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ABSTRACT

A key feature of intelligent behavior is the ability to learn abstract strategies that
transfer to unfamiliar problems. Therefore, we present a novel architecture, based
on memory-augmented networks, that is inspired by the von Neumann and Har-
vard architectures of modern computers. This architecture enables the learning of
abstract algorithmic solutions via Evolution Strategies in a reinforcement learning
setting. Applied to Sokoban, sliding block puzzle and robotic manipulation tasks,
we show that the architecture can learn algorithmic solutions with strong general-
ization and abstraction: scaling to arbitrary task configurations and complexities,
and being independent of both the data representation and the task domain.

1 INTRODUCTION

Transferring solution strategies from one problem to another is a crucial ability for intelligent be-
havior (Silver et al., 2013). Current learning systems can learn a multitude of specialized tasks, but
extracting the underlying structure of the solution for effective transfer is an open research prob-
lem (Taylor & Stone, 2009). Abstraction is key to enable these transfers (Tenenbaum et al., 2011)
and the concept of algorithms in computer science is an ideal example for such transferable abstract
strategies. An algorithm is a sequence of instructions, which solves a given problem when executed,
independent of the specific instantiation of the problem. For example, consider the task of sort-
ing a set of objects. The algorithmic solution, specified as the sequence of instructions, is able to
sort any number of arbitrary classes of objects in any order, e.g., toys by color, waste by type, or
numbers by value, by using the same sequence of instructions, as long as the features and compare
operations defining the order are specified. Learning such structured, abstract strategies enables the
transfer to new domains and representations (Tenenbaum et al., 2011). Moreover, abstract strategies
as algorithms have built-in generalization capabilities to new task configurations and complexities.

Here, we present a novel architecture for learning abstract strategies in the form of algorithmic so-
lutions. Based on the Differential Neural Computer (Graves et al., 2016) and inspired by the von
Neumann and Harvard architectures of modern computers, the architectures modular structure al-
lows for straightforward transfer by reusing learned modules instead of relearning, prior knowledge
can be included, and the behavior of the modules can be examined and interpreted. Moreover, the
individual modules of the architecture can be learned with different learning settings and strate-
gies – or be hardcoded if applicable – allowing to split the overall task into easier subproblems,
contrary to the end-to-end learning philosophy of most deep learning architectures. Building on
memory-augmented neural networks (Graves et al., 2016; Neelakantan et al., 2016; Weston et al.,
2015; Joulin & Mikolov, 2015), we propose a flexible architecture for learning abstract strategies as
algorithmic solutions and show the learning and transferring of such in symbolic planning tasks.

1.1 THE PROBLEM OF LEARNING ALGORITHMIC SOLUTIONS

We investigate the problem of learning algorithmic solutions which are characterized by three re-
quirements: R1 – generalization to different and unseen task configurations and task complexities,
R2 – independence of the data representation, and R3 – independence of the task domain.

Picking up the sorting algorithm example again, R1 represents the ability to sort lists of arbitrary
length and initial order, while R2 and R3 represent the abstract nature of the solution. This ab-
straction enables the algorithm, for example, to sort a list of binary numbers while being trained
only on hexadecimal numbers (R2). Furthermore, the algorithm trained on numbers is able to sort
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Figure 1: The proposed architecture with its modules inspired by computer architectures. In this work the
modules are based on neural networks. Information flow is divided into data and control streams. The modules
inside the highlighted area are learning the algorithmic solution in a reinforcement learning setting, whereas
the others (data modules) are learned independently in a supervised setting or can use hardcoded information.

lists of strings (R3). If R1 – R3 are fulfilled, the algorithmic solution does not need to be retrained
or adapted to solve unforeseen task instantiations – only the data specific operations need to be
adjusted.

Research on learning algorithms typically focuses on identifying algorithmic generated patterns or
solving algorithmic problems (Neelakantan et al., 2016; Zaremba & Sutskever, 2014; Kaiser &
Sutskever, 2016; Kaiser & Bengio, 2016), less on finding algorithmic solutions (Joulin & Mikolov,
2015; Zaremba et al., 2016) fulfilling the three discussed requirements R1 – R3. While R1 is typi-
cally tackled, as it represents the overall goal of generalization in machine learning, the abstraction
abilities from R2 and R3 are missing. Additionally, most algorithms require a form of feedback,
using computed intermediate results from one computational step in subsequent steps, and a vari-
able number of computational steps to solve a problem instance. Thus, it is necessary to be able
to cope with varying numbers of steps and determining when to stop, in contrast to using a fixed
number of steps (Neelakantan et al., 2016; Sukhbaatar et al., 2015), making the learning problem
more challenging in addition.

