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ABSTRACT

Quantizing weights and activations of deep neural networks results in significant
improvement in inference efficiency at the cost of lower accuracy. A source of
the accuracy gap between full precision and quantized models is the quantization
error. In this work, we focus on the binary quantization, in which values are
mapped to -1 and 1. We introduce several novel quantization algorithms: optimal
1-bit, ternary, 2-bits, and greedy. Our quantization algorithms can be implemented
efficiently on the hardware using bitwise operations. We present proofs to show
that our proposed methods are optimal, and also provide empirical error analysis.
We conduct experiments on the ImageNet dataset and show a reduced accuracy
gap when using the proposed optimal quantization algorithms.

1 INTRODUCTION

A major challenge in the deployment of Deep Neural Networks (DNNs) is their high computational
cost. Finding effective methods to improve run-time efficiency is still an area of research. We can
group various approaches taken by researchers into the following three categories.

Hardware optimization: Specifically designed hardwares are deployed to efficiently perform com-
putations in ML tasks. Compiler optimization: Compression and fusion techniques coupled with
efficient hardware-aware implementations, such as dense and sparse matrix-vector multiplication,
are used. Model optimization: Run-time performance can also be gained by modifying the model
structure and the underlying arithmetic operations. While hardware and compiler optimization are
typically lossless (i.e. incur no loss in model accuracy), model optimization trades-off computa-
tional cost (memory, runtime, or power) for model accuracy. For example, by scaling the width of
the network (Zagoruyko & Komodakis, 2016). The goal of model optimization is to improve the
trade-off between computational cost and model accuracy. This work falls into this category.

1.1 ARCHITECTURE OPTIMIZATION

One strategy to construct efficient DNNs is to define a template from which efficient computational
blocks can be generated. Multiple instantiations of these blocks are then chained together to form
a DNN. SqueezeNet (Iandola et al., 2016), MobileNets (Howard et al., 2017; Sandler et al., 2018),
ShuffleNets (Zhang et al., 2018b; Ma et al., 2018), and ESPNets (Mehta et al., 2018; 2019) fall into
this category. Complementary to these methods, NASNet (Zoph et al., 2018) and EfficientNet (Tan
& Le, 2019) search for an optimal composition of blocks restricted to a computational budget (e.g.,
FLOPS) by changing the resolution, depth, width, or other parameters of each layer.

1.2 PRUNING AND COMPRESSION

Several methods have been proposed to improve runtime performance by detecting and removing
computational redundancy. Methods in this category include low-rank acceleration (Jaderberg et al.,
2014), the use of depth-wise convolution in Inception (Szegedy et al., 2015), sparsification of kernels
in deep compression (Han et al., 2015), re-training redundant neurons in DSD (Han et al., 2016b),
depth-wise separable convolution in Xception (Chollet, 2017), pruning redundant filters in PFA
(Suau et al., 2018), finding an optimal sub-network in lottery ticket hypothesis (Frankle & Carbin,
2018), and separating channels based on the features resolution in octave convolution (Chen et al.,
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2019). While some of these compression methods can be applied to a trained network, most add
training-time constraints to create a computationally efficient model.

1.3 LOW-PRECISION ARITHMETIC AND QUANTIZATION

Another avenue to improve runtime performance (and the focus of this work) is to use low-precision
arithmetic. The idea is to use fewer bits to represent weights and activations. Some instances
of these strategies already exist in AI compilers, where it is common to cast weights of a trained
model from 32 bits to 16 or 8 bits. However, in general, post-training quantization reduces the
model accuracy. This can be addressed by incorporating lower-precision arithmetic into the training
process (during-training quantization), allowing the resulting model to better adapt to the lower
precision. For example, in Gupta et al. (2015); Jacob et al. (2018) the authors use 16 and 8 bits
fixed-point representation to train DNNs.

Using fewer bits results in dramatic memory savings. This has motivated research into methods that
use a single bit to represent a scalar weight: In Courbariaux et al. (2015) the authors train models
with weights quantized to the values in {−1, 1}. While this results in a high level of compression,
model accuracy can drop significantly. Li et al. (2016) and Zhu et al. (2016) reduce the accuracy gap
between full precision and quantized models by considering ternary quantization (using the values
in {−1, 0, 1}), at the cost of slightly less compression.

To further improve the computational efficiency, the intermediate activation tensors (feature maps)
can also be quantized. When this is the case, an implementation can use high-performance operators
that act on quantized inputs, for example a convolutional block depicted in Figure 1(left). This idea
has been explored in (Courbariaux et al., 2016; Rastegari et al., 2016; Zhou et al., 2016; Hubara
et al., 2017; Mishra et al., 2017; Lin et al., 2017; Cai et al., 2017; Ghasemzadeh et al., 2018; Zhang
et al., 2018a; Choi et al., 2018), and many other works.

