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Convolutional Invasion and Expansion Networks
for Tumor Growth Prediction

Ling Zhang , Le Lu , Senior Member, IEEE, Ronald M. Summers, Electron Kebebew, and Jianhua Yao

Abstract— Tumor growth is associated with cell invasion
and mass-effect, which are traditionally formulated by math-
ematical models, namely reaction-diffusion equations and
biomechanics. Such models can be personalized based on
clinical measurements to build the predictive models for
tumor growth. In this paper, we investigate the possibility
of using deep convolutional neural networks to directly
represent and learn the cell invasion and mass-effect, and to
predict the subsequent involvement regions of a tumor. The
invasion network learns the cell invasion from information
related to metabolic rate, cell density, and tumor boundary
derived from multimodal imaging data. The expansion net-
work models the mass-effect from the growing motion of
tumor mass. We also study different architectures that fuse
the invasion and expansion networks, in order to exploit the
inherent correlations among them. Our network can easily
be trained on population data and personalized to a target
patient, unlike most previous mathematical modeling meth-
ods that fail to incorporate population data. Quantitative
experiments on a pancreatic tumor data set show that the
proposed method substantially outperforms a state-of-the-
art mathematical model-based approach in both accuracy
and efficiency, and that the information captured by each of
the two subnetworks is complementary.

Index Terms— Tumor growth prediction, Deep learning,
Convolutional neural network, Model personalization.

I. INTRODUCTION

CANCER cells originate from the irreversible injuring of
respiration of normal cells. Part of the injured cells could

succeed in replacing the lost respiration energy by fermenta-
tion energy, but will therefore convert into undifferentiated and
widely growing cells (cancer cells) [1]. Tumors develop from
such abnormal cell/tissue growth, which is associated with cell
invasion and mass-effect [2]. Cell invasion is characterized by
the migration and penetration of cohesive groups of tumor cells
to surrounding tissues, and mass-effect by the distension and
outward pushing of tissues induced by tumor growth (Fig. 1).
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Fig. 1. The two fundamental processes of tumor growth: cell invasion
and expansive growth of tumor cells.

Medical imaging data provides non-invasive and in vivo
measurements of the tumor morphology and underlying tumor
physiological parameters over time. For example, dual phase
contrast-enhanced CT is the most readily available modality
for evaluation of tumor morphology and cell density in clinical
environments; In recent years, FDG-PET (2-[18F] Fluoro-2-
deoxyglucose positron emission tomography) and MRI are
gaining popularity in characterizing different tumor proper-
ties, such as metabolic rate and fluid characteristics [3]–[6].
For tumor growth assessment, RECIST (Response Evaluation
Criteria in Solid Tumors), where the longest diameter of a
tumor is measured [7], is the current standard of practice.
RECIST has its limitation since it is only one dimensional
measurement. Mathematical modeling, which represents the
tumor growth process as a physiological and biomechanical
model and personalizes the model based on clinical mea-
surements of a target patient, can predict the entire tumor
volume including its size, shape and involved region. There-
fore, data-driven tumor growth modeling has been actively
studied [4]–[6], [8]–[13].

In most previous model-based methods [4]–[6], [9], [11],
[13], both cell invasion and mass-effect are accounted for,
since they are inter-related, mutually reinforcing factors [2].
Cell invasion is often modeled by the reaction-diffusion
equations [4]–[6], [8], [9], [11]–[13], and mass-effect by the
properties of passive material (mainly isotropic materials) and
active growth (biomechanical model) [4]–[6], [9]–[11], [13].
While these methods yield informative results, most previous
tumor growth models are independently estimated from the
target patient without considering the tumor growth pattern
of population trend. Furthermore, the small number of model
parameters (e.g., 5 in [6]) may be insufficient to represent the
complex characteristics of tumor growth.

Apart from these mathematical modeling methods, a dif-
ferent idea based on voxel motion is proposed [14].
By computing the optical flow of voxels over time, and

U.S. Government work not protected by U.S. copyright.

https://orcid.org/0000-0001-8371-5252
https://orcid.org/0000-0002-6799-9416
https://orcid.org/0000-0001-8371-5252
https://orcid.org/0000-0002-6799-9416
https://orcid.org/0000-0001-8371-5252
https://orcid.org/0000-0002-6799-9416
https://orcid.org/0000-0001-8371-5252
https://orcid.org/0000-0002-6799-9416
https://orcid.org/0000-0001-8371-5252
https://orcid.org/0000-0002-6799-9416
https://orcid.org/0000-0001-8371-5252
https://orcid.org/0000-0002-6799-9416


ZHANG et al.: CONVOLUTIONAL INVASION AND EXPANSION NETWORKS FOR TUMOR GROWTH PREDICTION 639

estimating the future deformable field via an autoregressive
model, this method is able to predict entire brain MR scan.
However, the tumor growth pattern of population trend is still
not involved. Moreover, this method might over-simplify the
tumor growth process, since it infers the future growth in a
linear manner (most tumor growth are nonlinear).

