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ABSTRACT

We propose a novel unsupervised classification method based on graph Laplacian.
Unlike the widely used classification method, this architecture does not require the
labels of data and the number of classes. Our key idea is to introduce a approxi-
mate linear map and a spectral clustering theory on the dimension reduced spaces
into generative adversarial networks. Inspired by the human visual recognition
system, the proposed framework can classify and also generate images as the hu-
man brains do. We build an approximate linear connector network C analogous
to the cerebral cortex, between the discriminator D and the generator G. The con-
nector network allows us to estimate the unknown number of classes. Estimating
the number of classes is one of the challenging researches in the unsupervised
learning, especially in spectral clustering. The proposed method can also classify
the images by using the estimated number of classes. Therefore, we define our
method as an unsupervised classification method.

1 INTRODUCTION

Image classification has been one of the most important research in machine learning and artificial
intelligence. For the predefined number k of classes, the classification models based on deep learning
have performed well that the test accuracy is better than humans (Geirhos et al., 2017; He et al.,
2016; Russakovsky et al., 2015; Szegedy et al., 2015). This result is, however, true only when the
number of classes, k is predefined and we use the supervised learning with entire ground truth labels.
Humans learn visual information by memorizing the compressed information (features) in the brain,
reconstruct the object, and recognize the difference between objects. This capability allows humans
to classify data where the number of classes is unknown into the reasonable numbers of classes. In
this paper, we propose a method to mimic such human capability.

The main contribution of the proposed framework consists of two parts. We first show that there
exists a approximate linear map between two separated neural networks of Generative Adversarial
Networks (GANs). Secondly, we prove that the number of classes in a latent space is the same as
the number of classes in the original space in terms of the multiplicity of eigenvalue 0 of a Lapla-
cian matrix in spectral clustering theory. By combining the results, We derive a novel unsupervised
classification framework, which estimates the number of classes k and then extract k vectors rep-
resenting each class. With the framework, the approximate linear map between two networks can
induce the information of connected components in a data graph.

The latent variable model is commonly used in the generative models. Variational auto-encoders
(VAEs) (Kingma & Welling, 2013) and GANs (Goodfellow et al., 2014) are a few of the most famous
cases that learn the data distribution successfully. GANs randomly samples the latent variables that
are used to train the data distribution so we cannot figure out which latent variable generates a
result that we are interested in. To avoid the drawback by random sampling, auxiliary conditions on
latent variables were introduced (Chen et al., 2016; Mirza & Osindero, 2014). Introducing a label
information into the condition of the estimated data probability is highly effective in classification
where a data point x came from, however this method is not a unsupervised learning.

Spectral clustering is one of the most popular clustering algorithm that outperforms other well-
known clustering algorithms (Ng et al., 2002; Shi & Malik, 2000). Despite high performance, spec-
tral clustering is difficult to use because it requires the full dataset that have very largeN data points.
In this case, the dimension of the Laplacian matrix is N ×N and it takes at least O(N3). Therefore,
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we need a novel dimension reduction technique to use spectral clustering in practical applications
(Elhamifar & Vidal, 2009; Ji et al., 2017; Law et al., 2017; Shaham et al., 2018).

Recent image classification methods are based on supervised learning, in which a learning model
processes a dataset consisting of pairs of an image and its ground-truth label. This training dataset
usually consists of more than 10 K data point, some part of which need to be used for cross-
validation. It also takes a lot of costs to produce a reliable training dataset. In addition, estimating
the number of classes is a key aspect of unsupervised learning. There have been a few heuristic
method (Zelnik-Manor & Perona, 2005; Von Luxburg, 2007). We propose a method to find the
number of classes analytically.

The main concepts of spectral clustering, GANs and the self-expressiveness property will be intro-
duced Section 2. We prove the preliminary propositions that allow us to classify data with unsu-
pervised learning methods in Section 3. Finally, we propose a unsupervised classification algorithm
and test our algorithm in Section 4.