We call a mapping from a tensor with full precision entries to a tensor with the same shape but
with values in {−1, 1} a binary quantization. When both weights and activations of a DNN are
quantized using binary quantization, called Binary Neural Network (BNN), fast and power-efficient
kernels which use bitwise operations can be implemented. Observe that the inner-product between
two vectors with entries in {−1, 1} can be written as bitwise XNor operations followed by bit-
counting (Courbariaux et al., 2016). However, the quantization of both weights and activations
further reduces the model accuracy. In this work, we focus on improving the accuracy of the quan-
tized model through improved quantization. The computational cost remains similar to the previous
BNNs (Rastegari et al., 2016; Hubara et al., 2017).
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Figure 1: Left: The convolutional block used in this paper. Right: When both weights and activa-
tions are quantized using binary quantization, the convolution can be implemented efficiently using
bitwise XNor and bit-counting operations. See Section 3.2 for more details.

1.4 MAIN CONTRIBUTIONS

In this work, we analyze the accuracy of binary quantization when applied to both weights and
activations of a DNN, and propose methods to improve the quantization accuracy:

• We present an analysis of the quantization error and show that scaled binary quantization
is a good approximation (Section 2).
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• We derive the optimal 1-bit (Section 3.1.1), 2-bits (Section 3.2.2), and ternary (Section
3.2.3) scaled binary quantization algorithms.
• We propose a greedy k-bits quantization algorithm (Section 3.2.4).
• Experiments on the ImageNet dataset show that the optimal algorithms have reduced quan-

tization error, and lead to improved classification accuracy (Section 5).

2 LOW-RANK BINARY QUANTIZATION

Binary quantization (that maps entries of a tensor to {−1, 1}) of weights and activation tensors of a
neural network can significantly reduce the model accuracy. A remedy to retrieve this accuracy loss
is to scale the binarized tensors with few full precision values. For example, Hubara et al. (2017)
learn a scaling for each channel from the parameters of batch-normalization, and Rastegari et al.
(2016) scale the quantized activation tensors using the channel-wise average of pixel values.

In this section, using low-rank matrix analysis, we analyze different scaling strategies. We conclude
that multiplying the quantized tensor by a single scalar, which is computationally the most efficient
option, has approximately the same accuracy as the more expensive alternatives.

We introduce the rank-1 binary quantization– an approximation to a matrix X ∈ Rm×n:

X 'X1 � S, (1)

where X1 ∈ Rm×n is a rank-1 matrix, S ∈ {−1, 1}m×n, and � is element-wise multiplication
(Hadamard product). Note that this approximation is also defined for tensors, after appropriate
reshaping. For example, for an image classification task, we can reshape the output of a layer of
a DNN with shape h × w × n, where h, w, and n are height, width, and number of channels,
respectively, into an m× n matrix with m = hw rows and one column per channel.

We define the error of a rank-1 binary quantization as ‖X−X1�S‖F , where ‖ ‖F is the Frobenius
norm. Entries of S are in {−1, 1}, therefore, the quantization error is equal to ‖X�S−X1‖F . Note
that ‖X �S‖2F (the total energy), which is equal to sum of the squared singular values, is the same
for any S. Different choices of S change the distribution of the total energy among components
of the Singular Value Decomposition (SVD) of X � S. The optimal rank-1 binary quantization is
achieved when most of the energy of X � S is in its first component.

In Rastegari et al. (2016), the authors proposed to quantize the activations by applying the sign
function and scale them by their channel-wise average. We can formulate this scaling strategy as a
special rank-1 binary quantization X ' a1> � sign(X), where

ai =

∑n
j=1 |Xi,j |
n

for 1 ≤ i ≤ m , sign(x) =
{−1 if x < 0

1 if x ≥ 0
, (2)

and 1 is an n-dimensional vector with all entries 1.

In Appendix A we show that the optimal rank-1 binary quantization is given by S =
sign(X) and X1 = truncated1-SVD(|X|), where sign(X) is the element-wise sign of X , and
truncated1-SVD(|X|) = σ1u1v

>
1 is the first component of the SVD of X� sign(X) = |X|. More-

over, we empirically analyze the accuracy of the optimal rank-1 binary quantization for a random
matrix X , where its entries are i.i.d. ∼ N (0, 1). This is a relevant example since after the application
of Batch Normalization (BN) (Ioffe & Szegedy, 2015) activation tensors are expected to have a simi-
lar distribution. The first singular value of |X| captures most of the energy σ2

1(|X|)/‖X‖2F ' 0.64,
and the first left and right singular vectors are almost constant vectors. Therefore, a scalar multiple of
sign(X) approximates X well: X ' σ1u1v

>
1 � sign(X) ' v 11>� sign(X) = vsign(X), where

v ∈ R≥0. We use this computationally efficient approximation called scaled binary quantization.

