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ABSTRACT

Multilingual machine translation, which translates multiple languages with a sin-
gle model, has attracted much attention due to its efficiency of offline training
and online serving. However, traditional multilingual translation usually yields
inferior accuracy compared with the counterpart using individual models for each
language pair, due to language diversity and model capacity limitations. In this
paper, we propose a distillation-based approach to boost the accuracy of multi-
lingual machine translation. Specifically, individual models are first trained and
regarded as teachers, and then the multilingual model is trained to fit the training
data and match the outputs of individual models simultaneously through knowl-
edge distillation. Experiments on IWSLT, WMT and Ted talk translation datasets
demonstrate the effectiveness of our method. Particularly, we show that one model
is enough to handle multiple languages (up to 44 languages in our experiment),
with comparable or even better accuracy than individual models.

1 INTRODUCTION

Neural Machine Translation (NMT) has witnessed rapid development in recent years (Bahdanau
et al., 2015; Luong et al., 2015b; Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017; Wu
et al., 2018; Song et al., 2018; Shen et al., 2018; Guo et al., 2018; He et al., 2018; Gong et al.,
2018), including advanced model structures (Gehring et al., 2017; Vaswani et al., 2017) and human
parity achievements (Hassan et al., 2018). While conventional NMT can well handle single pair
translation, training a separate model for each language pair is resource consuming, considering
there are thousands of languages in the world1. Therefore, multilingual NMT (Johnson et al., 2017;
Firat et al., 2016; Ha et al., 2016; Lu et al., 2018) is developed which handles multiple language
pairs in one model, greatly reducing the offline training and online serving cost.

Previous works on multilingual NMT mainly focus on model architecture design through parameter
sharing, e.g., sharing encoder, decoder or attention module (Firat et al., 2016; Lu et al., 2018) or
sharing the entire models (Johnson et al., 2017; Ha et al., 2016). They achieve comparable accuracy
with individual models (each language pair with a separate model) when the languages are similar to
each other and the number of language pairs is small (e.g., two or three). However, when handling
more language pairs (dozens or even hundreds), the translation accuracy of multilingual model is
usually inferior to individual models, due to language diversity.

It is challenging to train a multilingual translation model supporting dozens of language pairs while
achieving comparable accuracy as individual models. Observing that individual models are usually

∗Authors contribute equally to this work.
1https://www.ethnologue.com/browse

1



Published as a conference paper at ICLR 2019

of higher accuracy than the multilingual model in conventional model training, we propose to trans-
fer the knowledge from individual models to the multilingual model with knowledge distillation,
which has been studied for model compression and knowledge transfer and well matches our setting
of multilingual translation. It usually starts by training a big/deep teacher model (or ensemble of
multiple models), and then train a small/shallow student model to mimic the behaviors of the teacher
model, such as its hidden representation (Yim et al., 2017; Romero et al., 2014), its output probabil-
ities (Hinton et al., 2015; Freitag et al., 2017) or directly training on the sentences generated by the
teacher model in neural machine translation (Kim & Rush, 2016a). The student model can (nearly)
match the accuracy of the cumbersome teacher model (or the ensemble of multiple models) with
knowledge distillation.

In this paper, we propose a new method based on knowledge distillation for multilingual transla-
tion to eliminate the accuracy gap between the multilingual model and individual models. In our
method, multiple individual models serve as teachers, each handling a separate language pair, while
the student handles all the language pairs in a single model, which is different from the conventional
knowledge distillation where the teacher and student models usually handle the same task. We first
train the individual models for each translation pair and then we train the multilingual model by
matching with the outputs of all the individual models and the ground-truth translation simultane-
ously. After some iterations of training, the multilingual model may get higher translation accuracy
than the individual models on some language pairs. Then we remove the distillation loss and keep
training the multilingual model on these languages pairs with the original log-likelihood loss of the
ground-truth translation.

We conduct experiments on three translation datasets: IWSLT with 12 language pairs, WMT with 6
language pairs and Ted talk with 44 language pairs. Our proposed method boosts the translation ac-
curacy of the baseline multilingual model and achieve similar (or even better) accuracy as individual
models for most language pairs. Specifically, the multilingual model with only 1/44 parameters can
match or surpass the accuracy of individual models on the Ted talk datasets.

2 BACKGROUND

2.1 NEURAL MACHINE TRANSLATION

Given a set of bilingual sentence pairsD = {(x, y) ∈ X×Y}, an NMT model learns the parameter θ
by minimizing the negative log-likelihood −

∑
(x,y)∈D logP (y|x; θ). P (y|x; θ) is calculated based

on the chain rule
∏Ty

t=1 P (yt|y<t, x; θ), where y<t represents the tokens preceding position t, and
Ty is the length of sentence y.