2 PRELIMINARIES

We first review cycle-consistent adversarial networks and sparse subspace clustering that we will
use when extracting indicator vectors. We also overview the basic probabilistic property between a
classification model and a generative model, which can be used as tools to generate indicator vectors.

2.1 CYCLE-CONSISTENT ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANs) is a generative model that a generator network learns a
data distribution implicitly (Goodfellow et al., 2014). GANs is a two player minimax game with
two neural networks: a discriminator D and a generator G. The discriminator D(x) is a probability
measure that an input x follows the data distribution pdata(x) rather than the generator’s distribution
pg . The generator G is a mapping from the latent space z ∼ pz to the data space. This minimax
game can be represented as a stochastic optimization problem with value function given by

min
G

max
D
V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log (1−D (G (z)))] . (1)

The cycle-consistent adversarial networks (cycleGANs) is a variant of GANs, which learns how to
translate an representation from a source domain S to a target domain T without a paired dataset
(Zhu et al., 2017). The cycle-consistency states that two mappings G : S → T and F : T → S
encode the right permutation of images in S and T , so that, for an arbitrary data point s ∈ S, the
mapping from S to T and back again, F (G(s)), should be the same as s. This property encourages
adversarial networks G and D to have a connection between generated images and input data. We
adopt two cycle consistency loss for the forward map and the backward map to learn a connection
between two high-level representation domain in G and D.

2.2 SPARSE SUBSPACE CLUSTERING

Sparse subspace clustering is a clustering algorithm that is based on spectral clustering. Spectral
clustering has many variants depending on the similarity measure, Gaussian kernel similarity func-
tion (Ng et al., 2002), k-nearest neighbor graphs, ε-neighborhood graph. A similarity measure
defined on the similarity graph G = (V,E) is a pairwise metric between two data points (nodes) in
a dataset and the similarity wij of two data points xi, xj is equal to or greater than 0. The similarity
wij is also same as wji because the above similarity graph is defined as an undirected graph. The
similarity matrix W is composed of the elements which correspond to the similarity measure wij
respectively and then W is symmetric. See more details about spectral clustering in (Von Luxburg,
2007).

Sparse subspace clustering (Elhamifar & Vidal, 2009) uses a novel similarity matrix that is based on
the self-expressiveness property. When we assume that the data space is a union of linear subspaces
S = ∪kl=1Sl, we can express an arbitrary data point in the dataset as a linear combination of other
data points in the dataset, where the coefficients of the data points in the same subspace are non-zero
and others should be 0 (Elhamifar & Vidal, 2009; Ji et al., 2017). Formally, each data point yi ∈ S
can be reconstructed as yi =

∑N
j=1 cijyj = Yci, where cii = 0, N is the size of the dataset,
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(a) (b)

Figure 1: (a) shows the mappings relation in our proposed method. (b) shows the architecutre of the
our networks.

ci := [ci1 ci2 · · · ciN ]T is the coefficient vector of yi and Y = [y1 y2 · · · yN ] is the dictionary
matrix. The sparse solution of ci indicates that the node i is in the same subspace as the node j if
the element cij is non-zero. In this paper, we expand the notion of the self-expressiveness property
to reduce the dimensionality of L in Section 3.3.

3 GRAPH LAPLACIAN OF THE CONNECTOR NETWORK

We first introduce our proposed architecture of adversarial networks. As an autoencoder point of
view, we can consider two adversarial networks as autoencoder. We build a connector network
between two networks to improve cycle consistency, and extract the information of connected com-
ponents (as shown in Figure 1-b). By training with the cycle-consistency loss, we can make the
tuples (Z,X,H) for each data point X in a given dataset. Then, we show the relation between the
spectral clustering and unsupervised classification. In order to show the relationship, we prove the
dimension reduction of the mutual expressiveness property in Section 3.3.