3 SCALED BINARY QUANTIZATION

In Section 2 we showed that scaled binary quantization is a good approximation to activation and
weight tensors of a DNN. Next we show how we can further improve the accuracy of scaled binary
quantization using more bits. To simplify the presentation (1) we flatten matrix X ∈ Rm×n in to
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a vector x ∈ RN with N = mn, and (2) we assume the entries of x are different realizations of
a random variable x with an underlying probability distribution p(x). In practice, we compute all
statistics using their unbiased estimators from vector x (e.g.,

∑
i xi/N is an unbiased estimator of

Ex∼p[x]). Furthermore, for f : R → R, we denote entrywise application of f to x by f(x). The
quantized approximation of x is denoted by xq , and the error (loss) of quantization is ‖x − xq‖2.
All optimal solutions are with respect to this error and hold for an arbitrary distribution p(x).

3.1 1-BIT QUANTIZATION

A 1-bit scaled binary quantization of x is:

x ' xq = vs(x), (3)

which is determined by a scalar v ∈ R≥0 and a function s : R→ {−1, 1}. Finding the optimal 1-bit
scaled binary quantization can be formulated as the following optimization problem:

minimize
v,s

∫ +∞

−∞
p(x)(vs(x)− x)2dx

s.t. s : R→ {−1, 1}, v ∈ R≥0
(4)

3.1.1 OPTIMAL 1-BIT ALGORITHM

The solution of problem (4) is given by v = Ex∼p[|x|] and s(x) = sign(x) (for the proofs see
Appendix B). Therefore, for a vector x the optimal scaled binary quantization is given by

x ' xq =

∑
i |xi|
N

sign(x), (5)

where
∑

i |xi|
N is an unbiased estimator of Ex∼p[|x|].

3.2 k-BITS QUANTIZATION

We can further improve the accuracy of scaled binary quantization by adding more terms to the
approximation (3). A k-bits scaled binary quantization of x is

x ' xq =

k∑
i=1

visi(x), (6)

which is determined by a set of k pairs of scalars vi’s and functions si : R → {−1, 1}. Observe
that any permutation of (vi, si)’s results in the same quantization. To remove ambiguity, we assume
v1 ≥ . . . ≥ vk ≥ 0.

When both weights, w, and activations, x, are quantized using scaled binary quantization (6), their
inner-product can be written as:

〈xq,wq〉 =
ka∑
i=1

kw∑
j=1

vai v
w
j 〈sai , swj 〉, (7)

where xq =
∑ka

i=1 v
a
i s

a
i and wq =

∑kw

j=1 v
w
j s

w
i are quantized activations and weights with ka and

kw bits, respectively, sai = sai (x), and swj = swj (w). This inner-product can be computed efficiently
using bitwise XNors followed by bit-counting (see Figure 1(right) with ka = 2 and kw = 1).

Finding the optimal k-bits scaled binary quantization can be formulated as:

minimize
si,vi

∫ +∞

−∞
p(x)

((
k∑

i=1

visi(x)

)
− x
)2

dx

s.t. ∀ 1 ≤ i ≤ k si : R→ {−1, 1}, v1 ≥ v2 ≥ . . . ≥ vk ≥ 0

(8)

This is an optimization problem with a non-convex domain for all k ≥ 1. We solve the optimization
for k = 1 in Section 3.1 and k = 2 in Section 3.2.2 for arbitrary distribution p(x). We also provide
an approximate solution to (8) in Section 3.2.4 using a greedy algorithm.
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Discussion: A general k-bits quantizer maps full precision values to an arbitrary set of 2k numbers,
not necessarily in the form of (6). The optimal quantization in this case can be computed using the
Lloyd’s algorithm (Lloyd, 1982). While a general k-bits quantization has more representation power
compared to k-bits scaled binary quantization, it does not allow an efficient implementation based
on bitwise operations. Fixed-point representation (as opposed to floating point) is also in the form
of (6) with an additional constant term. However, fixed-point quantization uniformly quantizes the
space, therefore, it can be significantly inaccurate for small values of k.

3.2.1 FOLDABLE QUANTIZATION

In this section, we introduce a special family of k-bits scaled binary quantizations that allow fast
computation of the quantized values. We name this family of quantizations foldable. A k-bits
scaled binary quantization given by (vi, si)’s is foldable if the following conditions are satisfied:

si(x) = sign(x−
i−1∑
j=1

vjsj(x)) for 1 ≤ i ≤ k (9)

When the foldable condition is satisfied, given vi’s, we can compute the si(x)’s in (6) efficiently by
applying the sign function.