A crucial feature for algorithms is the ability to save and retrieve data. Therefore, augmenting
neural networks with different forms of external memory, e.g., matrices, stacks, tapes or grids, to
increase their expressiveness and to separate computation from memory, especially in long time
dependencies setups, is an active research direction (Graves et al., 2016; Weston et al., 2015; Joulin
& Mikolov, 2015; Zaremba et al., 2016; Sukhbaatar et al., 2015; Kumar et al., 2016; Greve et al.,
2016) with earlier work in the field of grammar learning (Das et al., 1992; Mozer & Das, 1993; Zeng
et al., 1994). These memory-augmented networks improve performance on a variety of tasks like
reasoning and inference in natural language (Graves et al., 2016; Weston et al., 2015; Sukhbaatar
et al., 2015; Kumar et al., 2016), learning of simple algorithms and algorithmic patterns (Joulin &
Mikolov, 2015; Zaremba et al., 2016; Graves et al., 2014), and navigation tasks (Wayne et al., 2018).

The contribution of this paper is a novel modular architecture building on a memory-augmented
neural network (DNC (Graves et al., 2016)) for learning algorithmic solutions in a reinforcement
learning setting. We show that the learned solutions fulfill all three requirements R1 – R3 for an
algorithmic solution and the architecture can process a variable number of computational steps.

2 A NEURAL COMPUTER ARCHITECTURE FOR ALGORITHMIC SOLUTIONS

In this section, we introduce the novel modular architecture for learning algorithmic solutions,
shown in Figure 1. The architecture builds on the Differential Neural Computer (DNC) (Graves
et al., 2016) and its modular design is inspired by modern computer architectures, related to (Nee-
lakantan et al., 2016; Weston et al., 2015).

The DNC augments a controller neural network with a differentiable autoassociative external mem-
ory to separate computation from memory, as memorization is usually done in the networks weights.
The controller network learns to write and read information from that memory by emitting an inter-
face vector which is mapped onto different vectors by linear transformations. These vectors control
the read and write operations of the memory, called read and write heads. For writing and read-
ing, multiple attention mechanisms are employed, including content lookup, temporal linkage and
memory allocation. Due to the design of the interface and the attention mechanisms, the DNC is in-
dependent of the memory size and fully differentiable, allowing gradient-based end-to-end learning.
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Our architecture. In order to learn algorithmic solutions, the computations need to be decoupled
from the specific data and task. To enable such data and task independent computations, we propose
multiple alterations and extensions to the DNC, inspired by modern computer architectures.

First, information flow is divided into two streams, data and control. This separation allows to disen-
tangle data representation dependent manipulations from data independent algorithmic instructions.
Due to this separation, the algorithmic modules need to be extended to include two memories, a data
and a computational memory. The data memory stores and retrieves the data stream, whereas the
computational memory works on information generated by the control signal flow through the learn-
able controller and memory transformations. The two memories are coupled, operating on the same
locations, and these locations are determined by the computational memory, and hence by the con-
trol stream. As with the DNC, multiple read and write heads can be used. In our experiments, one
read and two write heads are used, with one write head constrained to the previously read location.

In contrast to the DNC, but in line with the computer architecture-inspired design and the goal of
learning deterministic algorithms, writing and reading uses hard attentions instead of soft atten-
tions. Hard attention means that only one memory location can be written to and read from (unique
addresses), instead of an weighted average over all locations as with soft attentions. Such hard at-
tention was shown to be beneficial for generalization (Greve et al., 2016). We also employed an
additional attention mechanism for reading, called usage linkage, similar to the temporal linkage of
the DNC, but instead of capturing temporal relations, it captures usage relations, i.e., the relation
between written memory location and previously read location. With both linkages in two direc-
tions and the content look up, the model has five attention mechanisms for reading. While the final
read memory location is determined by a weighted combination of these attentions (see attention in
Figure 5 in the Appendix), each attention mechanism itself uses hard decisions, returning only one
memory location. See Appendix C for the effect of the introduced modifications and extensions.

For computing the actual solution, operating only on the control stream is not enough, as the model
still needs to manipulate the data. Therefore, we added several modules operating on the data stream,
inspired by the architecture of computers. In particular, an Input, TransformD, ALU (arithmetic logic
unit) and Output module were added (more details in Section 2.2). These modules manipulate the
data, steered by the algorithmic modules. The full architecture is shown in Figure 1.

As algorithms typically involve recursive or iterative data manipulation, the model receives its own
output as input in the next computation step, making the whole architecture an output-input model.
With all aforementioned extensions, algorithmic solutions fulfilling R1 – R3 can be learned.

2.1 THE ALGORITHMIC MODULES

The algorithmic modules consist of the Controller, the Memory and the TransformC module and
build the core of the model. These modules learn the algorithmic solution operating on the control
stream. With t as the current computational step and c as the control stream (see Figure 1), the
input-output of the modules are C(ci,t, cm,t−1, cf,t−1, ca,t−1, co,t−1) 7−→ cc,t , M(ci,t, cc,t) 7−→
cm,t, dm,t and TC(cc,t, cm,t, ci,t) 7−→ cf,t. The algorithmic modules are based on the DNC with the
alterations and extensions described before. Next we discuss how these algorithmic modules can be
learned before looking into the data-dependent modules.