The encoder-decoder framework (Bahdanau et al., 2015; Luong et al., 2015b; Sutskever et al., 2014;
Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017) is usually adopted to model the condi-
tional probability P (y|x; θ), where the encoder maps the input to a set of hidden representations h
and the decoder generates each target token yt using the previous generated tokens y<t as well as
the representations h.

2.2 MULTILINGUAL NMT

NMT has been extended from the translation of a single language pair to multilingual transla-
tion (Dong et al., 2015; Luong et al., 2015a; Firat et al., 2016; Lu et al., 2018; Johnson et al.,
2017; Ha et al., 2016), considering the large amount of languages pairs in the world. Some of these
works focus on how to share the components of the NMT model among multiple language pairs.
Dong et al. (2015) use a shared encoder but different decoders to translate the same source lan-
guage to multiple target languages. Luong et al. (2015a) use the combination of multiple encoders
and decoders, with one encoder for each source language and one decoder for each target language
respectively, to translate multiple source languages to multiple target languages. Firat et al. (2016)
share the attention mechanism but use different encoders and decoders for multilingual translation.
Similarly, Lu et al. (2018) design the neural interlingua, which is an attentional LSTM encoder to
bridge multiple encoders and decoders for different language pairs. In Johnson et al. (2017) and Ha
et al. (2016), multiple source and target languages are handled with a universal model (one encoder
and decoder), with a special tag in the encoder to determine which target language to translate. In Gu
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et al. (2018a;b) and Neubig & Hu (2018), multilingual translation is leveraged to boost the accuracy
of low-resource language pairs with better model structure or training mechanism.

It is observed that when there are dozens of language pairs, multilingual NMT usually achieves infe-
rior accuracy compared with its counterpart which trains an individual model for each language pair.
In this work we propose the multilingual distillation framework to boost the accuracy of multilingual
NMT, so as to match or even surpass the accuracy of individual models.

2.3 KNOWLEDGE DISTILLATION

The early adoption of knowledge distillation is for model compression (Bucilu et al., 2006), where
the goal is to deliver a compact student model that matches the accuracy of a large teacher model
or the ensemble of multiple models. Knowledge distillation has soon been applied to a variety of
tasks, including image classification (Hinton et al., 2015; Furlanello et al., 2018; Yang et al., 2018;
Anil et al., 2018; Li et al., 2017), speech recognition (Hinton et al., 2015) and natural language
processing (Kim & Rush, 2016a; Freitag et al., 2017). Recent works (Furlanello et al., 2018; Yang
et al., 2018) even demonstrate that student model can surpass the accuracy of the teacher model,
even if the teacher model is of the same capacity as the student model. Zhang et al. (2017) propose
the mutual learning to enable multiple student models to learn collaboratively and teach each other
by knowledge distillation, which can improve the accuracy of those individual models. Anil et al.
(2018) propose online distillation to improve the scalability of distributed model training and the
training accuracy.

In this paper, we develop the multilingual distillation framework for multilingual NMT. Our work
differs from Zhang et al. (2017) and Anil et al. (2018) in that they collaboratively train multiple
student models with codistillation, while we use multiple teacher models to train a single student
model, the multilingual NMT model.

3 METHOD

As mentioned, when there are many language pairs and each pair has enough training data, the ac-
curacy of individual models for those language pairs is usually higher than that of the multilingual
model, given that the multilingual model has limited capacity comparing with the sum of all the in-
dividual models. Therefore, we propose to teach the multilingual model using the individual models
as teachers. Here we first describe the idea of knowledge distillation in neural machine translation
for the case of one teacher and one student, and then introduce our method in the multilingual setting
with multiple teachers (the individual models) and one student (the multilingual model).

3.1 ONE TEACHER AND ONE STUDENT

Denote D = {(x, y) ∈ X × Y} as the bilingual corpus of a language pair. The log-likelihood loss
(cross-entropy with one-hot label) on corpus D with regard to an NMT model θ can be formulated
as follows:

LNLL(D; θ) =−
∑

(x,y)∈D

logP (y|x; θ),

logP (y|x; θ) =

Ty∑
t=1

|V |∑
k=1

1{yt = k} logP (yt = k|y<t, x; θ),

(1)

where Ty is the length of the target sentence, |V | is the vocabulary size of the target language, yt is
the t-th target token, 1{·} is the indicator function that represents the one-hot label, and P (·|·) is the
conditional probability with model θ.

In knowledge distillation, the student (with model parameter θ) not only matches the outputs of the
ground-truth one-hot label, but also to the probability outputs of the teacher model (with parameter
θT ). Denote the output distribution of the teacher model for token yt as Q(yt|y<t, x; θT ). The cross
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entropy between two distributions serves as the distillation loss:

LKD(D; θ, θT ) = −
∑

(x,y)∈D

Ty∑
t=1

|V |∑
k=1

Q{yt = k|y<t, x; θT } logP (yt = k|y<t, x; θ). (2)

The difference between LNLL(D; θ) and LKD(D; θ, θT ) is that the target distribution of
LKD(D; θ, θT ) is no longer the original one-hot label, but teacher’s output distribution which is
more smooth by assigning non-zero probabilities to more than one word and yields smaller variance
in gradients (Hinton et al., 2015). Then the total loss function becomes

LALL(D; θ, θT ) = (1− λ)LNLL(D; θ) + λLKD(D; θ, θT ), (3)

where λ is the coefficient to trade off the two loss terms.