3.1 DISENTANGLING UNFOLDS AND EXPANDING THE VOLUME OF MANIFOLD

Deep neural networks learn a high-level abstract representation of a data manifold and a well trained
abstraction can disentangle the underlying factors of variation (Bengio et al., 2007). These proper-
ties allow interpolation between data samples more naturally and smoothly. (Bengio et al., 2013)
studied the disentangling effect and proposed three hypotheses on the shape of manifolds in differ-
ent representation domains. These hypotheses are verified by several empirical results (Goodfellow
et al., 2009; Glorot et al., 2011). The three hypotheses are summerized as follows.

• The deeper representations can better disentangle the underlying factors of variation.
• Disentangled representations unfold the manifolds near which raw data concentrates ir-

regularly, and expand the relative volume occupied by high-probability points near these
manifolds. Then these representations are with greater convexity.

• The underlying class factors of variations will be better disentangled than other factors, so
the deeper layer has better discriminant capability of classes.

In our proposed architecture, there are two high-level (deeper) representation spaces which are called
as feature spaces. These feature spaces fill the space more uniformly than the pixel space X . H and
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(a) (b)

Figure 2: (a) shows the density of h for 1 and 2 MNIST, (b) shows the mean of h for entire MNIST
classes

Z also have smoother density. Therefore, H and Z have greater convexity than X and it permits
linear combination on these two manifolds in the feature spaces H and Z, are the two manifolds
are more convex than the manifold in the pixel space X . By manifold hypothesis, different class
manifolds are well-separated by regions of very low density (Cayton, 2005). The feature spaces are
high-level representation spaces so that the density is unfolded and a linear combination of features
generates amore natural result in the pixel space Bengio (2014).

Now, we can define the effective basis of the subspace for each class. In the feature spaces, each
class manifold is assumed to have the enough convexity. The class manifolds are well-separated,
and show good discriminant capability. Using both properties, we can build the effective basis for
each class subspaces and generate the original space by a direct sum of these subspaces, where the
subspaces are orthogonal. We empirically tested an effective basis as shown in figure 3. Randomly
sampled features in a subspace of the data space can be an effective basis, and are possible to
generate all data points in the same subspace. The features in a different subspace cannot generate
the given data samples. We can estimate the effective dimension with the number of the effective
basis. We then can generate orthogonal subspaces of the entire classes if the effective dimension is
small enough than the dimension of feature spaces.

3.2 CONNECTOR NETWORK AND CYCLE CONSISTENCY

We will study the relationship among 3 different spaces, Z, X and H in the proposed architecture.
As shown in figure 1-(b), we can consider two adversarial networks as a decoder and an encoder of
an auto-encoder respectively (Berthelot et al., 2017; Zhao et al., 2016). The discriminator network
D encodes the pixel space X to the feature space H , and the generator network G decodes the
feature space Z to X . We define the connector network C which maps from H to Z. The map
C between two feature spaces will be trained by the cycle consistency loss to obtain the tuples
(Z,X,H) with the correct permutation, where all the elements are in the same-class manifold and
shares the same learned features. Cycle consistency loss tends to minimize the difference between
an arbitrary point and the returned point after traveling other representation domains. This cycle-
consistency objective permits inverse maps between all representation spaces. When we apply the
forward cycle-consistency loss ‖z − C(D(G(z)))‖1 and the backward cycle consistency loss ‖x−
G(C(D(x)))‖1, the maps between all pairs of neighboring spaces become unique. Therefore, the
feature-invariant one-to-one maps among G,C,D can be induced. All elements of an arbitrary
tuple (Z,X,H) share same class features as shown In figure 1-(a). We now have the following
assumption.

Assumption 3.1. All elements of the cycle consistent tuple (Z,X,H) shares the identical factors,
such as class factor and other factors (e.g. rotation and brightness).