2.1.1 LEARNING OF THE ALGORITHMIC MODULES

Learning the algorithmic modules, and hence the algorithmic solution, is done in a reinforcement
learning setting using Natural Evolution Strategies (NES) (Wierstra et al., 2014). NES is a blackbox
optimizer that does not require differentiable models, giving more freedom to the model design,
e.g., the hard attention mechanisms are not differentiable. NES updates a search distribution of
the parameters to be learned by following the natural gradient towards regions of higher fitness
using a population of offsprings (altered parameters) for exploration. Let θ be the parameters to be
learned and using an isotropic multivariate Gaussian search distribution with fixed variance σ2, the
stochastic natural gradient at iteration t is given by

∇θtEε∼N(0,I) [u(θt + σε)] ≈ 1

Pσ

P∑
i=1

u(θit)εi ,
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where P is the population size and u(·) is the rank transformed fitness (Wierstra et al., 2014). The
parameters are updated by

θt+1 = θt +
α

Pσ

P∑
i=1

u(θit)εi ,

with learning rate α. Recent research showed that NES and related approaches like Random
Search (Mania et al., 2018) or NEAT (Stanley & Miikkulainen, 2002) are powerful alternatives in
reinforcement learning. They are easier to implement and scale, perform better with sparse rewards
and credit assignment over long time scales, have fewer hyperparameters (Salimans et al., 2017) and
were used to train memory-augmented networks (Greve et al., 2016; Merrild et al., 2018).

For robustness and learning efficiency, weight decay for regularization (Krogh & Hertz, 1992) and
automatic restarts of runs stuck in local optima are used as in (Wierstra et al., 2014). This restarting
can be seen as another level of evolution, where some lineages die out. Another way of dealing with
early converged or stuck lineages is to add intrinsic motivation signals like novelty, that help to get
attracted by another local optima, as in NSRA-ES (Conti et al., 2018). In the experiments however,
we found that within our setting, restarting – or having an additional survival of the fittest on the
lineages – was more effective, see Appendix C for a comparison.

The algorithmic solutions are learned in a curriculum learning setup (Bengio et al., 2009) with
sampling from old lessons (Zaremba & Sutskever, 2014) to prevent unlearning and to foster gener-
alization. Furthermore, we created bad memories, a learning from mistakes strategy, similar to the
idea of AdaBoost (Freund & Schapire, 1997), which samples previously failed tasks to encourage
focusing on the hard tasks. This can also be seen as a form of experience replay (Mnih et al., 2015;
Lin, 1992), but only using the task configurations, the initial input to the model, not the full gen-
erated sequence. Bad memories were developed for training the data-dependent modules to ensure
their robustness and 100% accuracy, which is crucial to learn algorithmic solutions. If the individual
modules do not have 100% accuracy, no stable algorithmic solution can be learned even if the algo-
rithmic modules are doing the correct computations. For example, if one module has an accuracy
of 99%, the 1% error prevents learning an algorithmic solution that works always. This problem
is even reinforced as the proposed model is an output-input architecture that works over multiple
computation steps using its own output as the new input – meaning the overall accuracy drops to
36.6% for 100 computation steps. Therefore using the bad memories strategy, and thus focusing on
the mistakes, helps significantly in achieving robust results when learning the modules, enabling the
learning of algorithmic solutions. While the bad memories strategy was crucial to achieve 100% ro-
bustness when training the data-dependent modules, the effect on learning the algorithmic solutions
was less significant (see Appendix C for an evaluation).

2.2 DATA-DEPENDENT MODULES

The data-dependent modules (Input, ALU, TransformD and Output) are responsible for all operations
that involve direct data contact, such as receiving the input data from the outside or manipulating a
data word with an operation chosen by the algorithmic modules. Thus, these modules need to be
learned or designed for a specific data representation and task. However, as all modules only have
to perform a certain subtask, these modules are typically easier to train.

As learning the algorithmic modules via NES does not rely on gradients and due to the infor-
mation flow split, the data-dependent modules can be instantiated arbitrarily, e.g., can have non-
differentiable parts, do not need to be neural networks or can be hardcoded. Therefore, prior knowl-
edge can be incorporated by implementing it directly into these modules. The modular design
facilitates the transfer of learned modules, e.g., using the same algorithmic solution in a new domain
without retraining the algorithmic modules or learning a new algorithm within the same domain
without retraining the data modules. Next the general functionality of the modules will be explained.

The Input module is the interface to the external world and responsible for data preprocessing.
Therefore, it receives the external input data and the data from the previous computational step. It
sends data to the memory and control signals to the subsequent modules with information about the
presented data or the state of the algorithm – formally as I(de,t, do,t−1) 7−→ ci,t, di,t .