3.2.2 OPTIMAL 2-BITS ALGORITHM

In this section, we present the optimal 2-bits binary quantization algorithm, the solution of (8) for
k = 2. In Appendix C we show that the optimal 2-bits binary quantization is foldable and the scalars
v1 and v2 should satisfy the following optimality conditions:

v1 =
1

2
(Ex∼p[|x| | |x| > v1] + Ex∼p[|x| | |x| ≤ v1]) (10)

v2 =
1

2
(Ex∼p[|x| | |x| > v1]− Ex∼p[|x| | |x| ≤ v1]) (11)

In Figure 2 we visualize the conditional expectations that show up in (10) for a random variable x
with standard normal distribution. The optimal v1 lies on the intersection of the identity line and
average of the conditional expectations in (10).

For a given vector x ∈ RN we can solve for v1 in (10) efficiently. We substitute the conditional
expectations in (10) by conditional average operators as their unbiased estimators. (10) implies that
for the optimal v1, the average of the entries in |x| smaller than v1 (an estimator of Ex∼p[|x| | |x| ≤
v1] ) and the average of the entries greater than v1 (an estimator of Ex∼p[|x| | |x| > v1]) should be
equidistant form v1. Note that (10) may have more than one solution, which are local minima of the
objective function in (8). We find all the values that satisfy this condition in O(N logN) time. We
first sort entries of x based on their absolute value and compute their cumulative sum. Then with one
pass we can check whether (10) is satisfied for each element of x. We evaluate the objective function
in (8) for each local minima, and retain the best. After v1 is calculated v2 is simply computed from
(11). As explained in Section 4, this process is only done during the training. In our experiments,
finding the optimal 2-bits quantization increased the training time by 35% compared to the 2-bits
greedy algorithm (see Section 3.2.4). Sine the optimal 2-bits binary quantization is foldable, after
recovering v1 and v2, we have s1(x) = sign(x) and s2(x) = sign(x− v1sign(x)).

3.2.3 OPTIMAL TERNARY ALGORITHM

The optimization domain of (8) for k = 2 over the scalars is illustrated in Figure 2(right). The
boundaries of the domain, v2 = 0 and v1 = v2 = v, correspond to 1-bit binary and ternary (Li et al.,
2016) quantizations, respectively. The scaled ternary quantization maps each full precision value x
to {−2v, 0, 2v}. Ternary quantization needs 2-bits for representation. However, when a hardware
with sparse calculation support is available, for example as in EIE (Han et al., 2016a), using ternary
quantization can be more efficient compared to general 2-bits quantization. In Appendix D we show
that the optimal scaled ternary quantization is foldable and the scalar v should satisfy:

v =
1

2
Ex∼p[|x| | |x| > v] (12)

The process of solving for v in (12) is similar to that of solving for v1 in (10) as described above.
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Figure 2: Left: The conditional expectations in (10) for a random variable x with standard normal
distribution. The optimal value for 2-bits quantization is shown with a solid dot. Right: Optimiza-
tion domain of (8) for k=2. The boundaries correspond to 1-bit and ternary quantizations.

3.2.4 k-BITS GREEDY ALGORITHM

In this section, we propose a greedy algorithm to compute k-bits scaled binary quantization, which
we call Greedy Foldable (GF). It is given in Algorithm 1.

Algorithm 1: k-bits Greedy Foldable (GF) binary quantization: compute xq given x
r ← x
for i← 1 to k do

vi← mean(abs(r))
si ← sign(r) // element-wise sign. For gradient of sign use STE.
r← r − visi // compute new residual.

end
return x− r

In GF algorithm we compute a sequence of residuals. At each step, we greedily find the best si and
vi for the current residual using the optimal 1-bit binary quantization (5). Note that for k = 1 the
GF is the same as the optimal 1-bit binary quantization.

Few of the other papers that have tackled the k-bits binary quantization to train quantized DNNs
are as follows. In ReBNet (Ghasemzadeh et al., 2018), the authors proposed an algorithm similar
to Algorithm 1, but considered vi’s as trainable parameters to be learned by back-propagation. Lin
et al. (2017) and Zhang et al. (2018a) find k-bits binary quantization via alternating optimization for
si’s and vi’s. Note that, all these methods produce sub-optimal solutions.