Data-driven statistical learning is a potential solution to
incorporate the population trend of tumor growth into person-
alized tumor modeling. The pioneer study in [15] attempts to
model the glioma growth patterns as a classification problem.
This model learns tumor growth patterns from selected features
at patient, tumor, and voxel levels, and achieves a prediction
accuracy (both precision and recall) of 59.8%. However, this
study only learns population trend of tumor growth without
incorporating subject-specific personalization related to the
tumor natural history. Besides this problem, this early study
is limited by the feature design and selection components.
Specifically, hand-crafted features are extracted to describe
each isolated voxel (without context information). These fea-
tures could be compromised by the limited understanding
of tumor growth, and some of them are obtained in an
unsupervised manner. Furthermore, some features may not
be generally effective for other tumors, e.g., the tissue type
features (cerebrospinal fluid, white and grey matter) in brain
tumors [15] are not fit for liver or pancreatic tumors. Moreover,
considering that the prediction of tumor growth pattern is
challenging even for human experts, the low-level features
used in this study may not be able to represent complex
discriminative information.

Deep neural networks [16] are high capacity trainable
models with a large set of (∼15 M) parameters. By opti-
mizing the massive amount of network parameters using
gradient backpropagation, the network can discover and rep-
resent intricate structures from raw data without any type of
feature-engineering. In particular, deep convolutional neural
networks (ConvNets) [17], [18] have significantly improved
performance in a variety of traditional medical imaging appli-
cations [19], including lesion detection [20], anatomy segmen-
tation [21], and pathology discrimination [22]. The basic idea
of these applications is using deep learning to determine the
current status of a pixel or an image (whether it belongs to
object boundary/region, or certain category). The ConvNets
have also been successfully used in prediction of future binary
labels at image/patient level, such as survival prediction of
patients with brain and lung cancer [23]–[25]. Another direc-
tion of future prediction is on pixel-level, which reconstructs
the entire tumor volume, and therefore characterize the size,
shape and involved region of a tumor. Moreover, a patient
may have a number of tumors and they may have different
growth patterns and characteristics. A single prediction for
the patient would be ambiguous. In all, pixel-level prediction
is more desirable for precision medicine, as it can potentially
lead to better treatment management and surgical planning. In
this work, we are investigating whether deep ConvNets are
capable of predicting the future status at the pixel/voxel level
for medical problem.

More generally, in computer vision and machine learn-
ing community, the problem of modeling spatio-temporal

information and predicting the future have attracted lots of
research interest in recent years. The spatio-temporal ConvNet
models [26], [27], which explicitly represent the spatial and
temporal information as RGB raw intensity and optical flow
magnitude [28], respectively, have shown outstanding perfor-
mance for action recognition. To deal with the modeling of
future status, recurrent neural network (RNN) and ConvNet are
two popular methods. RNN has a “memory” of the history of
previous inputs, which can be used to influence the network
output [29]. RNN is good at predicting the next word in a
sequence [16], and has been used to predict the next image
frames in video [30]–[32]. ConvNet with fully convolutional
architecture can also be directly trained to predict next images
in video [33] by feeding previous images to the network. How-
ever, the images predicted by both RNN and fully ConvNet are
blurry, even after re-parameterizing the problem of predicting
raw pixels to predicting pixel motion distribution [32], or
improving the predictions by multi-scale architecture and
adversarial training [33]. Actually, directly modeling the future
raw intensities might be an over-complicated task [34]. There-
fore, predicting the future high-level object properties, such as
object boundary [35] or semantic segmentation [34], has been
exploited recently. It is also demonstrated in [35] that the fully
ConvNet-based method can produce more accurate boundary
prediction in compared to the RNN-based method. In addition,
fully ConvNet has shown its strong ability to predict the
next status at image-pixel level – as a key component in
AlphaGo [36], [37], fully ConvNets are trained to predict
the next move (position of the 19 × 19 Go game board) of
Go player, given the current board status, with an accuracy
of 57%.

Therefore, in this paper, we investigate whether ConvNets
can be used to directly represent and learn the two fundamental
processes of tumor growth (cell-invasion and mass-effect)
from multi-model tumor imaging data at multiple time points.
Moreover, given the current state information in the data,
we determine whether the ConvNet is capable of predicting
the future state of the tumor growth. Our proposed ConvNet
architectures are partially inspired by the mixture of policy
and value networks for evaluating the next move/position
in game of Go [37], as well as the integration of spatial
and temporal networks for effectively recognizing action in
videos [26], [27]. In addition to x and y direction optical flow
magnitudes (i.e., 2-channel image input) used in [26], [27],
we add the flow orientation information to form a 3-channel
input, as the optical flow orientation is crucial to tumor
growth estimation. In addition, we apply a personalization
training step to our networks which is necessary and impor-
tant to patient-specific tumor growth modeling [4]–[6], [13].
Furthermore, we focus on predicting future labels of tumor
mask/segmentation, which is found to be substantially bet-
ter than directly predicting and then segmenting future raw
images [34]. Finally, considering that the longitudinal tumor
datasets spanning multiple years are very hard to obtain, the
issue of small dataset is alleviated by patch oversampling
strategy and pixel-wise ConvNet learning (e.g., only a single
anatomical MR image is required to train a ConvNet for
accurate brain image segmentation [21]), in contrast to the
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Fig. 2. Basic idea of the voxel-wise prediction of tumor growth based on
cell invasion and expansion growth information.

fully ConvNet used in [34], [35], and [37] which is more
efficient but may lose labeling accuracy.