The ALU module performs the basic operations which the architecture can use to modify data.
Therefore, it receives the data and a control signal indicating which operation to apply and outputs
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Figure 2: Examples of search trees that the architecture implicitly learned to generate to solve a given symbolic
planning task, where si corresponds to task configurations and ak to ALU operations that transform the task
configuration. (a) corresponds to a task from curriculum level 3 with a maximum number of computations
steps of 15 including backtracking. (b) shows the tree for a task that required 330.631 computation steps
(corresponds to level 82.656) that was solved by an algorithmic solution that triggered learning only until 15
steps, the complexity shown in (a).

the modified data and control signals about the operation – A(cf,t, df,t) 7−→ ca,t, da,t. As in many
applications the basic operations only modify a part of the data and to reduce the complexity of the
ALU, a TransformD module extracts the relevant part from the data beforehand – TD(dm,t) 7−→
df,t – or just transfers the unmodified data if no transformation is required for the task.

The Output module combines the result of the data manipulation operation from the ALU module
and the data before the manipulation. It inserts the local change done by the ALU into the original
data word –O(ca,t, da,t, dm,t) 7−→ co,t, do,t. As before with the Transformation module, depending
on the task, the Output module can also be designed to just pass on the received data.

3 EXPERIMENTS

We investigate the learning of symbolic planning tasks, where task complexity is measured as the
number of computational steps required to solve a task, i.e., the size of the corresponding search tree
(see Figure 2). Learning is done in the Sokoban domain, whereas the generalization and abstraction
requirements R1 – R3 are shown by transferring to (1) longer planning tasks, (2) bigger Sokoban
worlds, (3) a different data representation, and (4) two different task domains – sliding block puzzle
and robotic manipulation.

In Sokoban, an agent interacts in a grid world with four actions – moving up, right, down or left.
Therefore, the ALU can perform four operations and additionally a nop operation that leaves the
given configuration unchanged. The world contains empty spaces that can be entered, walls that
block movement and boxes that can be pushed onto empty space. A task is given by a start configu-
ration of the world and the desired goal configuration. For learning, we use a world of size 6×6 that
is enclosed by walls. A world is represented with binary vectors and four-dimensional one-hot en-
codings for each position, resulting in 144-dimensional data words. The configuration of each world
– inner walls, boxes and agent position – is sampled randomly. Each world is generated by sampling
uniformly the number of additional inner walls from [0, 2] and boxes from [1, 5]. The positions of
these walls, boxes and the position of the agent are sampled uniformly from the empty spaces. An
example task and the learned solution is shown in the Appendix in Figure 5 – the penguin is the
agent, icebergs are boxes, iceblocks are walls and water is empty space.

3.1 ALGORITHMIC MODULES

In the experiments we use a feedforward neural network as Controller with a layer size of 16 neurons
and tanh activation. The TransformC is a linear layer projecting its 27-dimensional input onto the
5 operations of the ALU using leaky-ReLU activation and one-hot encoding. The computational
memory has a word size of 8 bit, the Input module generates 3 control signals (2 for Learning to
Search), and the ALU and Output module control signal feedback is not used here. Thus, the input
to the Controller consists of 16 control signals and in total there are about 1600 parameters.

3.1.1 LEARNING OF THE DATA-DEPENDENT MODULES

All data-dependent modules are trained in a supervised setting and consist of feedforward networks.
They optimize a cross entropy loss using Adam (Kingma & Ba, 2015) on a mini-batch size of
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20. To improve their generalization and robustness, the bad memories mechanism described in
Section 2.1.1 is used with a buffer size of 200 and 50% of the samples within a mini-batch are
sampled from that. The following task-dependent instantiations of the data-dependent modules are
examples used for the Sokoban domain.

The Input module learns an equality function using differential rectifier units as inductive
bias (Weyde & Kopparti, 2018) and consists of a feedforward network with 10 hidden units and
leaky-ReLU activation. Using the learned binary equality signal Ie,t at step t, it produces three bi-
nary control signals according to c[1]i,t = (1−Ie,t)−c[2]i,t−1, c

[2]
i,t = Ie,t+c

[2]
i,t−1, and c[3]i,t = Ie,tc

[2]
i,t−1 ,

indicating the different phases of the algorithm. For the Learning to Search experiment only the first
two signals are used.

The TransformD module extracts a different view on the data, if required by the ALU, as de-
scribed in Section 2.2. Here, it consists of a feedforward network with 500 hidden neurons and
uses leaky-ReLU activation. For the Sokoban domain, the actions that the agent can take – and
therefore the operation the ALU can apply – only change the world locally. Thus, the TransformD
module extracts a local observation of the world df , i.e., the agent and the two adjacent locations in
all four directions, as these are the only locations where an action can produce a change.

The ALU module receives the data view extracted by TransformD and the control signal from
TransformC, that encodes the operation to apply. It learns to apply the operations, i.e., it learns an
action model by learning preconditions and effects, and outputs the (potential) local change together
with a control signal indicating if the action changed the world or not. The local change is encoded as
the direction of the change and the three according spaces. The module consists of two feedforward
networks, one for the control signal ca and one for applying the actions producing the manipulated
data da. The learned ca is used to gate the output between the output of the action network and the
data input without change. The control network has two hidden layers with sizes [64, 64], the action
network has hidden layers with [128, 64] neurons and both use leaky-ReLU activations.

