
Hyperspherical Prototype Networks

Pascal Mettes
ISIS Lab

University of Amsterdam

Elise van der Pol
UvA-Bosch Delta Lab

University of Amsterdam

Cees G. M. Snoek
ISIS Lab

University of Amsterdam

Abstract

This paper introduces hyperspherical prototype networks, which unify classification
and regression with prototypes on hyperspherical output spaces. For classifica-
tion, a common approach is to define prototypes as the mean output vector over
training examples per class. Here, we propose to use hyperspheres as output
spaces, with class prototypes defined a priori with large margin separation. We
position prototypes through data-independent optimization, with an extension to
incorporate priors from class semantics. By doing so, we do not require any pro-
totype updating, we can handle any training size, and the output dimensionality
is no longer constrained to the number of classes. Furthermore, we generalize
to regression, by optimizing outputs as an interpolation between two prototypes
on the hypersphere. Since both tasks are now defined by the same loss function,
they can be jointly trained for multi-task problems. Experimentally, we show the
benefit of hyperspherical prototype networks for classification, regression, and
their combination over other prototype methods, softmax cross-entropy, and mean
squared error approaches.

1 Introduction

This paper introduces a class of deep networks that employ hyperspheres as output spaces with an a
priori defined organization. Standard classification (with softmax cross-entropy) and regression (with
squared loss) are effective, but are trained in a fully parametric manner, ignoring known inductive
biases, such as large margin separation, simplicity, and knowledge about source data [28]. Moreover,
they require output spaces with a fixed output size, either equal to the number of classes (classification)
or a single dimension (regression). We propose networks with output spaces that incorporate inductive
biases prior to learning and have the flexibility to handle any output dimensionality, using a loss
function that is identical for classification and regression.

Our approach is similar in spirit to recent prototype-based networks for classification, which employ
a metric output space and divide the space into Voronoi cells around a prototype per class, defined as
the mean location of the training examples [11, 12, 17, 37, 45]. While intuitive, this definition alters
the true prototype location with each mini-batch update, meaning it requires constant re-estimation.
As such, current solutions either employ coarse prototype approximations [11, 12] or are limited to
few-shot settings [4, 37]. In this paper, we propose an alternative prototype definition.

For classification, our notion is simple: when relying on hyperspherical output spaces, prototypes
do not need to be inferred from data. We incorporate large margin separation and simplicity from
the start by placing prototypes as uniformly as possible on the hypershere, see Fig. 1a. However,
obtaining a uniform distribution for an arbitrary number of prototypes and output dimensions is
an open mathematical problem [31, 39]. As an approximation, we rely on a differentiable loss
function and optimization to distribute prototypes as uniformly as possible. We furthermore extend
the optimization to incorporate privileged information about classes to obtain output spaces with
semantic class structures. Training and inference is achieved through cosine similarities between
examples and their fixed class prototypes.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

(a) Classification. (b) Regression.

Figure 1: This paper demonstrates that for (a) classification and (b) regression, output spaces do
not need to be learned. We define them a priori by employing hyperspherical output spaces. For
classification the prototypes discretize the output space uniformly and for regression the prototypes
enable a smooth transition between regression bounds. This results in effective deep networks with
flexible output spaces, integrated inductive biases, and the ability to optimize both tasks in the same
output space without the need for further tuning.

Prototypes that are a priori positioned on hyperspherical outputs also allow for regression by main-
taining two prototypes as the regression bounds. The idea is to perform optimization through a
relative cosine similarity between the output predictions and the bounds, see Fig. 1b. This extends
standard regression to higher-dimensional outputs, which provides additional degrees of freedom not
possible with standard regression, while obtaining better results. Furthermore, since we optimize
both tasks with a squared cosine similarity loss, classification and regression can be performed jointly
in the same output space, without the need to weight the different tasks through hyperparameters. Ex-
perimentally, we show the benefit of hyperspherical prototype networks for classification, regression,
and multi-task problems.

2 Hyperspherical prototypes

2.1 Classification

For classification, we are given N training examples {(xi, yi)}Ni=1, where xi ∈ RL and yi ∈ C
denote the inputs and class labels of the ith training example, C = {1, ..,K} denotes the set
of K class labels, and L denotes the input dimensionality. Prior to learning, the D-dimensional
output space is subdivided approximately uniformly by prototypes P = {p1, ...,pK}, where each
prototype pk ∈ SD−1 denotes a point on the hypersphere. We first provide the optimization for
hyperspherical prototype networks given a priori provided prototypes. Then we outline how to find
the hyperspherical prototypes in a data-independent manner.