The main contributions of this paper can be summarized as:
1) To the best of our knowledge, this is the first time to use
learnable ConvNet models for explicitly capturing these two
fundamental processes of tumor growth. 2) The invasion net-
work can make its prediction based on the metabolic rate, cell
density and tumor boundary, all derived from the multi-model
imaging data. Mass-effect – the mechanical force exerted by
the growing tumor – can be approximated by the expan-
sion/shrink motion (magnitude and orientation) of the tumor
mass. This expansion/shrink cue is captured by optical flow
computing [28], [38], based on which the expansion network
is trained to infer tumor growth. 3) To exploit the inherent
correlations among the invasion and expansion information,
we study and evaluate three different network architectures,
named: early-fusion, late-fusion, and end-to-end fusion. 4) Our
proposed ConvNet architectures can be both trained using pop-
ulation data and personalized to a target patient. Quantitative
experiments on a pancreatic tumor dataset demonstrate that
the proposed method substantially outperforms a state-of-the-
art model-based method [6] in both accuracy and efficiency.
The new method is also much more efficient than our recently
proposed group learning method [39] while with comparable
accuracy.

II. CONVOLUTIONAL INVASION AND

EXPANSION NETWORKS

The basic idea of our method is using a learned predictive
model to predict whether the voxels in current time point
will be tumor or not at the next time point, as shown in
Fig. 2. The inputs to the predictive model are image patches
(sampled around the tumor region) representing cell invasion
and expansive growth information that are derived from mul-
timodal imaging data. The corresponding outputs are binary
prediction labels: 1 (if the input patch center will be in tumor
region at the next time point) or 0 (otherwise). The overview
of learning such a predictive model is described below.

Particularly for the longitudinal tumor data in this study,
every patient has multimodal imaging (dual phase contrast-
enhanced CT and FDG-PET) at three time points spanning
between three to four years, we design a training & person-
alization and prediction framework as illustrated in Fig. 3.
The imaging data of different modalities and at different
time points are first registered and the tumors are segmented.
The intracellular volume fraction (ICVF) and standardized
uptake value (SUV) [4] are computed. Along with tumor

Fig. 3. Overview of the proposed framework for predicting tumor
growth. The upper part is model training (learn population trend) &
personalization and the lower part is unseen data prediction. The blue
and purple empty boxes indicate the data used for generating invasion
information; the yellow empty boxes for expansion information.

mask, a 3-channel image that reveals both functional and
structural information about the tumor’s physiological status
serve as the input of invasion subnetwork. The input of the
expansion subnetwork is a 4-channel image, containing the
3-channel optical flow image [38] (using a color encoding
scheme for flow visualization [38]) carrying the growing
motion, and the growth map of tumor mass across time1
and time2. In the training & personalization stage, voxel-
wise ConvNets are trained from all the pairs of time points
(time1/time2, time2/time3, and (time1→time2)/time3) from
population data, and then personalized on pair of time1/time2
from personalized data by adjusting model parameters. Note
that (time1→time2) means the expansion data from time1 to
time2, and time3 provides data label (future tumor or not). In
the prediction stage, given the data of target patient at time1
and time2, invasion and expansion information are fed into
the personalized predictive model to predict the tumor region
at a future time point 3 in a voxel-wise manner. It should be
pointed out that the training and personalization/test sets are
separated at the patient-level, and the testing data (predicting
time3 based on time1 and time2 of the target patient) is totally
unseen for the predictive model.

A. Learning Invasion Network

1) Image Processing and Patch Extraction: To establish the
spatial-temporal relationship of tumor growth along different
time points, the multi-model imaging data are registered based
on mutual information and imaging data at different time
points are aligned using the tumor center [6]. After that, three
types of information (SUV, ICVF, and tumor mask, refer to the
left panel in Fig. 4 as an example) related to tumor property
are extracted from the multimodal images and used as a three-
channel input to the invasion ConvNet model.
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Fig. 4. Some examples of positive (center panel) and negative
(right panel) training samples. In the left panel, the pink and green
bounding boxes at the current time illustrate the cropping of a positive
sample and a negative sample from multimodal imaging data. Each
sample is a three-channel RGB image formed by the cropped SUV, ICVF,
and mask at the current time. The label of each sample is determined
by the location of corresponding bounding box center at the next time -
inside tumor (pink): positive; outside tumor (green): negative.

(1) The FDG-PET characterizes regions in the body which
are more active and need more energy to maintain existing
tumor cells and to create new tumor cells. This motivates us
to use FDG-PET to measure metabolic rate and incorporate it
in learning the tumor predictive model. SUV is a quantitative
measurement of the metabolic rate [4]. To adapt to the Con-
vNets model, the SUV values from PET images are magnified
by 100 followed by a cutting window [100 2600] and then
transformed linearly to [0 255].

(2) Tumor grade is one of the most important prognos-
ticators, and is determined by the proliferation rate of the
neoplastic cells [40]. This motivates us to extract the underly-
ing physiological parameter related to the cell number. ICVF
is an representation of the normalized tumor cell density,
and is computed from the registered dual-phase contrast-
enhanced CT:

ICVF = 1 − HUpost_tumor − HUpre_tumor

E[HUpost_blood − HUpre_blood] × (1 − H ct)

(1)

where HUpost_tumor , HUpre_tumor , HUpost_blood , and
HUpre_blood are the Hounsfield units of the post- and
pre-contrast CT images at the segmented tumor and blood
pool (aorta), respectively. E[•] represents the mean value.
H ct is the hematocrit which can be obtained from blood
samples, thus the ICVF of the tumor is computed using the
ICVF of blood (H ct) as a reference. The resulting ICVF
values are magnified by 100 (range between [0 100]) for
ConvNets input.

