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Abstract

The fields of artificial intelligence and neuroscience have a long history of fertile bi-
directional interactions. On the one hand, important inspiration for the development
of artificial intelligence systems has come from the study of natural systems of
intelligence, the mammalian neocortex in particular. On the other, important
inspiration for models and theories of the brain have emerged from artificial
intelligence research. A central question at the intersection of these two areas is
concerned with the processes by which neocortex learns, and the extent to which
they are analogous to the back-propagation training algorithm of deep networks.
Matching the data efficiency, transfer and generalization properties of neocortical
learning remains an area of active research in the field of deep learning. Recent
advances in our understanding of neuronal, synaptic and dendritic physiology of
the neocortex suggest new approaches for unsupervised representation learning,
perhaps through a new class of objective functions, which could act alongside or in
lieu of back-propagation. Such local learning rules have implicit rather than explicit
objectives with respect to the training data, facilitating domain adaptation and
generalization. Incorporating them into deep networks for representation learning
could better leverage unlabelled datasets to offer significant improvements in data
efficiency of downstream supervised readout learning, and reduce susceptibility to
adversarial perturbations, at the cost of a more restricted domain of applicability.

Unsupervised neocortex

The neocortex is the canonically 6-layered sheet of cells forming the grey matter surface of the
mammalian cerebrum. It is composed of a densely interconnected network of sub-regions responsible
for learning sensory processing, speech and language, motor planning and many of the higher
cognitive processes associated with rational thought. The human neocortex contains an estimated 100
trillion synapses, the points of communication between neurons which undergo persistent changes
in strength and topology as a function of signals local to the synapse and a complex biochemical
program (Holtmaat and Svoboda, 2009). These processes, broadly known as synaptic plasticity, are
thought to be the basis of learning and memory in the brain.

An important task of synaptic plasticity in sensory neocortical areas is to learn disentangled invariant
representations (DiCarlo et al., [2012). For example, the ventral stream of primate visual cortex,
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the collection of areas responsible for visual object recognition, computes hierarchically organized
representations much like state-of-the art convolutional neural networks (CNNs) optimized for the
task (Yamins et al.| 2014).

While there are impressive similarities in the learned representations between the ventral stream and
CNNs, there are important differences in how those representations are learned. While CNNss are
trained in a supervised manner using a gradient descent optimization algorithm with an explicit global
objective on large labelled datasets, the ventral stream learns from a much larger dataset (visual
experience) but with only very sparse labelling. The latter property of cortical learning is attractive to
emulate in CNNs, and more broadly across deep learning models. Attractive, not only because of the
ability to make use of unlabelled data during learning, but also because it will impart the models with
superior generalization and transfer properties, as discussed below.

The monkey’s paw effect: the problem with specifying what without
specifying how

A well known and often encountered pitfall of numerical optimization algorithms for high dimensional
problems, such as evolutionary algorithms, simulated annealing and also gradient descent, is that they
regularly yield solutions matching what your objective specifies to the letter, but far from how you
intended (Lehman et al.| 2018)).

The short story “The Monkey’s Paw” by W. W. Jacobs provides a compelling metaphor. In that
story, the new owner of a magical mummified monkey’s paw of Indian origin is granted three wishes.
The owner first wishes for $200, and his wish is eventually granted to the penny, but with the grave
side effect that it is granted through a goodwill payment from his son’s employer in response to his
untimely death in a terrible machinery accident (Jacobs and Parker, |1910).

The Monkey’s Paw effect is also applicable to gradient descent-based optimization of deep neural
nets. The relative data-hungriness of current supervised learning strategies, and the use of data
augmentation to improve generalization reflect the precarious position we are in of needing to
micromanage the learning processes.

Adversarial examples (Moosavi-Dezfooli et al., 2016) are evidence that the monkey’s paw effect
none-the-less persists. It is temping to continue with the current paradigm and re-inject adversarial
examples back into the learning data stream. Extrapolating, this goes in the direction of specifying the
negative space of the objective, all those things the optimization should not do to solve the problem,
which is potentially infinite, and rather risky in production environments like self-driving cars.

Adversarial examples represent an opportunity to address the issue in a more fundamental way
(Yamins and DiCarlo, [2016)). It has been argued by Bengio| (2012)) that if we could design deep
learning systems with the explicit objective of “disentangling the underlying factors of variation” in
an unsupervised manner, then there is much to be gained for generalization and transfer.

Such an approach offers a promising solution to the Monkey’s Paw effect, as there is an explicit
objective of learning good representations, from which generalization and transfer follow by defini-
tionE] One small challenge remains: how to express the objective of learning good representations?
If we restrict ourselves to the subset of all possible inputs for which the neocortex learns good
representations, the local processes of synaptic plasticity may provide valuable clues.

Neocortical plasticity

The neocognitron model (Fukushima, [1980), the original CNN architecture, learned visual features
through self-organization using local rules. Since its conception, our understanding of the neocortex
and its neurons and synapses has progressed considerably.

Recent insights into the local plasticity rules for learning in the neocortex offer new inspiration
for deep representation learning paradigms that learn “disentangled representations” from large
unlabelled datasets in an unsupervised manner. A selection of recent insights into the systems of
plasticity of the neocortex is shown in Fig.[T] A new dendrite-centric view of synaptic plasticity is
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Figure 1: A selection of recent insights into the dendritic mechanisms of plasticity of the neo-
cortex. (A) Concurrent activation of > 10 nearby synapses in pyramidal neuron dendrites (red)
triggers NMDA plateau potentials in dendrites (left). (B) Calcium drives synaptic plasticity. Synapses
are bi-stable, and can be added or removed in the weak state (above). NMDA plateau potentials
drive potentiation of synapses through their associated large calcium currents. (source:
(2010)) (C): Clusters of co-coding synapses are captured through these mechanisms. (D)
Co-coding neurons form small cliques, reinforced through cluster capture. These cliques activate
Martinotti cells which block further capture, implementing opposing competition. (E) Neocortical
areas are organized in a hierarchy with top-down input arriving in layer 1 (the top-most layer) at the
apical tufts of pyramidal dendrites, and at layer 6 and lower layer 5. (F). Temporal association of
top-down and bottom-up drives cliques and plasticity.

emerging with the discovery of the NMDA spike, a non-linear mechanism hypothesized to associate
co-activated synapses through potentiation or structural changes driven by the resulting calcium
currents (Schiller et al.| 2000; |Graupner and Brunell 2010; [Holtmaat and Svobodal 2009) (Fig.[TA-B).
Such associations, in the form of co-coding clusters of synapses, have recently been experimentally
observed using optical techniques (Wilson et al} [2016) (Fig. [TIC). Moreover neurons in the neocortex
are known to form small cliques of all-to-all connected neurons which drive co-coding l,
[2017), a process that would be self-reinforced through dendritic clustering by NMDA spikes (Fig.[ID).
Martinotti neurons, which are activated by such cliques of pyramidal neurons, and subsequently
inhibit pyramidal dendrites (Silberberg and Markraml|, [2007)) provide well-timed inhibition to block
further NMDA spikes (Doron et al.l |2017), and put a limit on the maximal pyramidal clique size, but
also suppress activation of competing cliques (e.g. Winner-take-all (WTA) dynamics). Together, such
plasticity mechanisms appear to form basic building blocks for representation learning in the feed-
forward pathway of the neocortex using local learning rules. While long known competitive strategies
for unsupervised representation learning indeed rely on WTA dynamics (Fukushimal, [T980; Rumelhart
[1985), deep learning approaches incorporating these increasingly apparent dendritic
dimensions of learning processes have yet to be proposed (Poirazi and Mell, 2001}, [Kastellakis et al.,
2015).

Unlike CNNs, the neocortex also has a prominent feedback pathway down the hierarchy, whereby top-
down input from upper layers innervate the apical tufts of pyramidal cells in layer 1 of a given cortical




region (Felleman and Vanl [1991). Associations between top-down and feed-forward (bottom-up)
activation are known to trigger dendritic calcium spikes and dendritic bursting (Larkum et al., [1999),
which again specifically activates the WTA dynamics of the Martinotti neurons (Murayama et al.,
2009), but disinhibitory VIP neurons can also modulate their impact (Karnani et al., |2016)). These
feed-back pathways have been proposed to implement predictive coding (Rao and Ballard, [1999),
and error back-propagation for supervised learning algorithms (Guerguiev et al.|[2017; [Sacramento
et al.| 2018)). While their importance for rapid object recognition has been recently demonstrated,
their computational role remained inconclusive (Kar et al.,[2019).

Cake but no free lunch

With the demonstrated applicability of supervised learning for a broad range of problems and data
distributions, and an ever expanding toolbox of optimized software libraries, it is unlikely that
supervised learning, back-propagation and gradient descent will be dethroned as the work horses of
Al for many years to come.

Nonetheless, as applications of deep networks are moving into regions where sparse data, general-
ization and transfer are increasingly important, unsupervised approaches designed with the explicit
goal of learning good representations from mere observation may find an important place in the Al
ecosystem.

Quoting Yann LeCurf]

“If intelligence is a cake, the bulk of the cake is unsupervised learning, the icing
on the cake is supervised learning, and the cherry on the cake is reinforcement
learning.”

A promising strategy would be to assume learning with sparse labels, overcoming adversarial
examples, transfer learning, and few-shot learning together as the success criteria for the further
development of the powerful unsupervised approaches we seek.

Recent advances in our understanding of the processes of neocortical plasticity may well offer useful
inspiration, but let’s close with some words of moderation. Biology’s solutions also show us there
will be no free lunch, i.e. neocortical unsupervised learning algorithms will be less general than
supervised learning by gradient descent. Neocortex relies on structure at specific spatial and temporal
scales in its input streams to learn representations. