, in which scenario pa-
rameters θ correspond to weights and biases of a neural network. Reinforcement learning policies
πθ often consist of thousands or millions of parameters (e.g. when they involve vision as part of
the state vector) and therefore training them becomes a challenging high-dimensional optimization
problem. Deploying such high-dimensional policies on hardware raises additional concerns in re-
source constrained settings (e.g. limited storage), emerging in particular in mobile robotics (Gage,
2002). The main question we tackle in this paper is the following:

Are high dimensional architectures necessary for encoding efficient policies and if not, how compact
can they be in in practice?

We show that finding such compact representations is a nontrivial optimization problem despite
recent observations that some hardcoded structured families (Choromanski et al., 2018) provide
certain levels of compactification and good accuracy at the same time.

We model the problem of finding compact presentations by using a joint objective between the
combinatorial nature of the network’s parameter sharing profile and the reward maximization of
RL optimization. We leverage recent advances in the ENAS (Efficient Neural Architecture Search)
literature and theory of pointer networks (Vinyals et al., 2015; Pham et al., 2018; Zoph & Le, 2017) to
optimize over the combinatorial component of this objective and state of the art evolution strategies
(ES) methods (Choromanski et al., 2018; Salimans et al., 2017; Mania et al., 2018a) to optimize
over the RL objective. We propose to define the combinatorial search space to be the the set of
different edge-partitioning (colorings) into same-weight classes and construct policies with learned
weight-sharing mechanisms. We call networks encoding our policies: chromatic networks.

We are inspired by two recent papers: (Choromanski et al., 2018) and (Gaier & Ha, 2019). In the
former one, policies based on Toeplitz matrices were shown to match their unstructured counter-
parts accuracy-wise, while leading to the substantial reduction of the number of parameters from

1

Under review as a conference paper at ICLR 2020

Tt =

wt0 wt1 wt2 wt3 wt4 wt5

wt6 wt0 wt1 wt2 wt3 wt4

wt7 wt6 wt0 wt1 wt2 wt3

wt8 wt7 wt6 wt0 wt1 wt2

 πt = wt0 wt1 wt2 wt3 wt4 wt5 wt6 wt7 wt8

()

Figure 1: On the left: matrix encoding linear Toeplitz policy at time t for the RL task with 6-
dimensional state vector and 4-dimensional action vector. On the right: that policy in the vector-
ized form. As we see, a policy defined by a matrix with 24 entries is effectively encoded by a
9-dimensional vector.

thousands (Salimans et al., 2017) to hundreds (Choromanski et al., 2018). Instead of quadratic (in
sizes of hidden layers), those policies use only linear number of parameters. The Toeplitz structure
can be thought of as a parameter sharing mechanism, where edge weights along each diagonal of
the matrix are the same (see: Fig. 1). However, this is a rigid pattern that is not learned. We show in
this paper that weight sharing patterns can be effectively learned, which further reduces the number
of distinct parameters. For instance, using architectures of the same sizes as those in (Choroman-
ski et al., 2018), we can train effective policies for OpenAI Gym tasks with as few as 17 distinct
weights. The latter paper proposes an extremal approach, where weights are chosen randomly in-
stead of being learned, but the topologies of connections are trained and thus are ultimately strongly
biased towards RL tasks under consideration. It was shown in (Gaier & Ha, 2019) that such weight
agnostic neural networks (WANNs) can encode effective policies for several nontrivial RL prob-
lems. WANNs replace conceptually simple feedforward networks with general graph topologies
using NEAT algorithm (Stanley & Miikkulainen, 2002) providing topological operators to build the
network.

Our approach is a middle ground, where the topology is still a feedforward neural network, but the
weights are partitioned into groups that are being learned in a combinatorial fashion using reinforce-
ment learning. While (Chen et al., 2015) shares weights randomly via hashing, we learn a good
partitioning mechanisms for weight sharing.

Our key observation is that ENAS and ES can naturally be combined in a highly scalable but concep-
tually simple way. To give context, vanilla NAS (Zoph & Le, 2017) for classical supervised learning
setting (SL) requires a large population of 450 GPU-workers (child models) all training one-by-one,
which results in many GPU-hours of training. ENAS (Pham et al., 2018) uses weight sharing across
multiple workers to reduce the time, although it can reduce computational resources at the cost of
the variance of the controller’s gradient. Our method solves both issues (fast training time and low
controller gradient variance) by leveraging a large population of much-cheaper CPU workers (300)
increasing the effective batch-size of the controller, while also training the workers simultaneously
via ES. This setup is not possible in SL, as single CPUs cannot train large image-based classifiers
in practice. Furthermore, this magnitude of scaling by numerous workers can be difficult with pol-
icy gradient or Q-learning methods as they can be limited by GPU overhead due to exact-gradient
computation.

We believe that our work is one of the first attempts to propose a flexible, rigorous approach to train-
ing compact neural network architectures for RL problems. Those may be of particular importance
in mobile robotics (Gage, 2002) where computational and storage resources are very limited. We
also believe that this paper opens several new research directions regarding structured policies for
robotics.