(3) Tumor stage is another important prognosticator, and is
determined by the size and extend of the tumor [40]. Previous
studies have used the tumor mask/boundary to monitor the
tumor morphological change and estimate model parameters
[8], [9], [11]. In this study, following [6], the tumors are
segmented by a semiautomatic level set algorithm with region
competition [41] on the post-contrast CT image to form tumor
masks with binary values (0 or 255).

As illustrated in Fig. 2, to train a ConvNet to distinguish
between future tumor and future non-tumor voxels, image
patches of size 17 × 17 voxels ×3 – centered at voxels near
the tumor region at the current time point – are sampled from

three channels of representations reflecting and modeling the
tumor’s physiological status. Patches centered inside or outside
of tumor regions at the next time point are labeled as “1”
and “0,” serving as positive and negative training samples,
respectively. This patch based extraction method allows for
embedding the context information surrounding the tumor
voxel. The voxel (patch center) sampling range is restricted
to a bounding box of ±15 pixels centered at the tumor
center, as the pancreatic tumors in our dataset are <3 cm
(≈30 pixels) in diameter and are slow-growing. To avoid the
classification bias towards the majority class (non-tumor) and
to improve the accuracy and convergence rate during ConvNet
training [18], [22], we create a roughly balanced training set by
proportionally under-sampling the non-tumor patches. A few
examples of positive and negative patches of SUV, ICVF, and
mask encoded in three-channel RGB color images are shown
in Fig. 4.

2) Network Architecture: We use a six-layer ConvNet
adapted from AlexNet [18], which includes 4 convolutional
(conv) layers and 1 fully connected ( f c) layers (cf. upper
panel in Fig. 5). The inputs are of size 17×17×3 image patch
stacks, where 3 refers to the tumor status channels of SUV,
ICVF, and tumor mask. All conv layer filters are of size 3×3,
with padding and stride of 1. The number of filters from conv1
to conv4 layers are 64, 128, 256, and 512, respectively. Max-
pooling is performed over 3 ×3 spatial windows with stride 2
for conv1 and conv4 layers. Local response normalization
is used for conv1 and conv2 layers using the same setting
as [18]. The f c5 layer contains 256 rectifier units and applies
“dropout” to reduce overfitting. All layers are equipped with
the ReLU (rectified linear unit) activation function. The output
layer is composed of two neurons corresponding to the classes
future tumor or non-tumor, and applies a softmax loss function.
The invasion ConvNet is trained on image patch-label pairs
from scratch on all pairs of time points (time1/time2 and
time2/time3) from the population dataset.

B. Learning Expansion Network

1) Image Processing and Patch Extraction: Unlike the inva-
sion network, which performs predictions from static images,
the expansion network accounts for image motion information.
Its input images, of size 17×17×4, capture expansion motion
information between two time points. 3 channels derive from
a color-coded 3-channel optical flow image, and the 4th from
a tumor growth map between time1 and time2. Such images
explicitly describe the past growing trend of tumor mass, as an
image-based approximation of the underlying biomechanical
force exerted by the growing tumor. These patches are sampled
using the same restriction and balancing schemes applied for
the invasion network (Section II-A1).

More specifically, for a pair of consecutive tumor mask
images at time1 and time2 (Fig. 6 (a)-(b)), we use the
algorithm in [28] for optical flow estimation. The computed
dense optical flow maps are a set of spatially coordinated
displacement vector fields, which capture the displacement
movements for all matched pairs of voxels from time1 to
time2. By utilizing the color encoding scheme for flow
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Fig. 5. ConvNet architecture for late fusion of the invasion and expansion networks for predicting tumor growth.

Fig. 6. An example of color-coded optical flow image (d) generated based on the tumor mask pair at time � (a) and time � (b). The flow field color
coding map is shown in (e), where hue indicates orientation and saturation indicates magnitude. In the tumor growth maps (c) and (f), white indicates
the previous tumor region and gray indicates the newly grown tumor region. In (c) and (d), three non-tumor voxels and their surrounding image
patches are highlighted by three colors, which indicate the colors of these voxels in (d). The blue and red voxels indicate left and right growing trend
and both become tumors at time � (f), while the pink voxel indicates very small motion and is still non-tumor at time � (f). Also note that although
some voxels show tiny motion (e.g., lower-left location) between time1 and time2, they grow faster from time2 to time3, indicating the nonlinear
growth pattern of tumors.

visualization in [38], [42], the magnitude and orientation of
the vector field can be formed as a 3-channel color image
(Fig. 6(d)). As depicted in the color coding map (Fig. 6(e)),
the magnitude and orientation are represented by saturation
and hue, respectively. This is a redundant but expressive
visualization for explicitly capturing the motion dynamics
of all corresponding voxels at different time points. Such a
representation is also naturally fit for a ConvNet. The optical
flow maps computed between raw CT image pairs may be
noisy due to the inconsistent image appearance of tumors and
surrounding tissues across two time points. Therefore, a binary
tumor mask pair is used to estimate the optical flow due to
it provides the growing trend of tumor mass. It should be
mentioned that both the expansion and shrink motion can be
coded in the 3-channel image.

However, such a representation of tumor growth motion has
a potential limitation – both the voxels locate around the tumor
center and at background have very small motion, which may
confuse the ConvNet. Therefore, we additionally provide the
past (time1 and time2) locations of tumor by adding a tumor
growth map (Fig. 6 (c)) as the 4th input channel. Specifically,
voxels belong to the overlap region of time1 and time2, newly
growing (expansion) region, shrink region, and background
are assigned values of 255, 170, 85, and 0, respectively. This
strategy implicitly indicates the probabilities of voxels to be
tumor or not in the future.