3.2 MULTILINGUAL DISTILLATION WITH MULTIPLE TEACHERS AND ONE STUDENT

Let L denote the total number of language pairs in our setting, superscript l ∈ [L] denote the index
of language pair,Dl denote the bilingual corpus for the l-th language pair, θM denote the parameters
of the (student) multilingual model, and θlI denote the parameters of the (teacher) individual model
for l-th language pair. Therefore, LNLL(D; θM ) denotes the log-likelihood loss on training data
D, and LALL(Dl; θM , θ

l
I) denotes the total loss on training data Dl, which consists of the original

log-likelihood loss and the distillation loss by matching to the outputs from the teacher model θlI .

The multilingual distillation process is summarized in Algorithm 1. As can be seen in Line 1, our
algorithm takes pretrained individual models for each language pair as inputs. Note that those mod-
els can be pretrained using the same datasets {Dl}Ll=1 or different datasets, and they can share the
same network structure as the multilingual model or use different architectures. For simplification,
in our experiments, we use the same datasets to pretrain the individual models and they share the
same architecture as the multilingual model. In Line 8-9, the multilingual model learns from both
the ground-truth data and the individual models with loss LALL when its accuracy has not surpassed
the individual model for a certain threshold τ (which is checked in Line 15-19 every Tcheck steps
according to the accuracy in validation set); otherwise, the multilingual model only learns from the
ground-truth data using the original log-likelihood loss LNLL (in Line 10-11).

Algorithm 1 Knowledge Distillation for Multilingual NMT

1: Input: Training corpus {Dl}Ll=1 and pretrained individual models {θlI}Ll=1 forL language pairs,
learning rate η, total training steps T , distillation check step Tcheck, threshold τ of distillation
accuracy.

2: Initialize: Randomly initialize multilingual model θM . Set current training step T = 0, accu-
mulated gradient g = 0, distillation flag f l = True for l ∈ [L].

3: while T < T do
4: T = T+1
5: g = 0
6: for l ∈ [L] do
7: Randomly sample a mini-batch of sentence pairs (xl, yl) from Dl.
8: if f l == True do
9: Compute and accumulate the gradient on loss LALL((xl, yl); θM , θlI): g += ∂LALL/∂θM .

10: else
11: Compute and accumulate the gradient on loss LNLL((xl, yl); θM ): g += ∂LNLL/∂θM .
12: end if
13: end for
14: Update θM : θM = θM - η ∗ g
15: if T % Tcheck == 0 do
16: for l ∈ [L] do
17: if Accuracy(θM ) < Accuracy(θlI) + τ do f l = True else f l = False end if
18: end for
19: end if
20: end while
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3.3 DISCUSSION

Selective Distillation Considering that distillation from a bad teacher model is likely to hurt the
student model and thus result in inferior accuracy, we selectively use distillation in the training pro-
cess, as shown in Line 15-19 in Algorithm 1. When the accuracy of multilingual model surpasses the
individual model for the accuracy threshold τ on a certain language pair, we remove the distillation
loss and just train the model with original negative log-likelihood loss for this pair. Note that in one
iteration, one language may not uses the distillation loss; it is very likely in later iterations that this
language will be distilled again since the multilingual model may become worse than the teacher
model for this language. Therefore, we call this mechanism as selective distillation. We also verify
the effectiveness of the selective distillation in experiment part (Section 4.3).

Top-K Distillation It is burdensome to load all the teacher models in the GPU memory for distil-
lation considering there are dozens or even hundreds of language pairs in the multilingual setting.
Alternatively, we first generate the output probability distribution of each teacher model for the sen-
tence pairs offline, and then just load the top-K probabilities of the distribution into memory and
normalize them so that they sum to 1 for distillation. This can reduce the memory cost again from
the scale of |V | (the vocabulary size) to K. We also study in Section 4.3 that top-K distribution can
result in comparable or better distillation accuracy than the full distribution.

4 EXPERIMENTS

We test our proposed method on three public datasets: IWSLT, WMT, and Ted talk translation tasks.
We first describe experimental settings, report results, and conduct some analyses on our method.