4 TRAINING BINARY NETWORKS

The loss functions in our quantized neural networks are non-differentiable due to the sign function
in the quantizers. To address this challenge we use the training algorithm proposed in Courbariaux
et al. (2015). To compute the gradient of the sign function we use the Straight Through Estimator
(STE) (Bengio et al., 2013): d/dx sign(x) = 1|x|≤1. During the training we keep the full precision
weights and use Stochastic Gradient Descent (SGD) to gradually update them in back-propagation.
In the forward-pass, only the quantized weights are used.

During the training we compute quantizers (for both weights and activations) using the online statis-
tics, i.e., the scalars in a k-bits scaled binary quantization (6) are computed based on the observed
values. During the training we also store the running average of these scalars. During inference we
use the stored quantized scalars to improve the efficiency. This procedure is similar to the update of
the batch normalization parameters in a standard DNN training (Ioffe & Szegedy, 2015).

5 EXPERIMENTS

We conduct experiments on the ImageNet dataset (Deng et al., 2009) using the ResNet-18 architec-
ture (He et al., 2016). The details of the architecture and training are provided in Appendix E.
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We conduct three sets of experiments: (1) evaluate quantization error of activations of a pre-trained
DNN, (2) evaluate the quantization error based on the classification accuracy of a post-training quan-
tized network, and (3) evaluate the classification accuracy of during-training quantized networks.
We report the quantization errors of the proposed binary quantization algorithms (optimal 1-bit, 2-
bits, ternary, and the greedy foldable quantizations) and compare with the state-of-the-art algorithms
BWN-Net (Rastegari et al., 2016), XNor-Net (Rastegari et al., 2016), TWN-Net (Li et al., 2016),
DoReFa-Net (Zhou et al., 2016), ABC-Net (Lin et al., 2017), and LQ-Net (Zhang et al., 2018a).

5.1 QUANTIZATION ERROR OF ACTIVATIONS

To quantify the errors of the introduced binary quantization algorithms we adopt the analysis per-
formed by Anderson & Berg (2017). They show that the angle between x and xq can be used as
a measure of the accuracy of a quantization scheme. They prove that when xq = sign(x) and
elements of x are i.i.d. ∼ N (0, 1), ∠(x,xq) converges to ∼ 37 degrees for large N .

Here we use the real data distribution. We trained a full precision network. We compute the activa-
tion tensors at each layer for a set of 128 images. In Figure 3 we show the angle between the full
precision and quantized activations for different layers. When the optimal quantization is used, a
significant reduction in the angle is observed compared to the greedy algorithm. The optimal 2-bits
quantization is even better than the greedy 4-bits quantization for later layers of the network, for
which activation tensors have more skewed distribution, make it harder for quantization in form of
(6). Furthermore, the accuracy of the optimal quantization has less variance with respect to different
input images and different layers of the network.
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Figure 3: The angle between the full precision
and the quantized activations for different layers
of a trained full precision ResNet-18 architecture
on ImageNet. The 95% confidence interval over
different input images is shown.

Method ka kw Top-1 Top-5
Post-GF 32 1 0.1 0.5
Post-GF 32 2 0.3 1.1
Post-GF 32 3 1.4 4.6
Post-GF 32 4 5.3 14.1
Post-Opt 32 2 5.3 13.9
Opt 1 1 54.3 77.3
GF 2 1 59.7 81.7
GF 3 1 61.1 82.7
GF 4 1 61.3 82.8
Opt T 1 58.3 80.6
Opt 2 1 60.4 82.2
FP 32 32 69.6 89.2

Table 1: Validation accuracy of a quantized
ResNet-18 trained on ImageNet. ka and kw
are number of bits to quantize activations
and weights, respectively. T, Opt, GF, and
FP refer to ternary, optimal, Greedy Fold-
able, and full precision, respectively.

5.2 POST-TRAINING QUANTIZATION

In this section we apply post-training quantization to the weights of a pre-trained full precision
network. We then use the quantized network for inference and report the classification accuracy.
This procedure can result in an acceptable accuracy for a moderate number of bits (e.g., 16 or
8). However, the error significantly grows with a lower number of bits, which is the case in this
experiment. Therefore, we only care about the relative differences between different quantization
strategies. This experiment demonstrates the effect of quantization errors on the accuracy of the
quantized DNNs.

The results are shown in the top half of Table 1. When the optimal 2-bits quantization is used,
significant accuracy improvement (more than one order of magnitude) is observed compared to the
greedy 2-bits quantization, which illustrate the effectiveness of the optimal quantization.
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5.3 DURING-TRAINING QUANTIZATION

To achieve higher accuracy we apply quantization during the training, so that the model can adapt to
the quantized weights and activations. In the bottom half of Table 1, we report the accuracies of the
during-training quantized DNNs, all trained with the same setup. We use 1-bit binary quantization
for weights, and use different quantization algorithms for activations. When quantization is applied
during-training, significantly higher accuracies are achieved. Similar to the previous experiments
the optimal quantization algorithm achieves a better accuracy compared to the greedy.