The Output module inserts the (locally) changed data from the ALU into the data stream. It receives
the data from the memory dm, the data da and control stream ca from the ALU. It consists of two
feedforward networks for learning the data do and the control signal co stream. The control network
has two hidden layers with sizes [500, 250], the data network has hidden layers with [500, 500]
neurons and both use leaky-ReLU activations. The control signal co is used for gating between
the data with the inserted change and the original data dm. To ensure that the Output module uses
the manipulated data of the ALU and is not learning to manipulate the data itself, it is constrained to
learn a binary mask that indicates where the change needs to be inserted. This binary map indicates
for each position in da where to insert it in dm and can be seen as a structured prediction problem.
Note, the training data only consists of data and control signals, the true binary mask is not known.

3.2 LEARNING ALGORITHMIC SOLUTIONS

We investigate the learning of two algorithms, (1) a search algorithm and (2) a search-based planning
algorithm. The data-dependent modules do not need to be retrained for the different algorithms. For
evaluating that the learned strategy is an abstract algorithmic solution, we show that it fulfills the
three requirements R1 – R3 discussed in Section 1.1.

3.2.1 LEARNING TO SEARCH

In the first task, the model has to learn breadth-first-search to find the desired goal configuration.
For that purpose, the initial input to the model is the start and goal configuration and subsequent
inputs are the goal configuration and the output of the model from the previous computation step.
To solve the task, the model has to learn to produce the correct search tree and recognizing that the
goal configuration is reached by choosing the nop operation for the correct computation step.

For the curriculum learning the levels are defined as the number of nodes from the search tree that
have to be fully explored, e.g., for Level 1, up to five correct computation steps have to be performed
on the initial configuration; for Level 3 the initial configuration as well as the two subsequently
found configurations need to be fully explored (see Figure 2(a)). This requires up to 13 correct
computational steps. Curriculum levels are specified up to Level 21 that involves up to 85 correct
computation steps to be solved. An additional Level 22 is activated afterwards that consists of new
samples from all 21 levels for evaluation. To prevent unlearning of previous levels, 20% of the
samples in the mini-batch are sampled uniformly from previous levels. As in (Wierstra et al., 2014)
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we use restarting, but here the run automatically restarts if the maximum fitness of a level is not
reached within 2500 iterations. All experiments have a total budget of 10.000 iterations.

The fitness function f uses step-wise binary losses computed as comparison to the correct solution
over mini-batches of N samples and is defined as

f =

{
1
N

∑N
n f

[n]
e if 1

N

∑N
n f

[n]
e < 100

1
N

∑N
n f

[n]
e + f

[n]
b otherwise

, with

(1)

f [n]e =
100

3T
[n]
e

∑T [n]
e

t=1
I(c

[n]
f,t = c̃

[n]
f,t) + 2I(d

[n]
m,t = d̃

[n]
m,t) and f

[n]
b = 20I(c

[n]

f,T
[n]
e +1

= nop) ,

where Te is the number of steps required for constructing the search tree or when the first mistake
occurs, cf,t is the operation chosen to be applied by the ALU from TransformC at step t, dm,t
is the data word read from the memory, and c̃f,t and d̃m,t are the correct choices respectively. The
exploration fitness f [n]e captures the fraction of correct computation steps until the goal configuration
is found, scaled to 0-100%. Note that, NES therefore only uses a single scalar value that summarizes
the performance of the parameters over N samples and all computational steps. The learning rate α
is to 0.01, the σ of the search distribution to 0.1, weight decay is applied with 0.9995, mini-batch
size is N = 20 and the population size is P = 20.

We use a gini coefficient based ranking that gives more importance to samples with higher fit-
ness (Schaul et al., 2010). The maximum fitness is 120 for all levels and a level is solved when
250 subsequent iterations have the maximum fitness, i.e., 5000 samples are solved correctly. The
bad memories consist of 200 samples and 25% of the samples within a mini-batch are sampled uni-
formly from those. Whenever 10 subsequent iterations achieve the maximum fitness, the buffer is
cleared and no learning is performed.

3.2.2 LEARNING TO PLAN (SEARCH + BACKTRACK)
In the second task, the model has to learn, in addition to the breadth-first-algorithm that computes
a search tree to the goal configuration, to also extract the path from the search tree that encodes
the solution to the given planning problem (see Figure 2 and Figure 5 in the Appendix). Therefore,
the model has to not only learn to encode and perform two different algorithms, but also to switch
between them at the correct computation step.