4.1 SETTINGS

Datasets We use three datasets in our experiment. IWSLT: We collect 12 languages↔English
translation pairs from IWSLT evaluation campaign2 from year 2014 to 2016. WMT: We collect 6
languages↔English translation pairs from WMT translation task3. Ted Talk: We use the common
corpus of TED talk which contains translations between multiple languages (Ye et al., 2018). We se-
lect 44 languages in this corpus that has sufficient data for our experiments. More descriptions about
the three datasets can be found in Appendix (Section 1). We also list the language code according
to ISO-639-1 standard4 for the languages used in our experiments in Appendix (Section 2). All the
sentences are first tokenized with moses tokenizer5 and then segmented into subword symbols using
Byte Pair Encoding (BPE) (Sennrich et al., 2016). We learn the BPE merge operations across all
the languages and keep the output vocabulary of the teacher and student model the same, to ensure
knowledge distillation.

Model Configurations We use the Transformer (Vaswani et al., 2017) as the basic NMT model
structure since it achieves state-of-the-art accuracy and becomes a popular choice for recent NMT
researches. We use the same model configuration for individual models and the multilingual model.
For IWSLT and Ted talk tasks, the model hidden size dmodel, feed-forward hidden size dff, number of
layer are 256, 1024 and 2, while for WMT task, the three parameters are 512, 2048 and 6 respectively
considering its large scale of training data.

Training and Inference For the multilingual model training, we up sample the data of each lan-
guage to make all languages have the same size of data. The mini batch size is set to roughly 8192
tokens. We train the individual models with 4 NVIDIA Tesla V100 GPU cards and multilingual
models with 8 of them. We follow the default parameters of Adam optimizer (Kingma & Ba, 2014)
and learning rate schedule in Vaswani et al. (2017). For the individual models, we use 0.2 dropout,
while for multilingual models, we use 0.1 dropout according to the validation performance. For

2https://wit3.fbk.eu/
3http://www.statmt.org/wmt16/translation-task.html, http://www.statmt.org/wmt17/translation-task.html
4https://www.loc.gov/standards/iso639-2/php/code list.php
5https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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knowledge distillation, we set Tcheck = 3000 steps (nearly two training epochs), the accuracy thresh-
old τ = 1 BLEU score, the distillation coefficient λ = 0.5 and the number of teacher’s outputs
K = 8 according to the validation performance. During inference, we decode with beam search
and set beam size to 4 and length penalty α = 1.0 for all the languages. We evaluate the translation
quality by tokenized case sensitive BLEU (Papineni et al., 2002) with multi-bleu.pl6. Our codes are
implemented based on fairseq7 and we will release the codes once the paper is published.

Language Individual Multi-Baseline Multi-Distillation ∆

Ar→En 31.19 29.24 (-1.95) 31.25 (+0.06) +2.01
Cs→En 28.04 26.09 (-1.95) 27.09 (-0.95) +1.00
De→En 33.07 32.74 (-0.33) 34.02 (+0.95) +1.28
He→En 37.42 35.18 (-2.24) 37.33 (-0.09) +2.15
Nl→En 35.94 36.54 (+0.60) 37.69 (+1.75) +1.15
Pt→En 44.30 43.49 (-0.81) 44.69 (+0.39) +1.20
Ro→En 36.92 36.41 (-0.51) 38.01 (+1.09) +1.60
Ru→En 23.04 23.12 (+0.08) 23.76 (+0.72) +0.64
Th→En 18.24 19.33 (+1.09) 19.90 (+1.66) +0.57
Tr→En 22.74 22.42 (-0.32) 23.75 (+1.01) +1.33
Vi→En 26.06 26.37 (+0.31) 27.04 (+0.98) +0.67
Zh→En 19.44 18.82 (-0.62) 19.52 (+0.08) +0.70

Table 1: BLEU scores of 12 languages→English on the IWLST dataset. The BLEU scores in ()
represent the difference between the multilingual model and individual models. ∆ represents the
improvements of our multi-distillation method over the multi-baseline.

Language Individual Multi-Baseline Multi-Distillation ∆

En→Ar 13.67 12.73 (-0.94) 13.80 (+0.13) +1.07
En→Cs 17.81 17.33 (-0.48) 18.69 (+0.88) +1.37
En→De 26.13 25.16 (-0.97) 26.76 (+0.63) +1.60
En→He 24.15 22.73 (-1.42) 24.42 (+0.27) +1.69
En→Nl 30.88 29.51 (-1.37) 30.52 (-0.36) +1.01
En→Pt 37.63 35.93 (-1.70) 37.23 (-0.40) +1.30
En→Ro 27.23 25.68 (-1.55) 27.11 (-0.12) +1.42
En→Ru 17.40 16.26 (-1.14) 17.42 (+0.02) +1.16
En→Th 26.45 27.18 (+0.73) 27.62 (+1.17) +0.45
En→Tr 12.47 11.63 (-0.84) 12.84 (+0.37) +1.21
En→Vi 27.88 28.04 (+0.16) 28.69 (+0.81) +0.65
En→Zh 10.95 10.12 (-0.83) 10.41 (-0.54) +0.29

Table 2: BLEU scores of English→12 languages on the IWLST dataset. The BLEU scores in ()
represent the difference between the multilingual model and individual models. ∆ represents the
improvements of our multi-distillation method over the multi-baseline.