1.1 BACKGROUND AND RELATED WORK

Network Architecture Search: The subject of this paper can be put in the larger context of Neural
Architecture Search (NAS) algorithms which recently became a prolific area of research with already
voluminous literature (see: (Elsken et al., 2019) for an excellent survey). Interest in NAS algorithms
started to grow rapidly when it was shown that they can design state-of-the-art architectures for
image recognition and language modeling (Zoph & Le, 2017). More recently it was shown that NAS

2

Under review as a conference paper at ICLR 2020

network generators can be improved to sample more complicated connectivity patterns based on
random graph theory models such as Erdos-Renyi, Barabasi-Albert or Watts-Strogatz to outperform
human-designed networks, e.g. ResNet and ShuffleNet on image recognition tasks (Xie et al., 2019).
However to the best of our knowledge, applying NAS to construct compact RL policy architectures
has not been explored before. On a broader scope, there has been little work in applying NAS to
general RL policies, partially because unlike SL, RL policies are quite small and thus do not require
a search space involving hyperparameter primitives such as number of hidden layers, convolution
sizes, etc. However, we show that the search space for RL policies can still be quite combinatorial,
by examining partitionings of weights in our work.

Parameterizing Compact Architectures: Before NAS can be applied, a particular parameteriza-
tion of a compact architecture defining combinatorial search space needs to be chosen. That leads
to the vast literature on compact encodings of NN architectures. Some of the most popular and
efficient techniques regard network sparsification. The sparsity can be often achieved by pruning al-
ready trained networks. These methods have been around since the 1980s, dating back to Rumelhart
(Rumelhart, 1987; Chauvin, 1989; Mozer & Smolensky, 1989), followed shortly by Optimal Brain
Damage (Cun et al., 1990), which used second order gradient information to remove connections.
Since then, a variety of schemes have been proposed, with regularization (Louizos et al., 2018)
and magnitude-based weight pruning methods (Han et al., 2015; See et al., 2016; Narang et al.,
2017) increasingly popular. The impact of dropout (Srivastava et al., 2014) has added an additional
perspective, with new works focusing on attempts to learn sparse networks (Gomez et al., 2019).
Another recent work introduced the Lottery Ticket Hypothesis (Frankle & Carbin, 2019), which
captivated the community by showing that there exist equivalently sparse networks which can be
trained from scratch to achieve competitive results. Interestingly, these works consistently report
similar levels of compression, often managing to match the performance of original networks with
up to 90% fewer parameters. Those methods are however designed for constructing classification
networks rather than those encoding RL policies.

Quantization: Weight sharing mechanism can be viewed from the quantization point of view,
where pre-trained weights are quantized, thus effectively partitioned. Examples include (Han et al.,
2016), who achieve 49x compression for networks applied for vision using both pruning and weight
sharing (by quantization) followed by Huffman coding. However such partitions are not learned
which is a main topic of this paper. Even more importantly, in RL applications, where policies are
often very sensitive to parameters’ weights (Iscen et al., 2018), centroid-based quantization is too
crude to preserve accuracy.

Compact RL Policies In recent times there has been increased interest in simplifying RL poli-
cies. In particular, (Mania et al., 2018b) demonstrated that linear policies are often sufficient for
the benchmark MuJoCo locomotion tasks, while (Cuccu et al., 2019) found smaller policies could
work for vision-based tasks by separating feature extraction and control. Finally, recent work found
that small, sparse sub-networks can perform better than larger over-parameterized ones (Frankle &
Carbin, 2019), inspiring applications in RL (Yu et al., 2019).

Our main contributions are:

1. We propose a highly scalable algorithm by combining ENAS and ES for learning compact
representations that learns effective policies with over 92% reduction of the number of
neural network parameters (Section 3).

2. To demonstrate the impact (and limitations) of pruning neural networks for RL, we adapt
recent algorithms training both masks defining combinatorial structure as well as weights
of a deep neural network concurrently (see: (Lenc et al., 2019)). Those achieve state-of-
the-art results on various supervised feedforward and recurrent models. We confirm these
findings in the RL setting by showing that good rewards can be obtained up to a high level
of pruning. However, at the 80-90% level we see a significant decrease in performance
which does not occur for the proposed by us chromatic networks (Section 4.1, Section 4.2).

3. We demonstrate that finding efficient weight-partitioning mechanisms is a challenging
problem and NAS helps to construct distributions producing good partitionings for more
difficult RL environments (Section 4.3).

3

Under review as a conference paper at ICLR 2020

2 THE ARCHITECTURE OF NEURAL ARCHITECTURE SEARCH

The foundation of our algorithm for learning structured compact policies is the class of ENAS
methods (Pham et al., 2018). To present our algorithm, we thus need to first describe this class.
ENAS algorithms are designed to construct neural network architectures thus they aim to solve
combinatorial-flavored optimization problems with exponential-size domains. The problems are
cast as MDPs, where a controller encoded by the LSTM-based policy πcont(θ), typically parame-
terized by few hundred hidden units, is trained to propose good-quality architectures, or to be more
precise: good-quality distributions D(θ) over architectures. In standard applications the score of
the particular distribution D(θ) is quantified by the average performance obtained by trained mod-
els leveraging architectures A ∼ D(θ) on the fixed-size validation set. That score determines the
reward the controller obtains by proposing D(θ). LSTM-based controller constructs architectures
using softmax classifiers via autoregressive strategy, where controller’s decision in step t is given to
it as an input embedding at time t + 1. The initial embedding that the controller starts with is an
empty one.