2) Network Architecture: The expansion subnetwork has the
same architecture as its invasion counterpart (cf. Section II-A2
and lower panel in Fig. 5), and is trained to learn from our

motion-based representations and infer the future involvement
regions of the tumor. This network is trained from scratch on
different time point configurations ((time1→time2)/time3) of
the population data set. In [14], optical flow is used to predict
the future tumor position in a scan, and the future motion
of a voxel is directly predicted by a linear combination of
its past motions, which may be over simplified. Our main
difference is that the prediction is based on the nonlinear
ConvNet learning of 2D motion and tumor growth maps
where boundary/morphological information in a local region
surrounding each voxel is maintained.

C. Fusing Invasion and Expansion Networks

To take advantage of the invasion-expansion information,
we study a number of ways of fusing the invasion and expan-
sion networks. Different fusion strategies result in significant
different number of parameters in the networks.

1) Two-Stream Late Fusion: The two-stream architecture
treats the appearance and motion cues separately and makes
the prediction respectively. The fusion is achieved by aver-
aging decision/softmax scores of two subnetworks, as shown
in Fig. 5. This method is denoted as late fusion. The
invasion and expansion subnetworks are trained on all
time-point pairs (time1/time2 and time2/time3) and triplets
((time1→time2)/time3) of the population data, respectively.
Since they are trained independently, late fusion is not able to
learn the voxel-wise correspondences between invasion and
expansion features, i.e., registering appearance and motion
cues. For example, what are the cell density and energy when
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Fig. 7. Two-stream end-to-end fusion of the invasion and expansion networks for predicting tumor growth. The (convolution) fusion is after the conv4
(ReLU4) layer.

a local voxel exhibits fast growing trend? Late fusion doubles
the number of network parameters compared to invasion or
expansion subnetworks only.

2) One-Stream Early Fusion: In contrast to late fusion, we
present an early fusion architecture, which directly stacks
the 3-channel invasion and 4-channel expansion images
as a 7-channel input to the ConvNet. The same network
architecture as invasion/expansion network is used. Differ-
ent from late fusion, early fusion can only be trained on
time2/time3 pairs (without time1/time2 pairs) along with
triplets ((time1→time2)/time3) of the population data. There-
fore, less training samples can be used. Early fusion is able to
establish voxel-wise correspondences. However, it leaves the
correspondence to be defined by subsequent layers through
learning. As a result, information in the motion image may not
be able to be well captured by the network, since there is more
variability in the appearance images (i.e., SUV and ICVF).
Early fusion keeps almost the same number of parameters as
a single invasion or expansion network.

3) Two-Stream End-to-End Fusion: To jointly learn the non-
linear static and dynamic tumor information while allocating
enough network capacity to both appearance and motion cues,
we introduce a two-stream end-to-end fusion architecture. As
shown in Fig. 7, the two subnetworks are connected by a
fusion layer that adds a convolution on top of their conv4
layers. More specifically, the fusion layer first concatenates
the two feature maps generated by conv4 (after ReLU4) and
convolves the stacked data with 1×1×512 convolution filters
with padding and stride of 1, then ReLU5 is attached and
max-pooling 3 × 3 is performed. The outputs of the fusion
layer are fed into a subsequent fully-connected layer ( f c5).
As such, the fusion layer is able to learn correspondences of
two compact feature maps that minimize a joint loss function.
Fusion at ReLU4 instead of f c layer is because the spatial
correspondences between invasion and expansion are already
collapsed at the f c layer; fusion at the last conv layer has been
demonstrated to have higher accuracy in compared to at earlier
conv layers [27]. End-to-end framework is trained on the same
time pairs and triplets as early fusion, without time1/time2
pairs compared to late fusion. End-to-end fusion removes
nearly half of the parameters in the late fusion architecture
as only one tower of f c layer is used after fusion.

D. Personalizing Invasion and Expansion Networks

Predictive model personalization is a key step of model-
based tumor growth prediction [4]–[6], [13]. In statistical
learning, model validation is a natural way to optimize the
pre-trained model. Particularly, given tumor status at time1 and
time2 already known (predict time3), the model personaliza-
tion includes two steps. In the first step, the invasion network
is trained on population data and time1/time2 of the target
patient is used as validation. Training is terminated after a
pre-determined number (30) of epochs, after which the model
snapshot with the lowest validation loss on the target patient
data is selected. Since there are no corresponding validation
datasets for the expansion network, early fusion, and end-to-
end fusion, their trainings are terminated after the empirical
number of 20 epochs, in order to reduce the risk of overfitting.

To better personalize the invasion network to the target
patient, we propose a second step that optimizes an objective
function which measures the agreement between any pre-
dicted tumor volume and its corresponding future ground truth
volume on the target patient. This is achieved by directly
applying the invasion network to voxels in a tumor growth
zone in the personalization volume, and later thresholding the
probability values of classification outputs to reach the best
objective function. Dice coefficient measures the agreement
between ground truth and predicted volumes, and is used as
the objective function is this study:

Dice = 2 × TPV

Vpred + Vgt
(2)

where TPV is the true positive volume – the overlapping
volume between the predicted tumor volume Vpred and the
ground truth tumor volume Vgt . The tumor growth zone is set
as a bounding box surrounding the tumor, with pixel distances
Nx , Ny , and Nz from the tumor surface in the x , y, and z
directions, respectively. The personalized threshold of invasion
network is also used for expansion network and the three
fusion networks.