4.2 RESULTS

Results on IWSLT Multilingual NMT usually consists of three settings: many-to-one, one-to-
many and many-to-many. As many-many translation can be bridged though many-to-one and one-
to-many setting, we just conduct the experiments on many-to-one and one-to-many settings. We first
show the results of 12 languages→English translations on the IWLST dataset are shown in Table 1.
There are 3 methods for comparison: 1) Individual, each language pair with a separate model; 2)
Multi-Baseline, the baseline multilingual model, simply training all the language pairs in one model;
3) Multi-Distillation, our multilingual model with knowledge distillation. We have several obser-
vations. First, the multilingual baseline performs worse than individual models on most languages.
The only exception is the languages with small training data, which benefit from data augmentation
in multilingual training. Second, our method outperforms the multilingual baseline for all the lan-
guages, demonstrating the effectiveness of our framework for multilingual NMT. More importantly,

6https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
7https://github.com/pytorch/fairseq
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compared with the individual models, our method achieves similar or even better accuracy (better
on 10 out of 12 languages), with only 1/12 model parameters of the sum of all individual models.

One-to-many setting is usually considered as more difficult than many-to-one setting, as it contains
different target languages which is hard to handle. Here we show how our method performs in one-
to-many setting in Table 2. It can be seen that our method can maintain the accuracy (even better
on most languages) compared with the individual models. We still improve over the multilingual
baseline by nearly 1 BLEU score, which demonstrates the effectiveness of our method.

Language Individual Multi-Baseline Multi-Distillation ∆

Cs-En 25.29 23.82 (-1.47) 25.37 (+0.08) +1.55
De-En 34.44 34.21 (-0.23) 36.22 (+1.78) +2.01
Fi-En 21.23 22.99 (+1.76) 24.32 (+3.09) +1.33
Lv-En 16.26 16.25 (-0.01) 18.43 (+2.17) +2.18
Ro-En 35.81 35.04 (-0.77) 36.51 (+0.70) +1.47
Ru-En 29.39 28.92 (-0.47) 30.82 (+1.43) +1.90

Table 3: BLEU scores of 6 languages→English on the WMT dataset. The BLEU scores in ()
represent the difference between the multilingual model and individual models. ∆ represents the
improvements of our multi-distillation method over the multi-baseline.

Language Individual Multi-Baseline Multi-Distillation ∆

En-Cs 22.58 21.39 (-1.19) 23.10 (+0.62) +1.81
En-De 31.40 30.08 (-1.32) 31.42 (+0.02) +1.34
En-Fi 22.08 19.52 (-2.56) 21.56 (-0.52) +2.04
En-Lv 14.92 14.51 (-0.41) 15.32 (+0.40) +0.81
En-Ro 31.67 29.88 (-1.79) 31.39 (-0.28) +1.51
En-Ru 24.36 22.96 (-1.40) 24.02 (-0.34) +1.06

Table 4: BLEU scores of English→ 6 languages on the WMT dataset.

Results on WMT The results of 6 languages→English translations on the WMT dataset are re-
ported in Table 3. It can be seen that the multi-baseline model performs worse than the individual
models on 5 out of 6 languages, while in contrast, our method performs better on all the 6 languages.
Particularly, our method improves the accuracy of some languages with more than 2 BLEU scores
over individual models. The results of one-to-many setting on WMT dataset are reported in Table 4.
It can be seen that our method outperforms the multilingual baseline by more than 1 BLEU score on
nearly all the languages.

Language Ar Bg Cs Da De El Es Et Fa Fi Frca

∆1 -1.50 -9.46 1.88 4.02 -0.10 0.80 0.23 8.20 0.09 6.44 15.8
∆2 1.73 1.42 1.13 1.82 1.68 1.45 1.63 0.77 1.83 1.10 1.24

Language Fr Gl He Hi Hr Hu Hy Id It Ja Ka

∆1 0.13 19.26 -1.59 10.16 1.46 -0.11 8.87 1.36 -0.56 -0.03 11.20
∆2 1.48 1.58 2.26 1.07 1.21 1.80 0.92 1.48 1.48 0.95 1.55

Language Ko Ku Lt Mk My Nb Nl Pl Ptbr Pt Ro

∆1 -0.42 7.75 4.46 10.72 7.63 14.07 -0.20 1.32 0.13 8.76 0.66
∆2 1.43 1.55 1.69 0.80 1.31 1.47 1.68 0.80 1.45 1.98 1.70

Language Ru Sk Sl Sq Sr Sv Th Tr Uk Vi Zh

∆1 0.65 4.23 11.87 5.03 1.58 2.39 1.17 -0.79 2.04 0.15 6.83
∆2 0.99 0.93 1.15 1.68 1.44 1.00 0.62 1.88 0.98 0.77 0.58