As shown in fig 3-(c, d), we can conjecture that each class subset is closed and the linear combi-
nations in the certain class subset are also in the class because each class manifold is unfolded and
expanded in Z and H . In addition, we showed there exists the effective basis for each class. By
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(a) (b) (c) (d)

Figure 3: (a), (b) the generate images using the indicator vectors of Laplacian on C for MNIST
and CIFAR10, (c) describes the linear combination using class 2 to generate 1 but failed. (d) is the
generated image by the linear combination of the right features h for 1

the hypotheses (Bengio et al., 2013), we know that each class manifold has the compactness and the
convexity. Now we can assume the following assumption.
Assumption 3.2. Each class subspace Hi, where Hi ⊂ H are orthogonal, so as Zi where Zi ⊂ Z.
We define sets for each class SHi

and SZi
in Hi, Zi respectively to be the the class manifolds which

lies on the corresponding class subspaces. The sets SHi
and SZi

are compact and convex.

This assumption is more tight and realistic than the union of linear subspaces in Elhamifar & Vidal
(2009). We can also conjecture that the feature space H and Z are descried as the direct sum of Hi

and Zi respectively. Now, we can show the existence of an approximate linear map C from H to Z.
Lemma 3.1. There exists a compact and convex linear map Ci from SHi

to SZi
, If ‖Ci‖ is closed.

Proof.

1. By the assumption 3.2, the class subset SHi and SZi are convex. Let h1, h2 ∈ SHi and
z1 = Cih1, z2 = Cih2. We know that Ci is linear, then

tz1 + (1− t)z2 = tCih1 + (1− t)Cih2 = Ci(th1 + (1− t)h2). (2)

th1 + (1− t)h2 is also in SHi for t ∈ [0, 1]. Also, tz1 + (1− t)z2 is in SZi because SZi is
convex. Therefore Ci is a convex linear map for all i.

2. If SHi
is compact, then for h ∈ SHi

, ‖h‖ is closed. Then z ∈ SZi
is closed, because

‖z‖ = ‖Cih‖ ≤ ‖Ci‖‖h‖. (3)

We know that Ci and h are finite. Therefore SZi
is also compact.

Theorem 3.1. By the assumption that the data space are the direct sum of orthogonal class sub-
spaces, the map from H to Z can be written as a block matrix, of which block component consists of
Ci. C can maps from all class subset SHi to SZi .

Proof. By Lemma. 3.1., Ci is a compact and convex linear map from Hi to Zi. H and Z are the
direct sum of the orthogonal subspaces Hi and Zi respectively. Therefore C can be represented as a
block diagonal matrix for some ordered basis.

3.3 MUTUAL EXPRESSIVENESS PROPERTY AND DIMENSION REDUCTION

As we discussed in Section 2, the self-expressiveness property shows that we can express an arbitrary
data point as a linear combination of other N data points. By modifying this property slightly, we
can write each data point x as a linear combination ofN sampled data points α = {x1,x2, · · · ,xN}
from the data space X . This fact allows us to generate a set of feature variables, which satisfies the
self-expressiveness property. The self-expressiveness property implies that the generated data points
are in the class manifolds. Now, we relax the self-expressiveness property to generalize the problem.
We divide the latent space H into H1, · · · , Hl where the self-expressiveness only satisfies in each
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Hi not in H − Hi. We also know that it is possible to discard redundant coefficients in the self-
expressiveness expression by optimizing the matrix of coefficients (Elhamifar & Vidal, 2009), so
there exists at least one sparse solution of x where most coefficients are zero. By observing this
property, it is expected that the number of non zero coefficients approaches the dimension of latent
space, m. That is because N is much higher than dimX , and X is a m-dimensional manifold.
Image clustering methods, for instance, treat a dataset where the number of data points is much
larger than the dimension of data points so we can optimize a solution to have sufficiently many
zero coefficients in the self-expressive linear combination.
Theorem 3.2. From now on, Z ′i = C ′iH

′
i where Z ′i = (z1, · · · , zmi)

T and H ′i = (h1, · · · , hmi)
T .