E. Predicting with Invasion and Expansion Networks

During testing, given the imaging data at time1 and time2
for the target patient, one of the frameworks, the personalized
invasion network, expansion network, late fusion, early fusion,
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or end-to-end fusion could be applied to predict the scores
for every voxels in the growth zone at the future time3. The
static information from time2 serves as invasion information,
while the motion/change information between time1 and time2
represents the expansion information. Late fusion and end-to-
end fusion feed the static and motion information to invasion
and expansion subnetworks, separately, while early fusion
concatenates both static and motion information as input to
a one-stream ConvNet.

III. EXPERIMENTAL METHODS

A. Data and Protocol

Ten patients (six males and four females) with von
Hippel-Lindau (VHL) disease, each with a pancreatic neu-
roendocrine tumor (PanNET), are studied in this paper. The
VHL-associated PanNETs are commonly found to be non-
functioning with malignant (cancer) potential [3], and can
often be recognized as well-demarcated and solid masses
through imaging screens [43]. For the natural history of this
kind of tumor, around 60% patients demonstrate nonlinear
tumor growth, 20% stable and 20% decreasing (over a median
follow-up duration of 4 years) [7]. Treatments of PanNETs
include active surveillance, surgical intervention, and medical
treatment. Active surveillance is undertaken if a PanNET
does not reach 3 cm in diameter or a tumor-doubling time
<500 days; other wise the PanNET should be resected due
to high risk of metastatic disease [3]. Medical treatment
(e.g., everolimus) is for the intermediate-grade (PanNETs
with radiologic documents of progression within the previous
12 months), advanced or metastatic disease [44]. Therefore,
patient-specific prediction of spatial-temporal progression of
PanNETs at earlier stage is desirable, as it will assist making
decision within different treatment strategies to better manage
the treatment or surgical planning.

In our dataset, each patients has three time points of
contrast-enhanced CT and FDG-PET imaging spanning three
to four years, with the time interval of 405 ± 133 days
(average ± std.). The average age of the patients at time1
is 46.9 ± 13.2 years. The image pixel sizes range between
0.68 × 0.68 × 1 mm3 — 0.98 × 0.98 × 1 mm3 for CT and
2.65×2.65×1.5 mm3 — 4.25×4.25×3.27 mm3 for PET. The
tumor growth information of all patients is shown in Table I.
Most tumors are slow growing, while two are more aggressive
and two experience shrinkage. Some tumors keep a similar
growing rate as their past trend, while others have varying
growing rates.

B. Implementation Details

A total of 45,989 positive and 52,996 negative image
patches is used for the invasion network in late fusion, and
23,448 positive and 25,896 negative image patches for both the
invasion network and expansion network in other fusion (i.e.,
early and end-to-end), extracted from 10 patients. Each image
patch is subtracted by the mean image patch over the training
set. Data augmentation is not performed since we could not
observe improvements in a pilot study. The following hyper-
paramaters are used: initial learning rate – 0.001, decreased by

TABLE I
TUMOR INFORMATION AT THE 1ST, 2ND, AND

3RD TIME POINTS OF TEN PATIENTS

a factor of 10 at every tenth epoch; weight decay – 0.0005;
momentum – 0.9; mini-batch size – 512. We use an aggressive
dropout ratio of 0.9 to improve generalization. Lower dropout
ratios (e.g., 0.5) do not decrease performance significantly.
The ConvNets are implemented using Caffe platform [45]. The
parameters for tumor growth zone are set as Nx = 3, Ny = 3,
and Nz = 3 for prediction speed concern. We observe that
the prediction accuracy is not sensitive to the choice of these
parameters, e.g., Nx |y|z ≥ 4 results in similar performance.
For the model personalization via Dice coefficient objective
function, we vary the model thresholding values in the range
of [0.05, 0.95] with 0.05 intervals. The proposed method is
tested on a DELL TOWER 7910 workstation with 2.40 GHz
Xeon E5-2620 v3 CPU, 32 GB RAM, and a Nvidia TITAN
X Pascal GPU of 12 GB of memory.

C. Evaluation Methods

The proposed method is evaluated using leave-one-out
cross-validation. In each of the 10 evaluations, 9 patients are
used as the population training data to learn the population
trend, the time1/time2 of the remaining patient is used as the
personalization data set for invasion network, and time3 of the
remaining patient as the to-be-predicted testing set. We obtain
the model’s final performance values by averaging results
from the 10 cross validations. The numbers of parameters in
each of the proposed network are reported, and the prediction
performances are evaluated using measurements at the third
time point by recall, precision, Dice coefficient (defined in
Eq. 2), and RVD (relative volume difference) as in [6], [39].

recall = T PV

Vgt
; precision = T PV

Vpred
; RVD = Vpred −Vgt

Vgt

(3)

To establish a benchmark for comparisons, we implement
a linear growth model that assumes that tumors would keep
their past growing trend in the future. More specifically, we
first compute the radial expansion/shrink distances on tumor
boundaries between the first and second time points, and then
expand/shrink the tumor boundary at the second time point to
predict the third with the same radial distances. Furthermore,
we compare the accuracy and efficiency of our method with
two state-of-the-art tumor growth prediction methods [6], [39]
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Fig. 8. An example (patient 5) shows the tumor growth prediction by our
individual and fusion networks. (a) The segmented (ground truth) tumor
contours and volumes at different time points. (b) The prediction results
at the third time point, with red and green represent ground truth and
predicted tumor boundaries, respectively.