Table 5: BLEU scores improvements of our method over the individual models (∆1) and multi-
baseline model (∆2) on the 44 languages→English in the Ted talk dataset.
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Results on Ted Talk Now we study the effectiveness of our method on a large number of lan-
guages. The experiments are conducted on the 44 languages→English on the Ted talk dataset. Due
to the large number of languages and space limitations, we just show the BLEU score improvements
of our method over individual models and the multi-baseline for each language in Table 5, and leave
the detailed experiment results to Appendix (Section 3). It can be seen that our method can improve
over the multi-baseline for all the languages, mostly with more than 1 BLEU score improvements.
Our method can also match or even surpass individual models for most languages, not to mention
that the number of parameters of our method is only 1/44 of that of the sum of 44 individual models.
Our method achieves larger improvements on some languages, such as Da, Et, Fi, Hi and Hy, than
others. We find this is correlated with the data size of the languages, which are listed in Appendix
(Table 13). When a language is of smaller data size, it may get more improvement due to the benefit
of multilingual training.

4.3 ANALYSIS

In this section, we conduct thorough analyses on our proposed method for multilingual NMT.

Selective Distillation We study the effectiveness of the selective distillation (discussed in Sec-
tion 3.3) on the Ted talk dataset, as shown in Table 6. We list the 16 languages on which the two
methods (selective distillation, and distillation all the time) that have difference bigger than 0.5 in
terms of BLEU score. It can be seen that selective distillation performs better on 13 out of 16 lan-
guages, with large BLEU score improvements, which demonstrates the effectiveness of the selective
distillation.

Bg Et Fi Fr Gl Hi Hy Ka

distillation all the time 28.07 12.64 15.13 33.69 30.28 18.86 19.88 14.04
selective distillation 29.18 15.63 17.23 34.32 31.90 21.00 21.17 18.27

∆ +1.11 +2.99 +2.10 +0.63 +1.62 +2.14 +1.29 +4.23
Ku Mk My Sl Zh Pl Sk Sv

distillation all the time 8.50 32.10 14.02 22.10 17.22 25.05 30.45 37.88
selective distillation 13.38 32.65 15.17 23.68 19.39 24.30 29.91 36.92

∆ +4.88 +0.55 +1.15 +1.58 +2.17 -0.75 -0.54 -0.96

Table 6: BLEU scores of selective distillation (our method) and distillation all the time during the
training process on the Ted talk dataset.

Top-K Distillation In our experiments, the student model just matches the top-K output distribu-
tion of the teacher model, instead of the full distribution, in order to reduce the memory cost. We
analyze whether there is accuracy difference between the top-K distribution and the full distribution.
We conduct experiments on IWSLT dataset with varying K (from 1 to |V |, where |V | is the vocab-
ulary size), and just show the BLEU scores on the validation set of De-En translation due to space
limitation, as illustrated in Table 7. It can be seen that increasing K from 1 to 8 will improve the
accuracy, while bigger K will bring no gains, even with the full distribution (K = |V |).

Top-K 1 2 4 8 16 32 64 128 |V |
BLEU 33.45 33.86 34.47 34.76 34.66 34.68 34.54 34.47 34.49

Table 7: BLEU scores on De-En translation with varying Top-K distillation on the IWSLT dataset.

Back Distillation In our current distillation algorithm, we fix the individual models and use them
to teach and improve the multilingual model. After such a distillation process, the multilingual
model outperforms the individual models on most of the languages. Then naturally, we may won-
der whether this improved multilingual model can further be used to teach and improve individual
models through knowledge distillation. We call such a process back distillation. We conduct the ex-
periments on the IWSLT dataset, and find that the accuracy of 9 out of 12 languages gets improved,
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Language Ar Cs De Nl Ro Ru Th Tr Vi

Individual 31.19 28.04 33.07 35.94 36.92 23.04 18.24 22.74 26.06
+Back Distillation 31.39 29.44 33.71 36.86 37.28 23.36 19.42 23.58 27.17

∆ +0.20 +1.40 +0.64 +0.92 +0.36 +0.32 +1.18 +0.84 +1.11

Table 8: BLEU score improvements of the individual models with back distillation on the IWSLT
dataset.

as shown in Table 10. The other 3 languages (He, Pt, Zh) cannot get improvements because the
improved multilingual model performs very close to individual models, as shown in Table 1.

Comparison with Sequence-Level Knowledge Distillation We conduct experiments to compare
the word-level knowledge distillation (the exact method used in our paper) with sequence-level
knowledge distillation(Kim & Rush, 2016b) on IWSLT dataset. As shown in Table 9, sequence-
level knowledge distillation results in consistently inferior accuracy on all languages compared with
word-level knowledge distillation used in our work.

Language Sequence-level Word-level (Our Method) ∆

En-Ar 12.79 13.80 1.01
En-Cs 17.01 18.69 1.68
En-De 25.89 26.76 0.87
En-He 22.92 24.42 1.50
En-Nl 29.99 30.52 0.53
En-Pt 36.12 37.23 1.10
En-Ro 25.75 27.11 1.36
En-Ru 16.38 17.42 1.04
En-Th 27.52 27.62 0.10
En-Tr 11.11 12.84 1.73
En-Vi 28.08 28.69 0.61
En-Zh 10.25 10.41 0.16

Table 9: BLEU scores of sequence-level knowledge distillation and word-level knowledge distilla-
tion on the IWSLT dataset.

Language Ar Cs De Nl Ro Ru Th Tr Vi

Individual 31.19 28.04 33.07 35.94 36.92 23.04 18.24 22.74 26.06
+Back Distillation 31.39 29.44 33.71 36.86 37.28 23.36 19.42 23.58 27.17

∆ +0.20 +1.40 +0.64 +0.92 +0.36 +0.32 +1.18 +0.84 +1.11

Table 10: BLEU score improvements of the individual models with back distillation on the IWSLT
dataset.

Generalization Analysis Previous works (Yang et al., 2018; Lan et al., 2018) have shown that
knowledge distillation can help a model generalize well to unseen data, and thus yield better perfor-
mance. We analyze how distillation in multilingual setting helps the model generalization. Previous
studies (Keskar et al., 2016; Chaudhari et al., 2016) demonstrate the relationship between model gen-
eralization and the width of local minima in loss surface. Wider local minima can make the model
more robust to small perturbations in testing. Therefore, we compare the generalization capability
of the two multilingual models (our method and the baseline) by perturbing their parameters.

Specifically, we perturb a model θ as θi(σ) = θi + θ̄ ∗ N (0, σ2), where θi is the i-th parameter of
the model, θ̄ is the average of all the parameters in θ. We sample from the normal distribution N
with standard variance σ and larger σ represents bigger perturbation on the parameter. We conduct
the analyses on the IWSLT dataset and vary σ ∈ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]. Figure 1a shows the
loss curve in the test set with varying σ. As can be seen, while both the two losses increase with the
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increase of σ, the loss of the baseline model increases quicker than our method. We also show three
test BLEU curves on three translation pairs (Figure 1b: Ar-En, Figure 1c: Cs-En, Figure 1d: De-En,
which are randomly picked from the 12 languages pairs on the IWSLT dataset). We observe that the
BLEU score of the multilingual baseline drops quicker than our method, which demonstrates that
our method helps the model find wider local minima and thus generalize better.

(a) (b) (c) (d)

Figure 1: The loss (Figure a) and BLEU score (Figure b: Ar-En, Figure c: Cs-En, Figure d: De-En)
changes on the test set of the IWSLT dataset, with varying perturbation parameter σ.

5 CONCLUSION

In this work, we have proposed a distillation-based approach to boost the accuracy of multilingual
NMT, which is usually of lower accuracy than the individual models in previous works. Experiments
on three translation datasets with up to 44 languages demonstrate the multilingual model based on
our proposed method can nearly match or even outperform the individual models, with just 1/N
model parameters (N is up to 44 in our experiments).

In the future, we will conduct more deep analyses about how distillation helps the multilingual
model training. We will apply our method to larger datasets and more languages pairs (hundreds or
even thousands), to study the upper limit of our proposed method.
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APPENDIX

1 DATASET DESCRIPTION

We give a detailed description about the IWSLT,WMT and Ted Talk datasets used in experiments.

IWSLT: We collect 12 languages↔English translation pairs from IWSLT evaluation campaign8 from
year 2014 to 2016. Each language pair contains roughly 80K to 200K sentence pairs. We use the
official validation and test sets for each language pair. The data sizes of the training set for each
language↔English pair are listed in Table 11.

Language Ar Cs De He Nl Pt

Training Data 174K 114K 167K 180K 174K 167K
Language Ro Ru Th Tr Vi Zh

Training Data 177K 173K 83K 150K 131K 209K

Table 11: The training data size on the 12 languages↔ English on the IWSLT dataset.

WMT: We collect 6 languages↔English translation pairs from WMT translation task9. We use 5
language↔English translation pairs from WMT 2016 dataset: Cs-En, De-En, Fi-En, Ro-En, Ru-
En and one other translation pair from WMT 2017 dataset: Lv-En. We use the official released
validation and test sets for each language pair. The training data sizes of each language↔English
pair are shown in the Table 12.

Language Cs De Fi Lv Ro Ru

Training Data 1.0M 4.5M 2.5M 4.5M 2.2M 2.1M

Table 12: The training data size on the 6 languages↔English on the WMT dataset.

Ted Talk: We use the common corpus of TED talk which contains translations between multiple
languages (Ye et al., 2018)10. We select 44 languages in this corpus that has sufficient data for our
experiments. We use the official validation and test sets for each language pair. The data sizes of the
training set for each language↔English pair are listed in Table 13.

Language Ar Bg Cs Da De El Es Et Fa Fi Frca

Training Data 214K 174k 103k 45k 168k 134k 196k 11k 151k 24k 20k
Language Fr Gl He Hi Hr Hu Hy Id It Ja Ka

Training Data 192K 10K 212K 19K 122K 147K 21K 87K 205K 204K 13K
Language Ko Ku Lt Mk My Nb Nl Pl Ptbr Pt Ro

Training Data 206K 10K 42K 25K 21K 16K 184K 176K 185K 52K 180K
Language Ru Sk Sl Sq Sr Sv Th Tr Uk Vi Zh

Training Data 208K 61K 20K 45K 137K 57K 98K 182K 108K 172K 200K

Table 13: The training data size on the 44 languages↔ English on the Ted talk dataset.

2 LANGUAGE NAME AND CODE

The language names and their corresponding language codes according to ISO 639-1 standard11 are
listed in Table 14.

8https://wit3.fbk.eu/
9http://www.statmt.org/wmt16/translation-task.html, http://www.statmt.org/wmt17/translation-task.html

10https://github.com/neulab/word-embeddings-for-nmt
11https://www.loc.gov/standards/iso639-2/php/code list.php
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Language Code Language Code Language Code Language Code

Arabic Ar Bulgarian Bg Czech Cs Danish Da
German De Greek El English En Spanish Es
Persian Fa Finnish Fi French Fr Galician Gl
Hebrew He Hindi Hi Croatian Hr Hungarian Hu

Armenian Hy Indonesian Id Italian It Japanese Ja
Georgian Ka Korean Ko Kurdish Ku Lithuanian Lt

Latvian Lv Macedonian Mk Burmese My Norwegian Nb
Dutch Nl Polish Pl Portuguese Pt Romanian Ro

Russian Ru Slovak Sk Slovenian Sl Albanian Sq
Serbian Sr Swedish Sv Thai Th Turkish Tr

Ukrainian Uk Vietnamese Vi Chinese Zh

Table 14: The ISO 639-1 code of each language in our experiments. There are two extra language
codes in our datasets: Ptbr represents Portuguese spoken in Brazil, Frca represents French spoken
in Canada.

3 RESULTS ON TED TALK DATASET

The detailed results of the 44 languages→English on the Ted talk dataset are listed in Table 15. It
can be seen that while multilingual baseline performs worse than the individual model, multilingual
model based on our method nearly matches and even outperforms the individual model. Note that
the multilingual model handles 44 languages in total, which means our method can reduce the model
parameters size to 1/44 without loss of accuracy.

Language Ar Bg Cs Da De El Es Et Fa

Individual 31.07 38.64 26.42 38.21 34.63 36.69 41.20 7.43 26.67
Multilingual (Baseline) 27.84 27.76 27.17 40.41 32.85 36.04 39.80 14.86 24.93

Multilingual (Our method) 29.57 29.18 28.30 42.23 34.53 37.49 41.43 15.63 26.76

Language Fi Frca Fr Gl He Hi Hr Hu Hy

Individual 10.78 18.52 39.62 12.64 36.81 10.84 34.14 24.67 12.30
Multilingual (Baseline) 16.12 33.08 38.27 30.32 32.96 19.93 34.39 22.76 20.25

Multilingual (Our method) 17.22 34.32 39.75 31.9 35.22 21.00 35.6 24.56 21.17

Language Id It Ja Ka Ko Ku Lt Mk My

Individual 29.20 38.06 13.31 7.06 18.54 5.63 18.19 21.93 7.53
Multilingual (Baseline) 29.08 36.02 12.33 16.71 16.71 11.83 20.96 31.85 13.85

Multilingual (Our method) 30.56 37.50 13.28 18.26 18.14 13.38 22.65 32.65 15.16

Language Nb Nl Pl Ptbr Pt Ro Ru Sk Sl

Individual 27.28 35.85 22.98 44.28 33.81 34.07 24.36 25.67 11.80
Multilingual (Baseline) 39.88 33.97 23.50 42.96 40.59 33.03 24.02 28.97 22.52

Multilingual (Our method) 41.35 35.65 24.30 44.41 42.57 34.73 25.01 29.90 23.67

Language Sq Sr Sv Th Tr Uk Vi Zh

Individual 29.70 32.13 34.53 20.95 24.46 25.76 26.38 12.56
Multilingual (Baseline) 33.05 32.27 35.92 21.50 21.79 26.82 25.76 18.81

Multilingual (Our method) 34.73 33.71 36.92 22.12 23.67 27.80 26.53 19.39

Table 15: BLEU scores of the individual and multilingual models on the 44 languages→English on
the Ted talk dataset.
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