Gradient

G
ro
u
n
d
tr
u
th

Pr
ed
ict
ion

Figure 2: Visualization of
hyperspherical prototype net-
work training for classification.
Output predictions move to-
wards their prototypes based
on angular similarity.

Loss function and optimization. For a single training example
(xi, yi), let zi = fφ(xi) denote the D-dimensional output vector
given a network fφ(·). Because we fix the organization of the output
space, as opposed to learning it, we propose to train a classification
network by minimizing the angle between the output vector and the
prototype pyi for ground truth label yi, so that the classification loss
Lc to minimize is given as:

Lc =

N∑
i=1

(1− cos θzi,pyi)
2 =

N∑
i=1

(1− |zi · pyi |
||zi|| ||pyi ||

)2. (1)

The loss function maximizes the cosine similarity between the out-
put vectors of the training examples and their corresponding class
prototypes. Figure 2 provides an illustration in output space S2 for a
training example (orange), which moves towards the hyperspherical
prototype of its respective class (blue) given the cosine similarity.
The higher the cosine similarity, the smaller the squared loss in the
above formulation. We note that unlike common classification losses
in deep networks, our loss function is only concerned with the map-

2

ping from training examples to a pre-defined layout of the output space; neither the space itself nor
the prototypes within the output space need to be learned or updated.

Since the class prototypes do not require updating, our network optimization only requires a back-
propagation step with respect to the training examples. Let θi be shorthand for θzi,pyi . Then the
partial derivative of the loss function of Eq. 1 with respect to zi is given as:

d

zi
(1− cos θi)

2 = 2(1− cos θi)

(
cos θi · zi
||zi||2

− pyi
||zi||||pyi ||

)
. (2)

The remaining layers in the network are backpropagated in the conventional manner given the error
backpropagation of the training examples of Eq. 2. Our optimization aims for angular similarity
between outputs and class prototypes. Hence, for a new data point x̃, prediction is performed by
computing the cosine similarity to all class prototypes and we select the class with the highest
similarity:

c∗ = arg max
c∈C

(
cos θfφ(x̃),pc

)
. (3)

Positioning hyperspherical prototypes. The optimization hinges on the presence of class prototypes
that divide the output space prior to learning. Rather than relying on one-hot vectors, which only
use the positive portion of the output space and require at least as many dimensions as classes, we
incorporate the inductive biases of large margin separation and simplicity. We do so by assigning each
class to a single hyperspherical prototype and we distribute the prototypes as uniformly as possible.
For D output dimensions and K classes, this amounts to a spherical code problem of optimally
separating K classes on the D-dimensional unit-hypersphere SD−1 [35]. For D = 2, this can be
easily solved by splitting the unit-circle S1 into equal slices, separated by an angle of 2π

K . Then, for
each angle ψ, the 2D coordinates are obtained as (cosψ, sinψ).

For D ≥ 3, no such optimal separation algorithm exists. This is known as the Tammes problem [39],
for which exact solutions only exist for optimally distributing a handful of points on S2 and none for
S3 and up [31]. To obtain hyperspherical prototypes for any output dimension and number of classes,
we first observe that the optimal set of prototypes, P∗, is the one where the largest cosine similarity
between two class prototypes pi, pj from the set is minimized:

P∗ = arg min
P′∈P

(
max

(k,l,k 6=l)∈C
cos θ(p′

k,p
′
l)

)
. (4)

To position hyperspherical prototypes prior to network training, we rely on a gradient descent
optimization for the loss function of Eq. 4. In practice, we find that computing all pair-wise cosine
similarities and only updating the most similar pair is inefficient. Hence we propose the following
optimization:

LHP =
1

K

K∑
i=1

max
j∈C

Mij , M = P̂P̂T − 2I, s.t. ∀i ||P̂i|| = 1, (5)

where P̂ ∈ RK×D denotes the current set of hyperspherical prototypes, I denotes the identity matrix,
and M denotes the pairwise prototype similarities. The subtraction of twice the identity matrix
avoids self selection. The loss function minimizes the nearest cosine similarity for each prototype and
can be optimized quickly since it is in matrix form. The subtraction of the identity matrix prevents
self-selection in the max-pooling. We optimize the loss function by iteratively computing the loss,
updating the prototypes, and re-projecting them onto the hypersphere through `2 normalization.
Compared to uniform sampling methods [14, 30], we explicitly enforce separation. This is because
uniform sampling might randomly place prototypes near each other – even though each position on
the hypersphere has an equal chance of being selected – which negatively affects the classification.

Prototypes with privileged information. So far, no prior knowledge of classes is assumed. Hence
all prototypes need to be separated from each other. While separation is vital, semantically unrelated
classes should be pushed further away than semantically related classes. To incorporate such
privileged information [41] from prior knowledge in the prototype construction, we start from word
embedding representations of the class names. We note that the names of the classes generally come
for free. To encourage finding hyperspherical prototypes that incorporate semantic information,

3

we introduce a loss function that measures the alignment between prototype relations and word
embedding relations of the classes. We found that a direct alignment impedes separation, since
word embedding representations do not fully incorporate a notion of separation. Therefore, we use a
ranking-based loss function, which incorporates similarity order instead of direct similarities.

More formally, let W = {w1, ...,wK} denote the word embeddings of the K classes. Using these
embeddings, we define a loss function over all class triplets inspired by RankNet [5]:

LPI =
1

|T |
∑

(i,j,k)∈T

−S̄ijk logSijk − (1− S̄ijk) log(1− Sijk), (6)

where T denotes the set of all class triplets. The ground truth S̄ijk = [[cos θwi,wj ≥ cos θwi,wk]]

states the ranking order of a triplet, with [[·]] the indicator function. The output Sijk ≡ eoijk

1+eoijk

denotes the ranking order likelihood, with oijk = cos θpi,pj − cos θpi,pk . Intuitively, this loss
function optimizes for hyperspherical prototypes to have the same ranking order as the semantic
priors. We combine the ranking loss function with the loss function of Eq. 5 by summing the
respective losses.

2.2 Regression

While existing prototype-based works, e.g. [11, 17, 37], focus exclusively on classification, hy-
perspherical prototype networks handle regression as well. In a regression setup, we are given
N training examples {(xi, yi)}Ni=1, where yi ∈ R now denotes a real-valued regression value.
The upper and lower bounds on the regression task are denoted as vu and vl respectively and are
typically the maximum and minimum regression values of the training examples. To perform
regression with hyperspherical prototypes, training examples should no longer point towards a
specific prototype as done in classification. Rather, we maintain two prototypes: pu ∈ SD−1
which denotes the regression upper bound and pl ∈ SD−1 which denotes the lower bound.

Pr
edict

ion

G
ra

d
ie

n
t

Ground tru
th

Figure 3: Visualization of
hyperspherical prototype
network training for regres-
sion. The output prediction
moves angularly towards
the turquoise circle, which
corresponds to the example’s
ground truth regression value.

Their specific direction is irrelevant, as long as the two prototypes
are diametrically opposed, i.e. cos θpl,pu = −1. The idea behind
hyperspherical prototype regression is to perform an interpolation
between the lower and upper prototypes. We propose the following
hyperspherical regression loss function:

Lr =

N∑
i=1

(ri − cos θzi,pu)2, ri = 2 · yi − vl
vu − vl

− 1. (7)

Eq. 7 uses a squared loss function between two values. The first
value denotes the ground truth regression value, normalized based
on the upper and lower bounds. The second value denotes the cosine
similarity between the output vector of the training example and the
upper bound prototype. To illustrate the intuition behind the loss
function, consider Fig. 3 which shows an artificial training example
in output space S2, with a ground truth regression value ri of zero.
Due to the symmetric nature of the cosine similarity with respect
to the upper bound prototype, any output of the training example
on the turquoise circle is equally correct. As such, the loss function
of Eq. 7 adjusts the angle of the output prediction either away or
towards the upper bound prototype, based on the difference between
the expected and measured cosine similarity to the upper bound.

Our approach to regression differs from standard regression, which backpropagate losses on one-
dimensional outputs. In the context of our work, this corresponds to an optimization on the line from
pl to pu. Our approach generalizes regression to higher dimensional output spaces. While we still
interpolate between two points, the ability to project to higher dimensional outputs provides additional
degrees of freedom to help the regression optimization. As we will show in the experiments, this
generalization results in a better and more robust performance than mean squared error.

4

Table 1: Accuracy (%) of hyperspherical prototypes compared to baseline prototypes on CIFAR-100
and ImageNet-200 using ResNet-32. Hyperspherical prototypes handle any output dimensionality,
unlike one-hot encodings, and obtain the best scores across dimensions and datasets.

CIFAR-100 ImageNet-200
Dimensions 10 25 50 100 25 50 100 200

One-hot - - - 62.1 ± 0.1 - - - 33.1 ± 0.6

Word2vec 29.0 ± 0.0 44.5 ± 0.5 54.3 ± 0.1 57.6 ± 0.6 20.7 ± 0.4 27.6 ± 0.3 29.8 ± 0.3 30.0 ± 0.4

This paper 51.1 ± 0.7 63.0 ± 0.1 64.7 ± 0.2 65.0 ± 0.3 38.6 ± 0.2 44.7 ± 0.2 44.6 ± 0.0 44.7 ± 0.3

2.3 Joint regression and classification

In hyperspherical prototype networks, classification and regression are optimized in the same manner
based on a cosine similarity loss. Thus, both tasks can be optimized not only with the same base
network, as is common in multi-task learning [6], but even in the same output space. All that is
required is to place the upper and lower polar bounds for regression in opposite direction along one
axis. The other axes can then be used to maximally separate the class prototypes for classification.
Optimization is as simple as summing the losses of Eq. 1 and 7. Unlike multi-task learning on
standard losses for classification and regression, our approach requires no hyperparameters to balance
the tasks, as the proposed losses are inherently in the same range and have identical behaviour. This
allows us to solve multiple tasks at the same time in the same space without any task-specific tuning.

3 Experiments

Implementation details. For all our experiments, we use SGD, with a learning rate of 0.01, momen-
tum of 0.9, weight decay of 1e-4, batch size of 128, no gradient clipping, and no pre-training. All
networks are trained for 250 epochs, where after 100 and 200 epochs, the learning rate is reduced by
one order of magnitude. For data augmentation, we perform random cropping and random horizontal
flips. Everything is run with three random seeds and we report the average results with standard
deviations. For the hyperspherical prototypes, we run gradient descent with the same settings for
1,000 epochs. The code and prototypes are available at: https://github.com/psmmettes/hpn.

3.1 Classification

Evaluating hyperspherical prototypes. We first evaluate the effect of hyperspherical prototypes
with large margin separation on CIFAR-100 and ImageNet-200. CIFAR-100 consists of 60,000
images of size 32x32 from 100 classes. ImageNet-200 is a subset of ImageNet, consisting of 110,000
images of size 64x64 from 200 classes [18]. For both datasets, 10,000 examples are used for testing.
ImageNet-200 provides a challenging and diverse classification task, while still being compact
enough to enable broad experimentation across multiple network architectures, output dimensions,
and hyperspherical prototypes. We compare to two baselines. The first consists of one-hot vectors
on the C-dimensional simplex for C classes, as proposed in [2, 7]. The second baseline consists
of word2vec vectors [27] for each class based on their name, which also use the cosine similarity
to compare outputs, akin to our setting. For both baselines, we only alter the prototypes compared
to our approach. The network architecture, loss function, and hyperparameters are identical. This
experiment is performed for four different numbers of output dimensions.

The results with a ResNet-32 network [13] are shown in Table 1. For both CIFAR-100 and ImageNet-
200, the hyperspherical prototypes obtain the highest scores when the output size is equal to the
number of classes. The baseline with one-hot vectors can not handle fewer output dimensions. Our
approach can, and maintains accuracy when removing three quarters of the output space. For CIFAR-
100, the hyperspherical prototypes perform 7.4 percent points better than the baseline with word2vec
prototypes. On ImageNet-200, the behavior is similar. When using even fewer output dimensions, the
relative accuracy of our approach increases further. These results show that hyperspherical prototype
networks can handle any output dimensionality and outperform prototype alternatives. We have
performed the same experiment with DenseNet-121 [16] in the supplementary materials, where we
observe the same trends; we can trim up to 75 percent of the output space while maintaining accuracy,
outperforming baseline prototypes.

5

Table 2: Separation stats.

Separation ↑
min mean max

One-hot 1.00 1.00 1.00
Word2vec 0.26 1.01 1.32
This paper 0.95 1.01 1.39

In Table 2, we have quantified prototype separation of the three ap-
proaches with 100 output dimensions on CIFAR-100. We calculate the
min (cosine distance of closest pair), mean (average pair-wise cosine
distance), and max (cosine distance of furthest pair) separation. Our
approach obtains the highest mean and maximum separation, indi-
cating the importance of pushing many classes beyond orthogonality.
One-hot prototypes do not push beyond orthogonality, while word2vec
prototypes have a low minimum separation, which induces confusion for semantically related classes.
These limitations of the baselines are reflected in the classification results.

Prototypes with privileged information. Next, we investigate the effect of incorporating privi-
leged information when obtaining hyperspherical prototypes for classification. We perform this
experiment on CIFAR-100 with ResNet-32 using 3, 5, 10, and 25 output dimensions. The results
in Table 3 show that incorporating privileged information in the prototype construction is bene-
ficial for classification. This holds especially when output spaces are small. When using only 5
output dimensions, we obtain an accuracy of 37.0 ± 0.8, compared to 28.7 ± 0.4, a considerable
improvement. The same holds when the number of dimensions is larger than the number of classes.
Separation optimization becomes more difficult, but privileged information alleviates this problem.

Table 3: Classification accuracy (%) on CIFAR-100 using ResNet-32
with and without privileged information in the prototype construction.
Privileged information aids classification, especially for small outputs.

CIFAR-100
Dimensions 3 5 10 25 100 200

Hyperspherical prototypes 5.5 ± 0.3 28.7 ± 0.4 51.1 ± 0.7 63.0 ± 0.1 65.0 ± 0.3 63.7 ± 0.4

w/ privileged info 11.5 ± 0.4 37.0 ± 0.8 57.0 ± 0.6 64.0 ± 0.2 63.8 ± 0.1 64.7 ± 0.1

We also find that the test
convergence rate over
training epochs is higher
with privileged informa-
tion. We highlight this
in the supplementary ma-
terials. Privileged infor-
mation results in a faster
convergence, which we
attribute to the semantic structure in the output space. We conclude that privileged information
improves classification, especially when the number of output dimensions does not match with the
number of classes.

Comparison to other prototype networks. Third, we consider networks where prototypes are
defined as the class means using the Euclidean distance, e.g. [11, 17, 37, 45]. We compare to Deep
NCM of Guerriero et al. [11], since it can handle any number of training examples and any output
dimensionality, akin to our approach. We follow [11] and report on CIFAR-100. We run the baseline
provided by the authors with the same hyperparameter settings and network architecture as used in
our approach. We report all their approaches for computing prototype: mean condensation, mean
decay, and online mean updates.

In Fig. 4, we provide the test accuracy as a function of the training epochs on CIFAR-100. Overall, our
approach provides multiple benefits over Deep NCM [11]. First, the convergence of hyperspherical

0 50 100 150 200 250
Number of training epochs

0

10

20

30

40

50

60

70

T
e
st

 a
cc

u
ra

cy
 (

%
)

Deep NCM (mean decay)

Deep NCM (mean condensation)

Deep NCM (mean online)

This paper

Figure 4: Comparison to [11]. Our approach
outperforms the baseline across all their set-
tings with the same network hyperparame-
ters and architecture.

prototype networks is faster and reaches better results
than the baselines. Second, the test accuracy of hyper-
spherical prototype networks changes smoother over it-
erations. The test accuracy gradually improves over the
training epochs and quickly converges, while the test
accuracy of the baseline behaves more erratic between
training epochs. Third, the optimization of hyperspher-
ical prototype networks is computationally easier and
more efficient. After a feed forward step through the
network, each training example only needs to compute
the cosine similarity with respect to their class proto-
types. The baseline needs to compute a distance to
all classes, followed by a softmax. Furthermore, the
class prototypes require constant updating, while our
prototypes remain fixed. Lastly, compared to other
prototype-based networks, hyperspherical prototype
networks are easier to implement and require only a
few lines of code given pre-computed prototypes.

6

Comparison to softmax cross-entropy. Fourth, we compare to standard softmax cross-entropy
classification. For fair comparison, we use the same number of output dimensions as classes
for hyperspherical prototype networks, although we are not restricted to this setup, while soft-
max cross-entropy is. We report results in Table 4. First, when examples per class are large
and evenly distributed, as on CIFAR-100, we obtain similar scores. In settings with few or un-
even samples, our approach is preferred. To highlight this ability, we have altered the train
and test class distribution on CIFAR-100, where we linearly increase the number of training
examples for each class, from 2 up to 200. For such a distribution, we outperform softmax
cross-entropy. In our approach, all classes have a roughly equal portion of the output space,
while this is not to for softmax cross-entropy in uneven settings [20]. We have also performed
an experiment on CUB Birds 200-2011 [42], a dataset of 200 bird species, 5,994 training,

Table 4: Accuracy (%) for our approach com-
pared to softmax cross-entropy. When ex-
amples per class are scarce or uneven, our
approach is preferred.

CIFAR-100 CUB-200
ex / class 500 2 to 200 ∼30

Softmax CE 64.4 ± 0.4 44.2 ± 0.0 43.1 ± 0.6

This paper 65.0 ± 0.3 46.4 ± 0.0 47.3 ± 0.1

and 5,794 test examples, i.e. a low number of exam-
ples per class. On this dataset, we perform better than
softmax cross-entropy under identical networks and
hyperparameters (47.3 ± 0.1 vs 43.0 ± 0.6). Lastly,
we have compared our approach to a softmax cross-
entropy baseline which learns a cosine similarity using
all class prototypes. This baseline obtains an accuracy
of 55.5 ± 0.2 on CIFAR-100, not competitive with
standard softmax cross-entropy and our approach. We
conclude that we are comparable to softmax cross-
entropy for sufficient examples and preferred when
examples per class are unevenly distributed or scarce.

3.2 Regression

Next, we evaluate regression on hyperspheres. We do so on the task of predicting the creation year
of paintings from the 20th century, as available in OmniArt [38]. This results in a dataset of 15,000
training and 8,353 test examples. We use ResNet-32, trained akin to the classification setup. Mean
Absolute Error is used for evaluation. We compare to a squared loss regression baseline, where we
normalize and 0-1 clamp the outputs using the upper and lower bounds for a fair comparison. We
create baseline variants where the output layer has more dimensions, with an additional layer to a
real output to ensure at least as many parameters as our approach.

Table 5: Mean absolute error rates for creation year on artistic
images in Omniart. Our approach obtains the best results and
is robust to learning rate settings.

Omniart
Output space S1 S2

Learning rate 1e-2 1e-3 1e-2 1e-3

MSE 210.7 ± 140.1 110.3 ± 0.8 339.9 ± 0.0 109.9 ± 0.5

This paper 84.4 ± 10.7 76.3 ± 5.6 82.9 ± 1.9 73.2 ± 0.6

Table 5 shows the regression results
of our approach compared to the base-
line. We investigate both S1 and S2 as
outputs. When using a learning rate
of 1e-2, akin to classification, our ap-
proach obtains an MAE of 84.4 (S1)
and 82.9 (S2). The baseline yields an
error rate of respectively 210.7 and
339.9, which we found was due to ex-
ploding gradients. Therefore, we also
employed a learning rate of 1e-3, re-
sulting in an MAE of 76.3 (S1) and 73.2 (S2) for our approach, compared to 110.0 and 109.9 for the
baseline. While the baseline performs better for this setting, our results also improve. We conclude
that hyperspherical prototype networks are both robust and effective for regression.

3.3 Joint regression and classification

Rotated MNIST. For a qualitative analysis of the joint optimization we use MNIST. We classify
the digits and regress on their rotation. We use the digits 2, 3, 4, 5, and 7 and apply a random
rotation between 0 and 180 degrees to each example. The other digits are not of interest given the
rotational range. We employ S2 as output, where the classes are separated along the (x, y)-plane and
the rotations are projected along the z-axis. A simple network is used with two convolutional and
two fully connected layers. Fig. 5 shows how in the same space, both image rotations and classes
can be modeled. Along the z-axis, images are gradually rotated, while the (x, y)-plane is split into
maximally separated slices representing the classes. This qualitative result shows both tasks can be
modeled jointly in the same space.

7

0

20

40

60

80

100

120

140

160

180

R
o

ta
ti

o
n

2

3

4

5

7

D
ig

it

"seven""five" "two"

Figure 5: Joint regression and classi-
fication on rotated MNIST. Left: col-
ored by rotation (z-axis). Right: col-
ored by class assignment (xy-plane).

Table 6: Joint creation year and art style prediction on
OmniArt. We are preferred over the multi-task baseline
regardless of any tuning of the task weight, highlighting
the effectiveness and robustness of our approach.

Task weight 0.01 0.10 0.25 0.50 0.90

Creation year (MAE ↓)
MTL baseline 262.7 344.5 348.5 354.7 352.3
This paper 65.2 64.6 64.1 68.3 83.6

Art style (acc ↑)
MTL baseline 44.6 47.9 49.5 47.2 47.1
This paper 46.6 51.2 54.5 52.6 51.4

Predicting creation year and art style. Finally, we focus on jointly regressing the creation year
and classifying the art style on OmniArt. There are in total 46 art styles, denoting the school of the
artworks, e.g. the Dutch and French schools. We use a ResNet-32 with the same settings as above
(learning rate is set to 1e-3). We compare to a multi-task baseline, which uses the same network
and settings, but with squared loss for regression and softmax cross-entropy for classification. Since
this baseline requires task weighting, we compare both across various relative weights between
the regression and classification branches. The results are shown in Table 6. The weights listed in
the table denote the weight assigned to the regression branch, with one minus the weight for the
classification branch. We make two observations. First, we outperform the multi-task baseline across
weight settings, highlighting our ability to learn multiple tasks simultaneously in the same shared
space. Second, we find that the creation year error is lower than reported in the regression experiment,
indicating that additional information from art style benefits the creation year task. We conclude that
hyperspherical prototype networks are effective for learning multiple tasks in the same space, with no
need for hyperparameters to weight the individual tasks.