Proof. By an observation on GANs, we have Ni feature variables βi = {hij}1≤j≤Ni
for each 1 ≤

i ≤ l where D(xi) = hi and N = N1 + · · ·+Nl. By the self-expressiveness property in Hi, we can
express each hi ∈ Hi by the linear combination of β′i = {h1, h2 · · · , hmi

, hmi+1, · · ·hNi
} where

β′i is a reordered set of βi and the coefficents of the linear combination {cmi+1, cmi+2, · · · , cNi}
are zero. In other words, the ordered set γi = {h1, · · · , hmi} is enough to represent all points in the
class manifold Xi and Zi, which correspond to (Zi, Xi, Hi), i.e. span(γi) = Hi. Hence, we can
choose C ′i by an mi ×mi real matrix.

This theorem is empirically shown by the our effective basis conjecture. Now, we can conclude that
the dimZi = dimHi = mi � Ni. We define the connector network C as a (

∑
mi) × (

∑
mi)

matrix. The similarity matrix is denoted by W = |C|+ |CT |.
Theorem 3.3. Let G be an undirected graph with non-negative weights. Then, the number of con-
nected components A1, · · · , Ak in G is the same as the multiplicity k of the eigenvalue 0 of L. If W
is a k block diagonal matrix, then the multiplicity of the eigenvalue 0 of its Laplacian is also k.

Proof. the proof in (Von Luxburg, 2007). By the definition of W ,the number of sub-block matrices
in W is the same as the number of connected components.

We conclude that the numbers of classes are identical between spectral clustering and our method.

3.4 UNSUPERVISED CLASSIFICATION

Now, we consider a unsupervised classification problem where there is no ground-truth label. For
example, when the cross-entropy loss is applied in the supervised classification, we need pairs of
input data and ground-truth probability mass p = [0, , 1, · · · , 0], which contains a single 1 at the
ith element, i.e. the class index c = i, to estimate the difference between the prediction and the
ground-truth. We can formally write the probabilistic interpretation as

P (c = i|x) =
P (c = i)P (x|c = i)

P (x)
(4)

, where x is a data point. If we assume that the numbers of data points in the whole classes are same,
then P (c) is uniform. Then, for the given point x, P (x) is fixed so the we can measure P (c|x)
by the estimating the likelihood P (x|c). In Section 3.3, we showed that the indicator vectors of
the connected components are the eigenvectors of the Laplacian matrix L, which are corresponding
to the eigenvalue 0. The components of the indicator vectors span the eigenspaces of the matched
connected components respectively. The orders of components for the Laplacian matrix LC and
the connector network C are identical by the definition in Section 3.3. Therefore, for all connected
component Ai, the indicator vectors 1Ai = h ∈ Hi spans the class subspace Hi. The indicator
vector itself, however, might not be in the class manifold because it can exist outside the boundary
of the manifold. We find out that the changes of norms between H and Z are different by the class.
The connector network can be considered as a singular value decomposition for each class. This
implies that each class data points move differently by the class. We define the mean vector of a
class in H as h′ and the Gaussian noise n.

‖z‖2 = ‖Ch‖2 = hTCTCh (5)

= (h′ + n)TCTC(h′ + n) (6)

The expectation of ‖z‖2 is,

E[‖z‖2] = h′TCTCh′ + E[nTCTCn] (7)

= h′TCTCh′ + E[nTZnZ ] (8)
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, where nZ is the scaled noise in Z. We now assume that the distribution of ‖z‖2 follows a Gaussian
with a variance σnZ

. Then, we can calculate the probability that ‖z‖2 is in the certain class. We also
know that B = CTC is a normal operator, then B satisfies the following theorem.
Theorem 3.4. |xTBx| ≤ max{|λ| : λ is an eigenvalue of B}‖x‖22

Proof. See in Chapter 5.6 of (Horn et al., 1990).

By ordering the eigenvalue of B, we can find out the interval that ‖z‖2 lies in. This implies that the
maximum eigenvalue of the sub-block matrix in B for z is in the above interval. This eigenvalue
works as the indicator of classifying class. Therefore we can build of Gaussian distributions for
‖z‖2 with the mean λ‖h‖2 and the standard deviation σnZ

.