In Table 2 we report results from the related works in which ResNet-18 architecture with quantized
weights and/or activations is trained on the ImageNet dataset for the classification task. We report
the mean and standard deviation of the model accuracy over 5 runs when our algorithms are used.
Note that for 1-bit quantization the Greedy Foldable (GF) algorithm is the same with the optimal
1-bit binary quantization. In Opt* we used 2× larger batch-size compared to Opt but with the same
number of optimization steps. As shown in the Table 2 the proposed quantization algorithms match
or improve the accuracies of the state-of-the-art BNNs.

Method (ResNet-18 on ImageNet) ka kw Val. top-1 Val. top-5
XNor-Net (Rastegari et al., 2016) 1 1 51.2 73.2
Opt 1 1 54.3± 0.2 77.4± 0.2
Opt T 1 58.3± 0.1 80.6± 0.0
DoReFa-Net (Zhou et al., 2016)a 2 1 53.4 -
LQ-Net (Zhang et al., 2018a) 2 1 62.6 84.3
HWGQ-Net (Cai et al., 2017) 2 1 59.6 82.2
GF 2 1 59.7± 0.2 81.7± 0.1
Opt 2 1 60.4± 0.2 82.2± 0.1
Opt* 2 1 62.4± 0.1 83.6± 0.1
GF 3 1 61.1± 0.1 82.7± 0.1
ABC-Net (Lin et al., 2017) 3 3 61.0 83.2
DoReFa-Net (Zhou et al., 2016) 4 1 59.2 81.5
GF 4 1 61.3± 0.2 82.8± 0.1
BWN-Net (Rastegari et al., 2016) 32 1 60.8 83.0
Opt 32 1 64.2± 0.4 85.2± 0.1
TWN-Net (Li et al., 2016) 32 T 61.8 84.2
Opt 32 T 64.4± 0.1 85.4± 0.1
FP 32 32 69.6 89.2

Table 2: Comparison with state-of-the-art quantization. Opt and GF are the
proposed optimal and greedy foldable quantization algorithms, respectively. T
and FP refer to ternary and full precision network, respectively.

aThis result is taken from (Zhang et al., 2018a).

6 CONCLUSION

In this work, we analyze the accuracy of binary quantization to train DNNs with quantized weights
and activations. We discuss methods to improve the accuracy of quantization, namely scaling and
using more bits.

We introduce the rank-1 binary quantization, as a general scaling scheme. Based on a singular
value analysis we motivate using the scaled binary quantization, a computationally efficient scaling
strategy. We define a general k-bits scaled binary quantization. We provide provably optimal 1-bit,
2-bits, and ternary quantizations. In addition, we propose a greedy k-bits quantization algorithm.
We show results for post and during-training quantization, and demonstrate significant improvement
in accuracy when optimal quantization is used. We compare the proposed quantization algorithms
with state-of-the-art BNNs on the ImageNet dataset and show improved classification accuracies.
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A OPTIMAL RANK-1 BINARY QUANTIZATION

In this section, we find the optimal rank-1 binary quantization of an m by n matrix X that is
discussed in Section 2:

minimize
X1,S

‖X −X1 � S‖F

s.t. S ∈ {−1, 1}m×n

X1 ∈ Rm×n

rank(X1) = 1

(13)

First, observe that the element-wise multiplication by −1 and +1 does not change the Frobenius
norm. Therefore:

min
S,X1

= ‖X −X1 � S‖F = min
S,X1

= ‖(X −X1 � S)� S‖F = min
S,X1

‖X � S −X1‖F (14)

Furthermore, note that
min
S,X1

‖X � S −X1‖2F = σ2
2(X � S) + . . .+ σ2

r(X � S) (15)

Here σi(X � S) is the i’th singular value of X � S and r is its rank. In addition for any S:
r∑

i=1

σ2
i (X � S) = ‖X � S‖2F = ‖X‖2F (16)

Hence, to minimize the sum in (15) we need to find an S for which σ2
1(X � S) is maximized:

min
S,X1

‖X � S −X1‖2F = ‖X‖2F −max
S

σ2
1(X � S) (17)

σ1(X � S) = ‖X � S‖2 is the 2-norm of X � S. Therefore:

max
S

σ2
1(X � S) = max

S
max
‖r‖2=1

‖(X � S)r‖22 (18)