4 Related work

Our proposal relates to prototype-based networks, which have gained traction under names as
proxies [29], means [11], prototypical concepts [17], and prototypes [9, 19, 33, 36, 37]. In general,
these works adhere to the Nearest Mean Classifier paradigm [26] by assigning training examples to
a vector in the output space of the network, which is defined to be the mean vector of the training
examples. A few works have also investigated multiple prototypes per class [1, 29, 46]. Prototype-
based networks result in a simple output layout [45] and generalize quickly to new classes [11, 37, 46].

While promising, the training of these prototype networks faces a chicken-or-egg dilemma. Training
examples are mapped to class prototypes, while class prototypes are defined as the mean of the training
examples. Because the projection from input to output changes continuously during network training,
the true location of the prototypes changes with each mini-batch update. Obtaining the true location
of the prototypes is expensive, as it requires a pass over the complete dataset. As such, prototype
networks either focus on the few-shot regime [4, 37], or on approximating the prototypes, e.g. by
alternating the example mapping and prototype learning [12] or by updating the prototypes online
as a function of the mini-batches [11]. We bypass the prototype learning altogether by structuring
the output space prior to training. By defining prototypes as points on the hypersphere, we are able
to separate them with large margins a priori. The network optimization simplifies to minimizing a
cosine distance between training examples and their corresponding prototype, alleviating the need
to continuously obtain and learn prototypes. We also generalize beyond classification to regression
using the same optimization and loss function.

The work of Perrot and Habard [34] relates to our approach since they also use pre-defined prototypes.
They do so in Euclidean space for metric learning only, while we employ hyperspherical prototypes for
classification and regression in deep networks. Bojanowski and Joulin [3] showed that unsupervised
learning is possible through projections to random prototypes on the unit hypersphere and updating
prototype assignments. We also investigate hyperspherical prototypes, but do so in a supervised
setting, without the need to perform any prototype updating. In the process, we are encouraged by
Hoffer et al. [15], who show the potential of fixed output spaces. Several works have investigated prior
and semantic knowledge in hyperbolic spaces [8, 32, 40]. We show how to embed prior knowledge
in hyperspheric spaces and use it for recognition tasks. Liu et al. [20] propose a large margin angular

8

separation of class vectors through a regularization in a softmax-based deep network. We fix highly
separated prototypes prior to learning, rather than steering them during training, while enabling the
use of prototypes in regression.

Several works have investigated the merit of optimizing based on angles over distances in deep
networks. Liu et al. [23], for example, improve the separation in softmax cross-entropy by increasing
the angular margin between classes. In similar fashion, several works project network outputs to
the hypersphere for classification through `2 normalization, which forces softmax cross-entropy to
optimize for angular separation [12, 21, 22, 43, 44, 47]. Gidaris and Komodakis [10] show that
using cosine similarity in the output helps generalization to new classes. The potential of angular
similarities has also been investigated in other layers of deep networks [24, 25]. We also focus on
angular separation in deep networks, but do so from the prototype perspective.

5 Conclusions

This paper proposes hyperspherical prototype networks for classification and regression. The key
insight is that class prototypes should not be a function of the training examples, as is currently the
default, because it creates a chicken-or-egg dilemma during training. Indeed, when network weights
are altered for training examples to move towards class prototypes in the output space, the class
prototype locations alter too. We propose to treat the output space as a hypersphere, which enables
us to distribute prototypes with large margin separation without the need for any training data and
specification prior to learning. Due to the general nature of hyperspherical prototype networks, we
introduce extensions to deal with privileged information about class semantics, continuous output
values, and joint task optimization in one and the same output space. Empirically, we have learned that
hyperspherical prototypes are effective, fast to train, and easy to implement, resulting in flexible deep
networks that handle classification and regression tasks in compact output spaces. Potential future
work for hyperspherical prototype networks includes incremental learning and open set learning,
where the number of classes in the vocabulary is not fixed, requiring iterative updates of prototype
locations.

Acknowledgements

The authors thank Gjorgji Strezoski and Thomas Mensink for help with datasets and experimentation.

References
[1] Kelsey R Allen, Evan Shelhamer, Hanul Shin, and Joshua B Tenenbaum. Infinite mixture

prototypes for few-shot learning. arXiv, 2019.

[2] Björn Barz and Joachim Denzler. Deep learning on small datasets without pre-training using
cosine loss. arXiv, 2019.

[3] Piotr Bojanowski and Armand Joulin. Unsupervised learning by predicting noise. In ICML,
2017.

[4] Rinu Boney and Alexander Ilin. Semi-supervised few-shot learning with prototypical networks.
arXiv, 2017.

[5] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and
Gregory N Hullender. Learning to rank using gradient descent. In ICML, 2005.

[6] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[7] Soumith Chintala, Marc’Aurelio Ranzato, Arthur Szlam, Yuandong Tian, Mark Tygert, and
Wojciech Zaremba. Scale-invariant learning and convolutional networks. Applied and Compu-
tational Harmonic Analysis, 42(1):154–166, 2017.

[8] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In
NeurIPS, 2018.

9

[9] Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. Hybrid attention-based prototypical
networks for noisy few-shot relation classification. In AAAI, 2019.

[10] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
CVPR, 2018.

[11] Samantha Guerriero, Barbara Caputo, and Thomas Mensink. Deep nearest class mean classifiers.
In ICLR, Worskhop Track, 2018.

[12] Abul Hasnat, Julien Bohné, Jonathan Milgram, Stéphane Gentric, and Liming Chen. Von
Mises-Fisher mixture model-based deep learning: Application to face verification. arXiv, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[14] J S Hicks and R F Wheeling. An efficient method for generating uniformly distributed points
on the surface of an n-dimensional sphere. Communications of the ACM, 2(4):17–19, 1959.

[15] Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value of training
the last weight layer. In ICLR, 2018.

[16] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[17] Saumya Jetley, Bernardino Romera-Paredes, Sadeep Jayasumana, and Philip Torr. Prototypical
priors: From improving classification to zero-shot learning. In BMVC, 2015.

[18] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. https://tiny-imagenet.herokuapp.com.

[19] Xiao Li, Min Fang, Dazheng Feng, Haikun Li, and Jinqiao Wu. Prototype adjustment for zero
shot classification. Signal Processing: Image Communication, 74:242–252, 2019.

[20] Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning
towards minimum hyperspherical energy. In NeurIPS, 2018.

[21] Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M Rehg, and
Le Song. Decoupled networks. In CVPR, 2018.

[22] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface:
Deep hypersphere embedding for face recognition. In CVPR, 2017.

[23] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for
convolutional neural networks. In ICML, 2016.

[24] Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, and Le Song.
Deep hyperspherical learning. In NeurIPS, 2017.

[25] Chunjie Luo, Jianfeng Zhan, Lei Wang, and Qiang Yang. Cosine normalization: Using cosine
similarity instead of dot product in neural networks. arXiv, 2017.

[26] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based
image classification: Generalizing to new classes at near-zero cost. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(11):2624–2637, 2013.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S arXivado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In NeurIPS, 2013.

[28] Tom M Mitchell. The need for biases in learning generalizations. Department of Computer
Science, Laboratory for Computer Science Research, Rutgers Univ. New Jersey, 1980.

[29] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh.
No fuss distance metric learning using proxies. In ICCV, 2017.

[30] Mervin E Muller. A note on a method for generating points uniformly on n-dimensional spheres.
Communications of the ACM, 2(4):19–20, 1959.

10

[31] Oleg R Musin and Alexey S Tarasov. The Tammes problem for n=14. Experimental Mathematics,
24(4):460–468, 2015.

[32] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In NeurIPS, 2017.

[33] Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-Wah Ngo, and Tao Mei. Transferrable
prototypical networks for unsupervised domain adaptation. In CVPR, 2019.

[34] Michaël Perrot and Amaury Habrard. Regressive virtual metric learning. In NeurIPS, 2015.

[35] Edward Saff and Amo Kuijlaars. Distributing many points on a sphere. The mathematical
intelligencer, 19(1), 1997.

[36] Harshita Seth, Pulkit Kumar, and Muktabh Mayank Srivastava. Prototypical metric transfer
learning for continuous speech keyword spotting with limited training data. arXiv, 2019.

[37] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

[38] Gjorgji Strezoski and Marcel Worring. Omniart: multi-task deep learning for artistic data
analysis. arXiv, 2017.

[39] Pieter Tammes. On the origin of number and arrangement of the places of exit on the surface of
pollen-grains. Recueil des travaux botaniques néerlandais, 27(1):1–84, 1930.

[40] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic
word embeddings. In ICLR, 2019.

[41] Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control
and knowledge transfer. Journal of Machine Learning Research, 16(2023-2049):2, 2015.

[42] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[43] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere
embedding for face verification. In MM, 2017.

[44] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Zhifeng Li, Dihong Gong, Jingchao Zhou, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition. In CVPR, 2018.

[45] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning
approach for deep face recognition. In ECCV, 2016.

[46] Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with
convolutional prototype learning. In CVPR, 2018.

[47] Yutong Zheng, Dipan K Pal, and Marios Savvides. Ring loss: Convex feature normalization for
face recognition. In CVPR, 2018.

11

	Introduction
	Hyperspherical prototypes
	Classification
	Regression
	Joint regression and classification

	Experiments
	Classification
	Regression
	Joint regression and classification

	Related work
	Conclusions