4 UNSUPERVISED CLASSIFICATION INTO UNKNOWN k CLASSES

In this section, we describe the loss function and the training algorithm of unsupervised classification
into unknown k classes. It is known that estimating the number of classes k is hard and heuristic
(Von Luxburg, 2007). We find the empirical observation on the hint of k. Using the observation, we
suggest a conjecture that helps to estimate the number of classes k in a certain case.

Algorithm 1 Unsupervised Classification into Unknown k Classes (UCUC)

1: for the number of iterations do
2: Sample minibatch of m latent vectors z(0), · · · , z(m) from prior pg(z)
3: Sample minibatch of m data points x(0), · · · ,x(m) from dataset
4: Update the discriminator by ascending :

∇θd
1

m

m∑
i=1

[
logD

(
x(i)
)

+ log
(

1−D
(
G
(
z(i)
)))]

+λD

∥∥∥x(i) −G
(
C
(
D
(
x(i)
)))∥∥∥

1

(9)
5: Update the generator and connect by descending their stochastic gradients:

∇θg
1

m

m∑
i=1

[
log
(

1−D
(
G
(
z(i)
)))]

+ λG

∥∥∥z(i) − C
(
D
(
G
(
z(i)
)))∥∥∥

1
(10)

6: Update the connector network C with two cycle-consistency loss

∇C
[∥∥∥z(i) − C

(
D
(
G
(
z(i)
)))∥∥∥

1
+
∥∥∥x(i) −G

(
C
(
D
(
x(i)
)))∥∥∥

1

]
(11)

7: end for
8: Compute the moving average of each ith eigenvalue of normalized symmetric Laplacian matrix
Lsym = D−

1
2LD−

1
2 and find the estimated number k̂ by computing the second local minimum

9: Calculate the eigenvalues of CTC and find a matched class for an input

4.1 ESTIMATING THE NUMBER OF CLASSES k

We found an interesting observation on the number of classes k. The eigenvalue λ of the graph
Laplacian matrix equals to Ncut of the given graph (Shi & Malik, 2000). In the ideal cases, we can
assume that L is a block-diagonal matrix and each of blocks Li is a proper sub-graph Laplacian.
If there is no connection between subgraphs, then L is a perfect block-diagonal matrix and the
multiplicity of the eigenvalue 0 is the same as the number of blocks. In the real world dataset, there
exists quite large off-diagonal noise in the similarity matrix, as shown in the previous result. These
non-zero off-diagonal elements make the eigenvalue zero only at the first eigenvalue and increase
the Ncut of the graph gradually. We can consider the ith eigenvalue as the Ncut by the block
diagonal matrix with i blocks, which is applied on the perturbed block diagonal matrix of which
the underlying connected component is k. We now have the following conjecture on the pattern of
eigenvalues. We assume that the off-diagonal elements have the same value and the dimensions of
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all eigenspaces are the same. Now, we estimate the number of classes k by starting from m � k.
We can consider the difference of Ncut between k-block diagonal matrix and m-block diagonal
matrix as the the area of Sm − Sm ∩ Sk, where Sm = n2

m and Sk = n2

k when the matrix size is
n. As m increases, the difference of Ncut increases, but at k = m the value have the very small
local minimum becuase two matrices are perfectly overlapped. Using this property we can derive
the function of the difference of the Ncut over m as

Sm ∩ Sk = n2(
1

k2
(k −m+ 1) +

m−1∑
i=1

[(
i

m
− b ik

m
c1
k

)2 + ((1 + b ik
m
c) 1

k
− i

m
)2], (12)

where m ≤ k. if m > k, and switch m and k. This overlapped area is n2

k at m = k trivially. The
figure of the theoretical conjecture is in Figure-4a. This result can predict the empirical result of the
pattern of the eigenvalue. Therefore, we can conjecture that the underlying number of classes is at
the second deep local minimum.