Weight Sharing Mechanism: ENAS introduces a powerful idea of a weight-sharing mechanism.
The core concept is that different architectures can be embedded into combinatorial space, where
they correspond to different subgraphs of the given acyclic directed base graph G (DAG). Weights of
the edges of G represent the shared-poolWshared from which different architectures will inherit dif-
ferently by activating weights of the corresponding induced directed subgraph. At first glance such
a mechanism might be conceptually problematic since, a weight of the particular edge e belonging
to different architectures Ai1 , ...Aik (see: next paragraph for details regarding weight training) will
be updated based on evaluations of all of them and different Ais can utilize e in different ways.
However it turns out that this is desirable in practice. As authors of (Pham et al., 2018) explain, the
approach is motivated by recent work on transfer and multitask learning that provides theoretical
grounds for transferring weights across models. Another way to justify the mechanism is to observe
that ENAS tries in fact to optimize a distribution over architectures rather than a particular architec-
ture and the corresponding shared-pool of weightsWshared should be thought of as corresponding
to that distribution rather than its particular realizations. Therefore the weights of that pool should
be updated based on signals from all different realizations.

Alternating Optimization: For a fixed parameterization θ defining policy π(θ) of the controller
(and thus also proposed distribution over architecturesD(θ)), the algorithm optimizes the weights of
the models usingM architectures: A1, ...,AM sampled fromD(θ), where the sampling is conducted
by the controller’s policy πcont(θ). Models corresponding to A1, ...,AM are called child models.
At iteration k of the weight optimization process, a worker assigned to the architectureAi computes
the gradient of the loss function LAi,Bk

corresponding to the particular batch Bk of the training
data with respect to the weights of the inherited edges from the base DAG. Since the loss function
LBk

onWshared for a fixed distribution D(θ) and batch Bk at iteration k is defined as an expected
loss EA∼π(θ)[LA,Bk

(WAshared)], where WAshared stands for the projection of the set of shared-pool
weights Wshared into edges defined by the induced subgraph determined by A, its gradient with
respect toWshared can be estimated via Monte Carlo procedure as:

∇Wshared
LBk

(Wshared) ∼ 1

M

M∑
i=1

∇WAi
shared

LAi,Bk
(WAi

shared) (1)

After weight optimization is completed, ENAS updates the parameters θ of the controller responsible
for shaping the distribution used to sample architectures A. As mentioned before, this is done
using reinforcement learning approach, where parameters θ are optimized to maximize the expected
reward EA∼π(θ)[RWA

shared
(A)], where this time setWshared is frozen and RWA

shared
(A) is given as

the accuracy obtained by the model using architectureA and weights fromWAshared on the validation
set. Parameters θ are updated with the use of the REINFORCE algorithm (Williams, 1992).

Controller’s Architecture: The controller LSTM-based architecture uses pointer networks
(Vinyals et al., 2015) that utilize LSTM-encoder/decoder approach, where the decoder can look
back and forth over input. Thus these models are examples of architectures enriched with attention.

4

Under review as a conference paper at ICLR 2020

3 TOWARDS CHROMATIC NETWORKS - ENAS FOR GRAPH PARTITIONINGS

Preliminaries: Chromatic networks are feedforward NN architectures, where weights are shared
across multiple edges and sharing mechanism is learned via a modified ENAS algorithm that we
present below. Edges sharing a particular weight form the so-called chromatic class. An example
of the learned partitioning is presented on Fig. 2. Learned weight-sharing mechanisms are more
complicated than hardcoded ones from Fig. 1, but lead to smaller-size partitionings. For instance,
Toeplitz sharing mechanism for architecture from Subfigure (b) of Fig. 2 requires 103 weight-
parameters, while ours: only 17.

Controller Architecture & Training: We use a standard ENAS reinforcement learning controller
similar to (Pham et al., 2018), applying pointer networks. Our search space is the set of all possible
mappings Φ : E → {0, 1, ...,M − 1}, where E stands for the set of all edges of the graph encoding
an architecture and M is the number of partitions, which the user sets. Thus as opposed to stan-
dard ENAS approach, where the search space consists of different subgraphs, we instead deal with
different colorings/partitionings of edges of a given base graph. The controller learns distributions
D(θ) over these partitionings. The shared pool of weightsWshared is a latent vector in RM , where
different entries correspond to weight values for different partitions enumerated from 0 to M − 1.
As for standard ENAS, the controller π(θ) consists of a encoder RNN and decoder RNN, in which
the encoder RNN is looped over the embedded input data, while the decoder is looped to repeatedly
output smaller primitive components of the final output.

In our setting, we do not possess natural numerical data corresponding to an embedding of the inputs
which are partition numbers and edges. Therefore we also train an embedding (as part of controller’s
parameter vector θ) of both using tables: Vedge : e→ Rd and Vpartition : {0, 1, ...,M − 1} → Rd.