For any S and r ∈ Rn we have ‖(X � S)r‖22 ≤ ‖ |X| |r| ‖22 since for 1 ≤ i ≤ m we have
|∑j Si,jXi,jrj | ≤

∑
j |Xi,j | |rj |. Here |X| = X � sign(X) is the element-wise absolute value

of X . Note that for S = sign(X) and r with positive values the inequality becomes an equality.
Therefore:

max
S

max
‖r‖2=1

‖(X � S)r‖22 = max
‖r‖2=1

‖|X||r|‖22 (19)

Observe that the element-wise absolute value does not change the vector norm, i.e. ‖|r|‖2 = ‖r‖2,
and hence |r| is a unit vector when r is. Also for any r we have ‖|X|r‖22 ≤ ‖|X| |r|‖22 since for
1 ≤ i ≤ m we have |∑j |Xi,j |rj | ≤

∑
j |Xi,j ||rj |. So we have

max
‖r‖2=1

‖|X||r|‖22 = max
‖r‖2=1

‖|X|r‖22 = σ2
1(|X|) (20)

Therefore, we showed that S = sign(X) and X1 equal to the best rank-1 approximation of |X| (i.e.
the first term in its SVD) is a solution of (13).

For an X with i.i.d. ∼ N (0, 1) entries we show the singular values and first left and right singular
vectors of |X| in Figure 4. Observe that the first singular value of |X| captures most of the energy
σ2
1(|X|)/‖X‖2F ' 0.64. The fraction of energy captured by the first component of SVD converges

to the squared mean of the standard folded normal distribution (2/π) for large square matrices. Also
note that the first left and right singular vectors are almost constant, i.e., they can be written as α1
for some α ∈ R.

B OPTIMAL SCALED BINARY QUANTIZATION

In this section, we solve the following optimization problem corresponding to the optimal 1-bit
scaled binary quantization as discussed in Section 3.1:

minimize
v,s

∫ +∞

−∞
p(x)(vs(x)− x)2dx

s.t. s : R→ {−1, 1}
v ∈ R≥0

(21)
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Figure 4: Left: Distribution of energy for |X|, where X ∈ R30×30 is a standard normal random
matrix. Right: Entries of the first left and right singular vectors of |X| (shown in green and blue)
are almost constant.

Here p is a probability distribution function. First, observe that:

∀x ∈ R : (v − x)2 < (−v − x)2 iff x > 0 (22)

Therefore, the optimal choice for function s is s(x) = sign(x). So we can rewrite (21) as follows:

minimize
v

∫ +∞

−∞
p(x)(v − |x|)2dx

s.t. v ∈ R≥0
(23)

Setting the gradient of the objective function in (23) with respect to v to zero, we get:

v =

∫ +∞
−∞ p(x)|x|dx∫ +∞
−∞ p(x)dx

= Ex∼p[|x|] (24)

Hence, we showed that the optimal 1-bit scaled binary quantization maps x to Ex∼p[|x|] sign(x).

C OPTIMAL 2-BITS BINARY QUANTIZATION

In this section, we solve the following optimization problem corresponding to the optimal 2-bits
binary quantization as discussed in Section 3.2.2:

minimize
v1,v2,s1,s2

∫ +∞

−∞
p(x) (v1s1(x) + v2s2(x)− x)2 dx

s.t. s1, s2 : R→ {−1, 1}
v1 ≥ v2 ≥ 0

(25)

First, we show that the optimal 2-bits binary quantization is foldable, i.e., ∀x ∈ R s1(x) = sign(x)
and s2(x) = sign(x− v1s1(x)). Observe that

f(x) = (v1s1(x) + v2s2(x)− x)2 = v21

(
1 +

v2
v1
s1(x)s2(x)−

s1(x)x

v1

)2

≥

v21

(
1 +

v2
v1
s1(x)s2(x)−

|s1(x)x|
v1

)2

= g(x)

(26)

The inequality in (26) holds because v1 ≥ v2, and therefore, 1 + v2
v1
s1(x)s2(x) ≥ 0. The objective

function in (25) is a weighted average of f(x) with non-negative weights. For x ∈ R the inequality
is strict if s1(x) 6= sign(x). In that case, flipping the value of both s1(x) and s2(x) reduces f(x) to
a strictly smaller value g(x). Hence, the optimal solution of (25) should satisfy s1(x) = sign(x) for
all x ∈ R.
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For any v1 and s1 if we consider y = x − v1s1(x), the problem reduces to the 1-bit binary
quantization for y. Based on the result showed in Appendix B for the optimal solution we have
s2(x) = sign(y) = sign(x − v1s1(x)). This completes the proof to show that the optimal 2-bits
binary quantization is foldable.