5 EVALUATION

We introduce the setting of experiments and the architecture of our adversarial networks (Radford
et al., 2015). For the smaller size of dataset, such as MNIST and CIFAR10, we reduce the size of
kernels properly. We have the result the expectation of the estimated number of k is 10.2 for MNIST
and 10.1 for CIFAR10. Now we use the unsupervised clustering accuracy (ACC) (Cai et al., 2011;
Shaham et al., 2018).

ACC(l, c) =
1

n
max
π∈Π

n∑
i=1

1{li = π(ci)}, (13)

where li is true label, ci is the ground-truth label, and π is the collection of permutations.

Algorithm ACC (MNIST)
spectral clustering .717
SpectralNet .971
IMSAT .984
UCUC(ours) .735

Table 1: Other methods have the ground-truth number of classes. UCUC is not given the number of
classes. Other results are reported in (Shaham et al., 2018).

(a) (b) (c)

Figure 4: a shows theoretical result of the estimated eigengap using the overlapped area of block-
diagonal matrices and Figure (b) and (c) shows the eigengap |λk − λk−1| of the MNIST and CI-
FAR10.

6 CONCLUSION

We have proposed an unsupervised classification method that can automatically estimate the un-
known number of classes k. Our method provides the learned class-features. The proposed method
saves the tremendous cost of producing ground-truth labels in a large dataset.
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A SUPPLEMENTARY MATERIALS

A.A MODEL ARCHITECTURE

DCGAN Generator Discriminator

MNIST

fc 100
fc 1024
fc 2048
conv [5,5,256]
relu, batch norm
conv [4,4,128]
relu, batch norm
conv [5,5,64]
relu, batch norm
conv [5,5,1]
tanh, batch norm

conv [5,5,32]
lrelu, batch norm
conv [5,5,64]
lrelu, batch norm
conv [5,5,128]
lrelu, batch norm
conv [5,5,256]
lrelu, batch norm
fc 100 (H)
lrelu
fc 1
sigmoid

CIFAR10

fc 100
fc 2048
fc 4096
conv [5,5,512]
relu, batch norm
conv [5,5,256]
relu, batch norm
conv [5,5,128]
relu, batch norm
conv [5,5,3]
tanh, batch norm

conv [5,5,32]
lrelu, batch norm
conv [5,5,64]
lrelu, batch norm
conv [5,5,128]
lrelu, batch norm
conv [5,5,256]
lrelu, batch norm
fc 100 (H)
lrelu
fc 1
sigmoid

Table 2: Model Architecture in the MNIST and CIFAR10 experiments.

batch size 64
dim z 100
learning rate, β1 0.0002, 0.5
λG, λD 0.5, 0.5

Table 3: The hyperparameters for the networks

A.B ADDITIONAL EXPERIMENTAL RESULTS

In the latent space H,Z, the each class subset has a Gaussian distribution, which implies the subset
is convex. We observed that the connector networks Ci are not identical among the whole classes.
Each connector network Ci is decomposed into an unique singular value decomposition matrices.
Therefore, we can extract the difference for each class by analyzing the eigenvalues in Section 3.4.

We can observe thatW is a near block diagonal matrix, of which off-diagonal elements are not zero.
This leads to the summation of some residue weights which should be zeros theoretically. When the
number of connected components are matched, those residues are no longer summed up. Therefore,
the deep local minimum in the eigengap exists.
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Figure 5: In the some range of noise, we can always generate the same class image. The magnitudes
of noise for each class are different.

Figure 6: We sample Z from the normal distribution, so the norm of z is smaller than h. In additino,
we can observe that C changes not only the magnitude of the vector but also the angle.

Figure 7: The left figure is the cosine values between the mean vector of each classes h̄i, z̄j . The
right figure is the cosine values between h̄i, h̄j .
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Figure 8: The left figure is the initial similarity matrix W , The right figure is the right permutated
similarity matrix.
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