(a) Linear Policy - 17 distinct parameters (b) One-Hidden-Layer Policy - 17 distinct parameters

Figure 2: On the left: partitioning of edges into distinct weight classes obtained for the linear policy
for HalfCheetah environment from OpenAI Gym. On the right: the same, but for a policy with
one hidden layer encoded by two matrices. State and action dimensionalities are: s = 17 and a = 6
respectively and hidden layer for the architecture from (b) is of size 41. Thus the size of the matrices
are: 17× 6 for the linear policy from (a) and: 17× 41, 41× 6 for the nonlinear one from (b).

We denote by P a partitioning of edges and define the reward obtained by a controller for a fixed
distribution D(θ) produced by its policy π(θ) as follows:

R(θ) = EP∼π(θ)[Rmax
Wshared

(P)], (2)

where Rmax
Wshared

(P) stands for the maximal reward obtained during weight-optimization phase of
the policy with partitioning P and with initial vector of distinct weightsWshared. As for the ENAS
setup, in practice this reward is estimated by averaging over M workers evaluating independently
different realizations P of D(θ). The updates of θ are conducted with the use of REINFORCE.

3.1 WEIGHT UPDATES VIA ES

As opposed to standard ENAS, where weights for a fixed distribution D(θ) generating architectures
were trained by backpropagation, we propose to apply recently introduced ES blackbox optimiza-
tion techniques for RL (Choromanski et al., 2018). For a fixed partitioning P , we define the loss
LP (Wshared) with respect to weights as the negated reward obtained by an agent applying parti-
tioning P and with vector of distinct weights Wshared. That expression as a function of Wshared

5

Under review as a conference paper at ICLR 2020

is not necessarily differentiable, since it involves calls to the simulator. This also implies that ex-
plicit backpropagation is not possible. We propose to instead estimate the gradient of its Gaus-
sian smoothing LσP (Wshared) defined as: LσP (Wshared) = Eg∈N (0,IM)[LP (Wshared + σg)] for a
fixed smoothing parameter σ >. We approximate its gradient given by: ∇Wshared

LσP (Wshared) =
1
σEg∈N (0,IM)[LP (Wshared + σg)g] with the following forward finite difference unbiased estimator
introduced in (Choromanski et al., 2018):

∇̂Wshared
LσP (Wshared) =

1

t

t∑
i=1

gt

[LP (Wshared + σgt)− EP∼π(θ) [LP (Wshared)]

σ

]
(3)

where g1, ...,gt are sampled independently at random fromN (0, IM) and the pivot point is defined
as an average loss for a given set of weightsWshared over partitionings sampled from π(θ).

We note that a subtle key difference here from vanilla ES is by using the pivot point
EP∼π(θ) [LP (Wshared)] as the expectation over a distribution of partitions P ∼ π(θ) rather than
a static single-query objective L(W) used for e.g. a basic Mujoco task. From a broader perspective,
this comes from the fact that ES can optimize any objective of the form EP∼P [f(W,P)] where P is
any (possibly discrete) object with distribution P and W is a continuous weight vector, by assigning
both a perturbed weight W + σg and a sampled P to a CPU worker for function evaluation on
f(W + σg, P).

4 EXPERIMENTAL RESULTS

The experimental section is organized as follows:

• In Subsection 4.1 we show the limitations of the sparse network approach for compactifying
RL policies on the example of state-of-the-art class of algorithms from (Lenc et al., 2019)
that aim to simultaneously train weights and connections of neural network architectures.
This approach is conceptually the most similar to ours.

• In Subsection 4.2 we present exhaustive results on training our chromatic networks with
ENAS on OpenAI Gym and quadruped locomotion tasks. We compare sizes and rewards
obtained by our policies with those using masking procedure from (Lenc et al., 2019), ap-
plying low displacement rank matrices for compactification as well as unstructured base-
lines.

• In Subsection 4.3 we analyze in detail the impact of ENAS steps responsible for learning
partitions, in particular compare it with the performance of random partitionings.

We provide more experimental results in the Appendix.

4.1 LEARNED SPARSE NETWORKS VIA SIMULTANEOUS WEIGHT-TOPOLOGY TRAINING

The mask m, drawn from a multinomial distribution, is trained in (Lenc et al., 2019) using ES and
element-wise multiplied by the weights before a forward pass. In (Lenc et al., 2019), the sparsity of
the mask is fixed, however, to show the effect of pruning, we instead initialize the sparsity at 50% and
increasingly reward smaller networks (measured by the size of the mask |m|) during optimization.
Using this approach on several Open AI Gym tasks, we demonstrate that masking mechanism is
capable of producing compact effective policies up to a high level of pruning. At the same time, we
show significant decrease of performance at the 80-90% compression level, quantifying accurately
its limits for RL tasks (see: Fig. 3).

6

Under review as a conference paper at ICLR 2020

(a) (b) (c) (d)

Figure 3: The results from training both a mask m and weights θ of a neural network with two
hidden layers, 41 units each. ‘Usage’ stands for number of edges used after filtering defined by the
mask. At the beginning, the mask is initialized such that |m| is equal to 50% of the total number of
parameters in the network.