The initial input to the model is the start and goal configuration and subsequent inputs are the goal
configuration and the output of the model from the previous computation step, as before. When the
goal configuration is found by the model, the input is the start configuration and the previous output.
To solve the task, the model has to learn to produce the search tree and recognizing that the goal
configuration is reached as before. In addition, after recognizing the goal configuration, the model
needs to switch behavior and output the path of the search tree encoding the planning solution. This
solution consists of the states from the initial to the goal configuration and nop operations in reverse
order. Therefore, the number of maximum computation steps increases up to 89 in Level 21. The
fitness function is defined as in Equation equation 1 but with

f
[n]
b =

50

3T
[n]
b

∑T [n]
e +T

[n]
b

t=T
[n]
e +1

I(c
[n]
f,t = nop) + 2I(d

[n]
m,t = d̃

[n]
m,t) ,

where Tb is the number of steps required for backtracking the solution or when the first mistakes
occurs. The maximum fitness is 150 and all other settings remain as before.

3.3 R1 – GENERALIZATION TO UNSEEN TASK CONFIGURATIONS AND COMPLEXITIES

A main goal in all learning tasks, is to achieve generalization – to not only learn to solve seen
situations, but to learn a solution that generalizes to unseen situations. One evaluation of this gen-
eralization ability is built into our learning process itself. A curriculum level is solved after 250
subsequent iterations (5000 samples) with maximum fitness and iterations with maximum fitness do
not trigger learning. Thus, if presenting a new level that involves more complex tasks, the fitness
stays at maximum and no learning is triggered, the previously learned solution generalizes to the
new setting – generalizes to more complex tasks (see Figure 2).

7



Under review as a conference paper at ICLR 2020

0 5000 10000
iterations (1363 for training)

0

50

100
120

fit
ne

ss

5

1

21

5

37

9

53

13

69

17

85

21

task complexity as #correct computation steps

#curriculum level

task solved
fitness learning
fitness evaluation
curriculum level solved

(a) Learning to Search (ours).

0 5000 10000
iterations (2563 for training)

0

50

100

150

fit
ne

ss

7

1

24

5

41

9

57

13

73

17

89

21

task complexity as #correct computation steps

#curriculum level

task solved
fitness learning
fitness evaluation
curriculum level solved

(b) Learning to Plan (ours).

(c) Learning to Search comparison.

0

500

1000

1500

le
ar

ni
ng

 it
er

at
io

ns

15

15
15

5
6

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

15
15

15

2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Learning to Search (total learning iterations: 2719 ± 1592 )
Learning to Plan (total learning iterations: 3150 ± 825 )

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
curriculum levels

0
5

10
15

ac
tiv

e 
ru

ns

(d) Evaluation over 15 runs (ours).

Figure 3: (a-c) The gray dashed line marks the maximum fitness and the colored lines show the fitness. The
light colors indicate that the maximum fitness is achieved and no learning is triggered. The colored dashed lines
indicate when a curriculum level was solved successfully. When no learning is triggered after a new level is
unlocked, the model generalized to more complex tasks. The top numbers indicate the number of computational
steps the model needs to perform correctly to solve samples of the associated curriculum level. (c) Comparison
with the original DNC and a stack-augmented neural network on the Learning to Search task over 10 runs.
In contrast to our architecture, both methods are trained in a supervised setup with gradient descent and cross-
entropy loss, i.e., have a richer and localized training signal. For comparison the mean and standard deviation of
the same fitness function that our model uses for training is shown. Both are not able to successfully solve Level
1 within considerably more iterations. (d) 15 runs of the two learning tasks, highlighting that learning happens
during the first levels and generalizes to the subsequent levels. Bar plot shows mean and standard deviation of
the number of learning iterations, numbers on top of the bars show the number of runs that triggered learning
in that level. Lower plot shows the number of runs that solved the according curriculum level, i.e., where they
ended after the budget of 10.000 iterations.

This generalization is shown in Figure 3. For example, in the Learning to Plan setup (Figure 3(b)),
after 3 levels the algorithmic solution is found and no learning is triggered anymore during the
run. Moreover, the last triggered learning was for curriculum Level 3 – meaning a complexity of
15 computational steps – and the found solution generalizes up to the highest specified curriculum
Level 21 with 89 computational steps. Learning the algorithmic solution is done within 3 levels and
2563 iterations. Figure 3(d) shows the evaluation of learning to solve the two tasks over 15 runs
each. In contrast, the original DNC (Graves et al., 2016) model and a stack-augmented recurrent
neural network for algorithmic patterns (Joulin & Mikolov, 2015) are not able to solve Level 1 when
trained in a supervised setup with gradient descent and considerably more training iterations, see
Figure 3(c) and the Appendix B for implementation details.

Task complexity. Additionally, we evaluated the learned algorithmic solution with task complexities
far beyond the specified curriculum learning levels, i.e., complexities experienced during training.
Therefore, we used the run shown in Figure 3(b) and solved tasks requiring 330.631 computational
steps (corresponds to level 82.656), having been trained only up to 15 steps (see Figure 2 for the
complexities) and having been tested during training only up to 89 steps. Remember the models
recurrent output-input structure, given the initial task input, the model performs 330.631 compu-
tational steps, i.e., learns to build a search tree with over 330.600 nodes, autonomously correct to
compute and output the solution. Moreover, the solution learned in 6×6 environments, successfully
solved all tasks within 8×8 environments. Thus, the learned strategy represents an abstract algorith-
mic solution that generalizes and scales to arbitrary task configurations and complexities, fulfilling
R1. The learned algorithmic solution is explained with an example in the Appendix A.