Fig. 9. An example (patient 7) shows the tumor growth prediction by our
individual and fusion networks. (a) The segmented (ground truth) tumor
contours and volumes at different time points. (b) The prediction results
at the third time point, with red and green represent ground truth and
predicted tumor boundaries, respectively.

which have been evaluated on a subset (7 patients, without
patient 4, 7, 10 in Table I) of the same dataset. Finally, to
show the importance of model personalization, the prediction
performance with and without our personalization method (i.e.,
optimizing Eq. (2)) are compared.

IV. RESULTS

Fig. 8 shows a good prediction results obtained by our
individual and fusion networks. In this example (patient 5),
the tumor is growing in a relatively steady trend. Therefore, all
the predictive models including the linear model can achieve
promising prediction accuracy. Our methods, especially the
network fusions (e.g., late and end-to-end) balance the recall
and precision of individual networks, yield the highest accu-
racy. Fig. 9 shows the results of patient 7. In this case, the

tumor demonstrates a nonlinear growth trend, and its size
first increases from time1 to time2 but decreases a little bit
from time2 to time3. Therefore, all the personalized predictive
models overpredicted the tumor size (recall is higher than
precision). However, our models especially the two-stream late
fusion can still generate promising prediction result.

Table II presents the overall prediction performance on
10 patients. Compared to the baseline linear growth method,
all our methods show substantially higher performance. The
performance of invasion and expansion networks are compa-
rable. Fusion of the two networks can further improve the
prediction accuracy, especially for the RVD measure. Two-
stream late fusion achieves the highest mean values with Dice
coefficient of 85.9±5.6% and RVD of 8.1±8.3%, but requires
nearly twice of the model parameters in compared to early
fusion. End-to-end fusion has the second highest accuracy with
much less network parameters than late fusion. Nevertheless,
this suggests that the mechanism of fusion ConvNets leverages
the complementary relationship between static and dynamic
tumor information.

Table III compares our methods with two state-of-the-art
methods [6], [39] on a subset (seven patients) of our data. Out
of ten patients, three patients (patient 4, 7, and 10 in Table I)
with aggressive and shrink tumors are not included in the
experiment. As a result, the performances on seven patients
(Table III) are better than that on ten patients (Table II).
Our single network can already achieve better accuracy than
the model-based method (i.e., EG-IM) [6], especially the
invasion network has a much lower/better RVD than [6]. This
demonstrates the highly effectiveness of ConvNets (learning
invasion information) in future tumor volume estimation.
Network fusions further improve the accuracy and achieve
comparable performance with the group learning method [39],
which benefits results from integrating the deep features, hand-
crafted features, and clinical factors into a SVM based learning
framework. Again, the two-stream late fusion performs the
best among the proposed three fusion architectures, with Dice
coefficient of 86.8 ± 3.4% and RVD of 6.6 ± 7.1%.

The proposed two-stream late fusion ConvNets (our other
architectures are even faster) requires ∼5 mins for training
and personalization, and 15 s for prediction per patient, on
average – significantly faster than the model-based approach
in [6] (∼24 hrs – model personalization; 21 s – simulation),
and group learning method in [39] (∼3.5 hrs – model training
and personalization; 4.8 mins – prediction).

The comparison between with and without personalization
is shown in Table IV. The personalization process significantly
improves the prediction performance especially for predicting
the future tumor volume (i.e., RVD), demonstrating its crucial
role in tumor growth prediction.

V. DISCUSSIONS

Tumor growth prediction is a biophysics process and has
long been solved via mathematical modeling. In this paper, we
tackle this task using novel ConvNet architectures of convo-
lutional invasion and expansion neural networks, with respect
to the cell invasion and mass-effect processes, jointly. Our
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TABLE II
OVERALL PERFORMANCE ON �� PATIENTS – BASELINE LINEAR PREDICTIVE MODEL, INVASION NETWORK, EXPANSION NETWORK, EARLY

FUSION, LATE FUSION, AND END-TO-END FUSION. RESULTS ARE ESTIMATED BY THE RECALL, PRECISION, DICE COEFFICIENT,
AND RELATIVE VOLUME DIFFERENCE (RVD), AND ARE REPORTED AS: MEAN ± STD [min, max]. THE NUMBERS

OF PARAMETERS FOR EACH MODEL ARE PROVIDED

TABLE III
COMPARISON OF PERFORMANCE ON � PATIENTS – BASELINE LINEAR PREDICTIVE MODEL, STATE-OF-THE-ART MODEL-BASED [6], STATISTICAL

GROUP LEARNING [39], AND OUR MODELS. RESULTS ARE ESTIMATED BY THE RECALL, PRECISION, DICE COEFFICIENT, AND RELATIVE

VOLUME DIFFERENCE (RVD), AND ARE REPORTED AS: MEAN ± STD [min, max]. EG-IM-FEM* HAS HIGHER PERFORMANCE

THAN EG-IM, BUT IT HAS SOME ISSUES MENTIONED BY THE AUTHORS (SEC. VI IN [6])

TABLE IV
COMPARISON BETWEEN WITH AND WITHOUT PERSONALIZATION

(w/o P) ON ALL 10 PATIENTS. FOR MORE CONCISELY,
ONLY DICE COEFFICIENT, AND RELATIVE VOLUME

DIFFERENCE (RVD) ARE REPORTED

new approach demonstrates promising accuracy and highly
efficiency. Although the small data size does not permit statis-
tical testing, our prediction method clearly shows higher mean
and lower std. than the state-of-the-art modeling method [6]
when the same preprocessing (e.g., registration, segmentation)
procedure as the pipeline in [6] is used.

Besides using deep learning instead of mathematical mod-
eling, the main difference against [6] is using the information
from other patients as population prior learning followed by
personalization using the same patient’s 1st and 2nd time
point data. Ref. [6] does not use other patients information
but directly trains on the 1st and 2nd time points to simulate
the 3rd time point tumor growth for the same patient, which,
in some sense, may be more likely to overfit. Our prior
population learning may behave as a beneficial regulariza-
tion to constrain the personalized predictive model. As such,
compared to the model-based prediction, our method is better

at predicting the tumors which will have a different (even
opposite) growing trend to their past trend. An example
can be seen in Fig. 9 for patient 7. Actually, on another
challenging case – patient 4 (aggressive growth from time1
to time2), our late fusion yields very promising prediction
with Dice of 91.7% and RVD of 2.2%. The worst case is
for patient 10 (shrink from time1 to time2), late fusion has
a Dice of 72.8% and RVD of 24.2%. We also investigate the
performance of our method without the population data. For
example, we only train and personalize the invasion network
on a patient’s target data (time1/time2 pair) using the same
strategy proposed in section II, and then predict tumor growth
at time3. The overall Dice and RVD on 10 patients are
74.7% and 32.2%, respectively, substantially worse than the
invasion network with population learning (Dice = 84.6%,
RVD = 11.5%).

Model personalization is one of the main novelties of our
deep learning based method. This strategy ensures a robust
prediction performance, and may subsequently benefit more
from the following directions. 1) The Dice coefficient is
used as the objective function. Using RVD as the objective
function (as in [39]) actually result in comparable but (maybe)
slightly lower performance. For example, for the two-stream
late fusion, using RVD as objective function of personaliza-
tion will result in 0.1% lower of Dice and 1.9% larger of
RVD metrics in prediction. The prediction performances with
different objective functions (e.g., weighted combination of
Dice and RVD) need further investigation. 2) Since there is no
validation data for the expansion network (also for other fusion
networks), its personalization empirically follows the invasion
network. A better personalization could be achieved if more
time points would be available (e.g., tumor status at time1,
2, and 3 already known, predict time4). This is actually a
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common scenario in practice for many kinds of tumors, such as
predicting time7 based on time1-6 for kidney tumors [13], and
predicting time5 given time1-4 known for brain tumors [14].
Therefore, we could expect better performance given a dataset
spanning more time points. 3) Our predictive models perform
much worse if without personalization. Besides the importance
of personalization, this may be caused by the patch sampling
strategy, which proportionally under-samples negative samples
in a predefined bounding box (section II-A1). As a result, some
‘easy-negatives’ (far from tumor boundary) are involved in the
training set, lowering the ConvNet’s capacity in discriminating
some ‘hard-negatives’ (close to tumor boundary). Restricting
the patch sampling to the range close to the tumor boundary
without under-sampling has a potential to improve this issue.

A simple linear prediction approach shows the worst perfor-
mance among all the models. This is in agreement with the fact
that PanNETs demonstrate nonlinear growth [3], [7]. The two-
stream late fusion performs slightly better than the one-stream
early fusion and two-stream end-to-end fusion architectures
(Table II and Table III). Probably, the reason is that the late
fusion is trained on more training samples, in compared to
early and end-to-end fusion which cannot use samples of
time1/time2 pairs for model training.

A potential limitation of the current method is that the
crucial tumor biomechanical properties, such as tissue bio-
mechanical strain, is not considered. These limitations could
be addressed by fusing our proposed deep learning method
with traditional biomechanical model-based methods. Finally,
although our dataset (ten patients) is already the largest for
this kind of research, it is still too small. Therefore, some
of the results and discussions should be treated with caution.
To evaluate our method, we conduct a leave-one-patient-out
cross-validation, which is a popular error estimation procedure
when the sample size is small. Furthermore, our method
has a personalization stage where patient specific data is
employed to optimize the model generated by the training
data. This strategy can somehow alleviate the small training set
problem. Nevertheless, more training data will likely enhance
our convolutional invasion and expansion networks (an end-
to-end deep learning model). As an ongoing clinical trial in
NIH, we are collecting more longitudinal panNET data and
kidney tumor data. We will validate and extend our method
on the new data.

VI. CONCLUSIONS

In this paper, we show that deep ConvNets can effectively
represent and learn both cell invasion and mass-effect in
tumor growth prediction. Composite images encoding static
and dynamic tumor information are fed into our ConvNet
architectures to predict the future involvement region of pan-
creatic tumors. Our method surpasses the state-of-the-art math-
ematical model-based method [6] in both speed and accuracy,
and is much more efficient than our recently proposed group
learning method [39]. The invasion and expansion networks
alone predict the tumor growth at higher accuracies than [6],
and our proposed fusion architectures further improve the
prediction accuracy. Two-stream end-to-end fusion might be a

trade-off between accuracy and generalization compared with
early and late fusions.
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