4.2 RESULTS ON CHROMATIC NETWORKS

We perform experiments on the following OpenAI Gym tasks: Swimmer, Reacher, Hopper,
HalfCheetah, Walker2d, Pusher, Striker, Thrower and Ant as well as quadruped locomotion
task of forward walking from (Iscen et al., 2018). The performance of our algorithm constructing
chromatic networks is summarized in Table 1. We tested three classes of feedforward architectures:
linear from (Mania et al., 2018a), and nonlinear with one or two hidden layers and tanh nonlineari-
ties.

We see a general trend that increasing hidden layers while keeping number of partitions fixed, im-
proves performance as well as increasing the number of partitions while keeping the architecture
fixed. The relation between the expressiveness of a linear, high-partition policy vs a hidden-layer,
low-partition policy is however not well understood. As shown in Table 1, this depends on the envi-
ronment’s complexity as well. For HalfCheetah, the linear 50-partition policy performs better than
a hidden layer 17-partition policy, while this is reversed for for the Minitaur.

In Table 2 we directly compare chromatic networks with a masking approach as discussed in Section
4.1, as well as other structured policies (Toeplitz from (Choromanski et al., 2018) and circulant) and
the unstructured baseline. In all cases we use the same hyper-parameters, and train until convergence
for five random seeds. For masking, we report the best achieved reward with > 90% of the network
pruned, making the final policy comparable in size to the chromatic network. For each class of
policies, we compare the number of weight parameters used (“# of weight-params” field), since
the compactification mechanism does not operate on bias vectors. We also record compression
in respect to unstructured networks in terms of the total number of parameters (“# compression”
field). This number determines the reduction of sampling complexity with respect to unstructured
networks (which is a bottleneck of ES training), since the number of RL blackbox function F queries
needed to train/up-train the policy is proportional to the total number of weights and biases of the
corresponding network.

Finally, for a working policy we report total number of bits required to encode it assuming that real
values are stored in the float format. Note that for chromatic and masking networks this includes
bits required to encode a dictionary representing the partitioning. Further details are given in the
Appendix (Section E). Top two performing networks for each environment are in bold. Chromatic
networks are the only to provide big compression and quality at the same time across all tasks.

Inference Time: Similarly to Toeplitz, chromatic networks also provide computational gains. Us-
ing improved version of the mailman-algorithm (Liberty & Zucker, 2009), matrix-vector multipli-
cation part of the inference can be run on the chromatic network using constant number of distinct
weights and deployed on real hardware in time O(mn

log(max(m,n))), where (m,n) is the shape of the
matrix.

4.3 FURTHER ANALYSIS: RANDOM PARTITIONINGS VERSUS ENAS
A natural question to ask is whether ENAS machinery is required or maybe random partitioning is
good enough to produce efficient policies. To answer it, we trained joint weights for fixed population
of random partitionings without NAS, as well as with random NAS controller.

7

Under review as a conference paper at ICLR 2020

Environment Dimensions Architecture Partitions Mean Reward Max Reward

Swimmer (8,2) L 8 97 365
Reacher (11,2) L 11 -144 -6
Hopper (11,3) L 11 216 999
Hopper (11,3) H41 11 247 3408
HalfCheetah (17,6) L 17 1812 3653
HalfCheetah (17,6) L 50 1383 4318
HalfCheetah (17,6) H41 17 2148 3779
HalfCheetah (17,6) H41, H41 17 3036 5285
Walker2d (17,6) H41 17 1943 3695
Pusher (23,7) H41 23 -419 -144
Striker (23,7) H41 23 -1926 -248
Thrower (23,7) H41 23 -1651 -61
Ant (111,8) H41, H41 50 1047 1440
Minitaur (7, 13) L 13 4.84 7.2
Minitaur (7, 13) L 50 6.08 7.91
Minitaur (7, 13) H41 13 7.12 9.34

Table 1: Statistics for training chromatic networks. For mean reward, we take the average over 301 worker
rollout-rewards for each step, and output the highest average over all timesteps. For max reward, we report the
maximum reward ever obtained during the training process by any worker. “L”, “H41” and “H41, H41” stand
for: linear policy, policy with one hidden layer of size 41 and policy with two such hidden layers respectively.

Environment Architecture Reward # weight-params compression # bits

Striker Chromatic -248 23 95% 8198
Masked -967 25 95% 8262
Toeplitz -129 110 88% 4832
Circulant -120 82 90% 3936

Unstructured -117 1230 0% 40672

HalfCheetah Chromatic 3779 17 94% 6571
Masked 4806 40 92% 8250
Toeplitz 2525 103 85% 4608
Circulant 1728 82 88% 3936

Unstructured 3614 943 0% 31488

Hopper Chromatic 3408 11 92% 3960
Masked 2196 17 91% 4726
Toeplitz 2749 94 78% 4320
Circulant 2680 82 80% 3936

Unstructured 2691 574 0% 19680

Walker2d Chromatic 3695 17 94% 6571
Masked 1781 19 94% 6635
Toeplitz 1 103 85% 4608
Circulant 3 82 88% 3936

Unstructured 2230 943 0% 31488

Table 2: Comparison of the best policies from five distinct classes of RL networks: chromatic (ours), masked
(networks from Subsection 4.1), Toeplitz networks from (Choromanski et al., 2018), circulant networks and
unstructured trained with standard ES algorithm (Salimans et al., 2017). All results are for feedforward nets
with one hidden layer of size h = 41.

Our experiments show that these approaches fail by producing suboptimal policies for harder tasks
(see: Fig. 4). Note also that if a partitioning distribution is fixed throughout the entire optimization,
training policies for such tasks and restarting to fix another partitioning or distribution can cause
substantial waste of computational resources, especially for the environments requiring long training
time. However we also notice an intriguing fact that random partitionings still lead to nontrivial
rewards. We find it similar to the conclusions in NAS for supervised learning (Pham et al., 2018)
- while training a random child model sampled from a reasonable search space may produce ≥

8

Under review as a conference paper at ICLR 2020

80 % accuracy, the most gains from a controller will ultimately be at the tail end; i.e. at the 95%
accuracies.

(a) Fixed Random Population (b) Random Controller (c) ENAS Optimization.

Figure 4: Random partitioning experiments versus ENAS for Walker2d. Curves of different colors correspond
to different workers. The maximal obtained rewards for random partitionings/distributions are smaller than for
chromatic networks by about 1000. (a): Fixed random population of 301 partitioning for joint training. (b):
Replacing the ENAS population sampler with random agent. (c): Training with ENAS.

We observe that by training with ENAS, the entire optimization benefits in two ways by: (1) select-
ing partitionings leading to good rewards, (2) resampling good partitionings based on the controller
replay buffer, and breaking through local minima inherently caused by the weight-sharing mech-
anism maximizing average reward. We see these benefits precisely when a new ENAS iteration
abruptly increases the reward by a large amount, which we present on Fig. 5.

Figure 5: Training curves for four OpenAI Gym environments: HalfCheetah, Striker, Hopper and Ant.
Timesteps when training curves abruptly increase are correlated with those when ENAS controller produces
new partitioning suggestions (that are marked by black vertical lines).

5 CONCLUSION & FUTURE WORK

We presented a principled and flexible algorithm for learning structured neural network architectures
for RL policies and encoded by compact sets of parameters. Our architectures, called chromatic
networks, rely on partitionings of a small sets of weights learned via ENAS methods. Furthermore,
we have also provided a scalable way of performing NAS techniques with RL policies which is not
limited to weight-sharing, but can potentially also be used to construct several other combinatorial
structures in a flexible fashion, such as node deletions and edge removals.

We showed that chromatic networks provide more aggressive compression than their state-of-the-art
counterparts while preserving efficiency of the learned policies. We believe that our work opens new
research directions, especially from using other combinatorial objects. Detailed analysis of obtained
partitionings (see: Appendix C) also shows that learned structured matrices are very different from
previously used state-of-the-art (in particular they are characterized by high displacement rank), yet
it is not known what their properties are. It would be also important to understand how transferable
those learned partitionings are across different RL tasks (see: Appendix D).

9

Under review as a conference paper at ICLR 2020

REFERENCES

Yves Chauvin. A back-propagation algorithm with optimal use of hidden units. In David S. Touret-
zky (ed.), Advances in Neural Information Processing Systems 1, pp. 519–526, San Francisco,
CA, USA, 1989. Morgan Kaufmann Publishers Inc.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In International Conference on Machine Learning, pp.
2285–2294, 2015.

Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E. Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, pp. 969–977, 2018.

Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. Playing atari with six neurons. In
Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS ’19, Richland, SC, 2019.

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky
(ed.), Advances in Neural Information Processing Systems 2, San Francisco, CA, USA, 1990.
Morgan Kaufmann Publishers Inc.

James Demmel and Plamen Koev. Matrices with displacement structure. URL
http://math.mit.edu/ plamen/talks/mds-talk.pdf.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20:55:1–55:21, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations. 2019.

Douglas W. Gage (ed.). Mobile Robots XVII, Philadelphia, PA, USA, October 25, 2004,
volume 5609 of SPIE Proceedings, 2002. SPIE. ISBN 978-0-8194-5562-8. URL
http://proceedings.spiedigitallibrary.org/volume.aspx?volume=5609.

Adam Gaier and David Ha. Weight agnostic neural networks. CoRR, abs/1906.04358, 2019.

Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E. Hinton. Learning sparse
networks using targeted dropout. ArXiv, abs/1905.13678, 2019.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 28, pp. 1135–1143. Curran Asso-
ciates, Inc., 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and Huffman coding. In International Conference on Learning
Representations, 2016.

Atil Iscen, Ken Caluwaerts, Jie Tan, Tingnan Zhang, Erwin Coumans, Vikas Sindhwani, and Vincent
Vanhoucke. Policies modulating trajectory generators. In 2nd Annual Conference on Robot Learn-
ing, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, pp. 916–926, 2018.

Karel Lenc, Erich Elsen, Tom Schaul, and Karen Simonyan. Non-differentiable supervised learning
with evolution strategies and hybrid methods. arXiv, abs/1906.03139, 2019.

Edo Liberty and Steven W Zucker. The mailman algorithm: A note on matrix–vector multiplication.
Information Processing Letters, 109(3):179–182, 2009.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through
l0 regularization. In International Conference on Learning Representations, 2018.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. CoRR, abs/1803.07055, 2018a.

10

Under review as a conference paper at ICLR 2020

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. In Advances in Neural Information Processing Systems,
pp. 1800–1809, 2018b.

Marina Meilă. Comparing clusterings by the variation of information. In Bernhard Schölkopf
and Manfred K. Warmuth (eds.), Learning Theory and Kernel Machines, pp. 173–187, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-45167-9.

Michael C. Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a
network via relevance assessment. In David S. Touretzky (ed.), Advances in Neural Information
Processing Systems 1, pp. 107–115, San Francisco, CA, USA, 1989. Morgan Kaufmann Publish-
ers Inc.

Sharan Narang, Gregory Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in recurrent
neural networks. In International Conference on Learning Representations, 2017.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 4092–4101,
2018.

William M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the Amer-
ican Statistical Association, 66(336):846–850, 1971. ISSN 01621459.

D. E Rumelhart. Personal communication. Princeton, 1987.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv, abs/1703.03864, 2017.

Abigail See, Minh-Thang Luong, and Christopher D. Manning. Compression of neural machine
translation models via pruning. In Proceedings of The 20th SIGNLL Conference on Computa-
tional Natural Language Learning, Berlin, Germany, August 2016. Association for Computa-
tional Linguistics.

Vikas Sindhwani, Tara N. Sainath, and Sanjiv Kumar. Structured transforms for small-footprint
deep learning. In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
pp. 3088–3096, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural network through augmenting topolo-
gies. Evolutionary Computation, 10(2):99–127, 2002.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural In-
formation Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 2692–2700, 2015.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992. doi: 10.1007/BF00992696. URL
https://doi.org/10.1007/BF00992696.

Saining Xie, Alexander Kirillov, Ross B. Girshick, and Kaiming He. Exploring randomly wired
neural networks for image recognition. CoRR, abs/1904.01569, 2019.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari Morcos. Playing the lottery with rewards and
multiple languages: lottery tickets in rl and nlp. arXiv, abs/1906.02768, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th In-
ternational Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

11

Under review as a conference paper at ICLR 2020

APPENDIX

A FULL PLOTS

A.1 TRAINING CURVES

We plot black vertical bars in order to denote a NAS update iteration. Different curves correspond
to different workers.

(a)

(b)

Figure 6: Minitaur Ablation Studies

12

Under review as a conference paper at ICLR 2020

(a)

(b)

Figure 7: HalfCheetah Ablation Studies

13

Under review as a conference paper at ICLR 2020

(a)

(b)

Figure 8: Other environments (Swimmer, Reacher, Hopper, Walker, Pusher, Striker, Thrower, Ant)

14

Under review as a conference paper at ICLR 2020

A.2 MAXIMUM REWARD CURVES

In order to view the maximum rewards achieved during the training process, for each
worker at every NAS iteration, we record the maximum reward within the interval
[NAS iteration · T, (NAS iteration +1) · T), where T stadns for the current number of conducted
timestpes.

(a)

(b)

Figure 9: Maximum Reward Curves - Minitaur Ablation Studies

15

Under review as a conference paper at ICLR 2020

(a)

(b)

Figure 10: Maximum Reward Curves - HalfCheetah Ablation Studies

16

Under review as a conference paper at ICLR 2020

(a)

(b)

Figure 11: Maximum Reward Curves - other environments (Swimmer, Reacher, Hopper, Walker,
Pusher, Striker, Thrower, Ant)

17

Under review as a conference paper at ICLR 2020

B EXACT SETUP AND HYPERPARAMETERS

B.1 CONTROLLER SETUP

We set LSTM hidden layer size to be 64, with 1 hidden layer. The learning rate was 0.001, and the
entropy penalty strength was 0.3. We used a moving average weight of 0.99 for the critic, and used
a temperature of 1.0 for softmax, with the training algorithm as REINFORCE.

B.2 POLICY

We use tanh non-linearities. For all the environments, we used reward normalization, and state
normalization from (Mania et al., 2018a) except for Swimmer. We further used action normalization
for the Minitaur tasks.

B.3 ES-ALGORITHM

For ES-optimization, we used algorithm from (Choromanski et al., 2018), where we applied
Monte Carlo estimators of the Gaussian smoothings to conduct gradient steps using forward finite-
difference expressions. Smoothing parameter σ and learning rate η were: σ = 0.1, η = 0.01.

C PARTITIONINGS METRICS

We analyzed obtained partitionings to understand whether they admit simpler representations and
how they relate to the partitionings corresponding to Toeplitz-like matrices that are used on a regular
basis for the compactification of RL policies.

C.1 SINGLE PARTITIONING METRICS

Partitionings’ Entropies: We analyze the distribution of color assignments for network edges
for a partitioning, by interpreting the number of edges assigned for each color as a count, and
therefore a probability after normalizing by the total number of edges. We computed entropies of
the corresponding probabilistic distributions encoding frequencies of particular colors. We noticed
that entropies are large, in particular the representations will not substantially benefit from further
compacification using Huffman coding (see: Fig. 12).

(a)

Figure 12: The blue bars count the number of produced partitionings with the entropy within given
range. For the comparison the entropy of the random uniform partitioning is presented as a red line.

18

Under review as a conference paper at ICLR 2020

Displacement Rank: Recall that the displacement rank (Sindhwani et al., 2015; Demmel & Koev)
of a matrix R with respect to two matrices: F,A is defined as the rank of the resulting matrix
∇F,A(R) = FR − RA. Toeplitz-type matrices are defined as those that have displacement rank 2
with respect to specific band matrices (Sindhwani et al., 2015; Demmel & Koev). We further analyze
the displacement ranks of the weight matrices for our chromatic networks, and find that they are full
displacement rank using band matrices (F,A) for both the Toeplitz- and the Toeplitz-Hankel-type
matrices (see: Fig. 13).

(a)

(b)

Figure 13: Displacement Ranks of Weight Matrices induced by Partitions at the end of training. We
round an entry of the matrix to 0 if its absolute value is less than 0.1.

19

Under review as a conference paper at ICLR 2020

C.2 PAIRWISE PARTITIONINGS METRICS

We examine the partitionings produced by the controller throughout the optimization by defining
different metrics in the space of the partitionings and analyzing convergence of the sequences of
produced partitionings in these matrics. We view partitionings as clusterings in the space of all
edges of the network. Thus we can use standard cluster similarity metrics such as RandIndex (Rand,
1971) and Variation of Information (Meilă, 2003). Distance metric counts the number of edges
that reside in different clusters (indexed with the indices of the vector of distinct weights) in two
compared partitionings/clusterings. We do not observe any convergence in the analyzed metrics
(see: Fig.14). This suggests that the space of the partitionings found in training is more complex.
We leave its analysis for future work.

(a)

Figure 14: Variation of Information (VI), RandIndex, and Distance. X-axis corresponds to NAS
iteration number during training.

20

Under review as a conference paper at ICLR 2020

D TRANSFERABILITY

We tested transferability of partitionings across different RL tasks by using the top-5 partitionings
(based on maximal reward) from HalfCheetah (one-hidden-layer network of size h = 41), and
using them to train distinct weights (for the inherited partitionings) using vanilla-ES for Walker2d
(both environments have state and action vectors of the same sizes). This is compared with the
results when random partitionings were applied. Results are presented on Fig.15. We notice that
transfered partitionings do not underperform. We leave understanding the scale in which these
learned partitionings can be transfered across tasks to future work.

(a) (b)

Figure 15: (a): Random partitioning used to train Walker2d. (b): Transfer of the partitioning from
HalfCheetah to Walker2d. Transfered partitionings do not underperform.

E EXPERIMENT SETUP FOR BASELINES IN TABLE 2

We compare the Chromatic network with other established frameworks for structrued neural network
architectures. In particular, we consider Unstructured, Toeplitz, Circulant and a masking mechanism
(Choromanski et al., 2018; Lenc et al., 2019). We introduce their details below.

Notice that all baseline networks share the same general architecture: 1-hidden layer with h = 41
units and tanh non-linear activation. To be concrete, we only have two weight matrices W1 ∈
R|S|×h,W2 ∈ Rh×|A| and two bias vectors b1 ∈ Rh, b2 ∈ R|A|, where |S|, |A| are dimensions of
state/action spaces. These networks differ in how they parameterize the weight matrices.

Unstructured. A fully-connected layer with unstructured weight matrix W ∈ Ra×b has a total of
ab independent parameters.

Toeplitz. A toeplitz weight matrixW ∈ Ra×b has a total of a+b−1 independent parameters. This
architecture has been shown to be effective in generating good performance on benchmark tasks yet
compressing parameters (Choromanski et al., 2018).

Circulant. A circulant weight matrix W ∈ Ra×b is defined for square matrices a = b. We
generalize this definition by considering a square matrix of size n × n where n = max{a, b} and
then do a proper truncation. This produces n independent parameters.

Masking. One additional technique for reducing the number of independent parameters in a
weight matrix is to mask out redundant parameters (Lenc et al., 2019). This slightly differs from the
other aforementioned architectures since these other architectures allow for parameter sharing while
the masking mechanism carries out pruning. To be concrete, we consider a fully-connected matrix
W ∈ Ra×b with ab independent parameters. We also setup another mask weight S ∈ Ra×b. Then
the mask is generated via

M = softmax(M/α),

where softmax is applied elementwise and α is a constant. We set α = 0.01 so that the softmax
is effectively a thresolding function wich outputs near binary masks. We then treat the entire con-
catenated parameter θ = [W,S] as trainable parameters and optimize both using ES methods. At

21

Under review as a conference paper at ICLR 2020

convergence, the effective number of parameter is ab ·η where η is the proportion of M components
that are non-zero. During optimization, we implement a simple heuristics that encourage sparse
network: while maximize the true environment return R =

∑
t rt, we also maximize the number of

mask entries that are zero 1− η. The ultimate ES objective is: R′ = β ·R+ (1−β) · (1− η), where
β ∈ [0, 1] is a combination coefficient which we anneal as training progresses. We also properly
normalize R and (1− η) before the linear combination to ensure that the procedure is not sensitive
to reward scaling.

22