3.4 R2 – INDEPENDENCE OF THE DATA REPRESENTATION

Algorithmic solutions are independent of the data representation, meaning the abstract strategy is
still working if the encoding is changed, as long as the data-dependent operations are adjusted.
Consider again a sorting algorithm. Its algorithmic behavior stays the same independent of if it
has to sort a list of numbers encoded binary or hexadecimally, as long as the compare operators
are defined. To show that our learned algorithmic solutions have this feature and fulfill R2, we
change the representation of the data, but reuse the learned algorithmic modules and the model can
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trained
representation

new
representation

start 
config.

goal
config.

goal
config.

start 
config.

Figure 4: Transferring the learned algorithmic solution (left) to a new data representation (R2) and (middle &
right) to two new task domains (R3). In all setups, all 200.000 samples over all curriculum levels are solved
correctly without triggering learning, indicated by the constant maximum fitness, showing the straightforward
transfer of the learned solution – the abstract features R2 and R3 of the learned solution.

still solve all tasks without retraining. The data-dependent modules are adapted and relearned. The
changed representation, e.g., the penguin represents a wall instead of the agent, and results over
10.000 iterations (200.000 samples) over all curriculum levels are shown in Figure 4 (left). The
fitness is at maximum from the start, showing that all samples in all levels are successfully solved
without triggering learning while operating on the new data representation and hence, R2 is fulfilled.

3.5 R3 – INDEPENDENCE OF THE TASK DOMAIN

Requirement R3 states that an algorithmic solution is independent of the task domain. Consider
again the sorting algorithm example: as long as the compare operators are defined, it is able sort
arbitrary objects. Therefore, the data-dependent modules are adapted and relearned but we reuse
the learned algorithmic solution on two new task domains.

As new domains, 3 × 3 sliding block puzzles and a robotic manipulation task are used (Figure 4).
Configurations are represented with binary vectors as described for Sokoban in Section 3. For the
puzzle domain, actions are sliding adjacent tiles onto the free (white) space from four directions.
A task configuration is given as a start and goal board configuration. In the robotic manipulation
domain, a task is given as start and goal configuration of the objects. The available actions are
the four locations on which objects can be stacked, e.g., the action pos1 encodes to move the
gripper to the position and place the grasped object on top, or to pick up the top object if no object
is grasped. The maximum stacking height is 3 boxes, resulting in a discrete representation of the
object configuration with a 3× 4 grid. As with the new data representation, the learned algorithmic
solution is able to solve all 200.000 presented samples from all curriculum levels in the new domains
without triggering learning (Figure 4), showing the independence of the task domain, fulfilling R3.

4 CONCLUSION

We present a novel architecture for learning algorithmic solutions and showed how it can learn
abstract strategies that generalize and scale to arbitrary task configurations and complexities (R1)
(Section 3.3), and are independent to both, the data representation (R2) (Section 3.4) and the task
domain (R3) (Section 3.5). Such algorithmic solutions represent abstract strategies that can be
transferred directly to novel problem instantiations, a crucial ability for intelligent behavior.

To show that our architecture is capable of learning strategies fulfilling the algorithm requirements
R1 – R3 in symbolic planning tasks, we performed experiments with complexities orders of magni-
tude higher than seen during training (15 vs. 330.631 steps, and Figure 2 & 3), and transferred the
learned solution to bigger state spaces, a new data representation and two new task domains (Fig-
ure 4) – showing, to the best of our knowledge, for the first time how such abstract strategies can be
represented and learned with memory-augmented networks. The learned algorithmic solution can
be applied to any problem that can be framed as such a symbolic search or planning problem.

The modular structure and the information flow of the architecture enable the learning of algo-
rithmic solutions, the transfer of those, and the incorporation of prior knowledge. Using Natural
Evolution Strategies for learning removes constraints on the individual modules, allowing for arbi-
trary module instantiations and combinations, and the beneficial use of a non-differentiable memory
module (Greve et al., 2016). As the complexity and structure of the algorithmic modules need to be
specified, it is an interesting road for future work to learn these in addition, building on the ideas
from Greve et al. (2016); Merrild et al. (2018). Showing how algorithmic solutions characterized by
R1 – R3 can be represented and learned with memory-augmented networks sets the foundation for
future work, extending beyond symbolic planning and incorporating intrinsic motivation (Oudeyer
& Kaplan, 2009; Baldassarre & Mirolli, 2013) to discover new and unexpected strategies.
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A BEHAVIOR OF THE LEARNED ALGORITHMIC SOLUTION

Figure 5 highlights the learned algorithmic behavior – one memory location is read with content
lookup attention repeatedly until all operations have been applied, the node is fully explored. Then
attention shifts towards temporal linkage to read the next data to be explored. This pattern contin-
uous until the goal configuration is found in step 11. After that, behavior changes to output the
backtracking solution by switching to usage linkage attention and nop operations until reaching the
initial configuration.

backtrack

start config.

goal config.

data from Output do

ALU command cf
computational steps

nop nop nop
search
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Figure 5: The behavior of the learned model on a task from Level 3 (see Sec. 3.2 for details) and the corre-
sponding search tree that is constructing implicitly. In the search phase, the model fully explores one node
by successively applying all operations, before reading the next node, until the goal is found. Then behavior
changes in the backtrack phase, where the solution of the planning task is emitted as the states from start to
goal in reverse order along with nop operations. The algorithmic behavior can also be seen in the repetitive
patterns of the attention vector, showing the five attention mechanisms for reading (temporal and usage linkage
in both directions, and content lookup), that represents how strong each mechanism for reading is used in each
computation step.

B DETAILS ON THE IMPLEMENTATIONS OF THE COMPARISON METHODS

Both models, the orignal Differential Neural Computer (DNC) (Graves et al., 2016) and the stack-
augmented recurrent network (Joulin & Mikolov, 2015) are trained in a supervised setting with
cross-entropy losses for 500.000 iterations to compensate the pretraining of the data modules. They
use the same output-input loop as our architecture, i.e., receiving their own output as input in the
next computation step in addition to the goal configuration. The loss is computed based on the
correct sequences of configurations and the control signal indicating that the goal has been reached,
similar like the fitness function from our architecture in equation 1. Both use a LSTM network with
256 hidden units as controller and the memory word size is set to 152, equal to our model. Like
our architecture, the DNC has one read and two write heads. The stack-augmented model uses four
stacks with the three actions PUSH, POP, and NO OP.

(a) Differential Neural Computer, reprinted with permission
from (Graves et al., 2016).

(b) Stack-augmented recurrent net-
work, reprinted with permission
from (Joulin & Mikolov, 2015) .

Figure 6
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C EVALUATION OF THE LEARNING PROCESS AND MODEL COMPONENTS

For evaluation the effect of the individual modifications and extensions we compared our architec-
ture with and without them on the Learning to Search task. In all setups all runs had a budget of
10.000 iterations. The bar plots show mean and standard deviation of the number of learning itera-
tions, numbers on top of the bars show the number of runs that triggered learning in that level. Plots
below the bar plot show the number of runs that successfully solved the according curriculum level,
i.e., where they ended after the budget of 10.000 iterations. All comparisons are done without the
restarting mechanisms, except in the evaluation for that mechanism.

NOVELTY AND RESTARTS

Here two mechanisms to face the problem of getting stuck in local optima are evaluated, namely the
automatic restart as in the original NES (Wierstra et al., 2014) and the use of an additional novelty
signal as in NSRA-ES (Conti et al., 2018). For the novelty calculation, we defined the behavior as
the sequence of read memory locations and applied ALU operations. The baseline model does not
use either of the two mechanisms. While we did not observe an improvement using novelty, the
automatic restarts reduced the number of learning iterations, see Figure 7. Note that the baseline
and novelty model are also able to learn algorithmic solutions, but they require more iterations and,
hence, they die out before the final curriculum level due to reaching the budget of 10.000 iterations.
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Figure 7: Evaluation of an additional novelty signal and automatic restarts.

CONSTRAINED WRITE HEAD

Here we evaluated the introduced constrained write head, that updates the previously read memory
location. We compared against two models without this constrained head, one with one write head
and one with two write heads to compensate the missing constrained head. The constrained head
was a necessary modification to enable the efficient learning of algorithmic solutions, see Figure 8.
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Figure 8: Evaluation of the introduced constrained write head.
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USAGE-LINKAGE AND HARD ATTENTION VS. SOFT ATTENTION

Here the introduced usage-linkage and hard attention mechanism for memory access are evaluated.
While using hard attention instead of soft attention was a necessary modification to enable efficient
learning of algorithmic solutions, the introduced usage-linkage had a smaller impact on the Learning
to Search task, as shown in Figure 9. When applied to the Learning to Plan setup however, the usage-
linkage improved the learning of algorithmic solutions significantly, see Figure 10. Both results
show that the model learns to use the attention mechanisms that are required for the algorithmic
solution, i.e., the usage-linkage is especially useful for the backtracking in the Learning to Plan
setup compared to the Learning to Search setup where no backtracking is required.
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Figure 9: Evaluation of the introduced usage-linkage attention and the hard attention memory access.
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Figure 10: Evaluation of the usage-linkage attention on the Learning to Plan setup.

BAD MEMORIES

The bad memories approach was developed while learning the data-dependent modules and was a
necessary mechanism to learn robust and generalized modules with 100% accuracy, as explained
in Section 2.1.1. For learning the algorithmic solutions, the impact of this learning from mistakes
strategy was less significant, see Figure 11.
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Figure 11: Evaluation of the bad memories mechanism.
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