Next, we find the optimal values for v1 and v2. If we substitute s1(x) = sign(x) and s2(x) =
sign(x− v1s1(x)) in (25) we can decompose R into four segments and write:

e(v1, v2) =

∫ +∞

−∞
p(x) (v1s1(x) + v2s2(x)− x)2 dx =∫ −v1

−∞
p(x)(x+ v1 + v2)

2dx +

∫ 0

−v1
p(x)(x+ v1 − v2)2dx +∫ v1

0

p(x)(x− v1 + v2)
2dx +

∫ +∞

v1

p(x)(x− v1 − v2)2dx =∫ v1

0

q(x)(x− v1 + v2)
2dx +

∫ +∞

v1

q(x)(x− v1 − v2)2dx

(27)

Here e(v1, v2) is the error as a function of v1 and v2, and q(x) = p(−x) + p(x) is the folded
distribution function. Assuming the optimal point occurs in the interior of the domain, it should
satisfy the zero gradient condition: ∂e/∂v1 = ∂e/∂v2 = 0. Taking derivative from (27) with
respect to v1 and v2 and set it to zero we get:

v1 =

∫ v1

0

xq(x)dx +

∫ +∞

v1

xq(x)dx +v2

(∫ v1

0

q(x)dx−
∫ +∞

v1

q(x)dx

)
v2 = −

∫ v1

0

xq(x)dx+

∫ +∞

v1

xq(x)dx +v1

(∫ v1

0

q(x)dx−
∫ +∞

v1

q(x)dx

) (28)

We can simplify (28) and rewrite v1 and v2 in terms of the following conditional expectations:

v1 =
1

2
(Ex∼p[|x| | |x| > v1] + Ex∼p[|x| | |x| ≤ v1])

v2 =
1

2
(Ex∼p[|x| | |x| > v1]− Ex∼p[|x| | |x| ≤ v1])

(29)

Hence, the optimal values of v1 and v2 can be obtained by solving for v1 and v2 in (29). The
optimization domain has two boundaries. One is when v2 = 0. This reduces the problem to 1-
bit binary quantization. The optimal solution in that case is discussed in Appendix B. The other
boundary is when v1 = v2. This results in the ternary quantization. The optimal solution in this case
is discussed in Appendix D.

D OPTIMAL TERNARY QUANTIZATION

In this section, we find the optimal symmetric ternary quantization, that is to map a full precision
value x to a discrete set {−2v, 0, 2v} as discussed in Section 3.2.3. Finding the optimal mapping
can be formulated as the following optimization problem:

minimize
v,s1,s2

∫ +∞

−∞
p(x) (vs1(x) + vs2(x)− x)2 dx

s.t. s1, s2 : R→ {−1, 1}
v ≥ 0

(30)

First, the above form is a special case of (25), hence, using the same argument as in Appendix C we
can show that there is a foldable optimal solution: s1(x) = sign(x) and s2(x) = sign(x− vs1(x)).
Then the total error as a function of v can be written as:

e(v) =

∫ v

0

q(x)x2dx +

∫ +∞

v

q(x)(x− 2v)2dx (31)

where q(x) is the folded probability distribution function. Taking derivative from (31) and setting it
to zero, we get:

v =

∫ +∞
v

xq(x)dx

2
∫ +∞
v

q(x)dx
=

1

2
Ex∼p[|x| | |x| > v] (32)
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E DETAILS OF TRAINING RESNET ON IMAGENET

In this section, we explain the details of how the DNN results reported in this paper are produced.
All results correspond to the ResNet-18 architecture trained on the ImageNet dataset for the classifi-
cation task. We use the standard training and validation splits of the ImageNet dataset. We followed
a similar architecture as XNor-Net (Rastegari et al., 2016). The convolutional block that we use is
depicted in Figure 1(left). We use ReLU non-linearity before the batch normalization as suggested
by (Rastegari et al., 2016). Also, we find it important to use bounded dynamic range, and therefore
clip the values to [−d, d]. We use d = 2, 3, 5, and 8 for k = 1, 2, 3, and 4 bits quantizations,
respectively. Similar to the other BNNs for the first and last layers we use full precision. Also, as
suggested by Choi et al. (2018) we use full precision short-cuts in ResNet architecture, which adds
a small computational/memory overhead. We quantize weights per filter and activations per layer.
As Cai et al. (2017) we use first-order polynomial learning-rate annealing schedule (from 10−1 to
10−4) and train for 120 epochs. We do not use weight decay. For the data augmentation we use
the standard methods used to train full precision ResNet architecture. For training we apply random
resize and crop to 224×224, followed by random horizontal flipping, color jittering, and lightening.
For test we resize the images to 256×256 followed by a center cropping to 224×224.
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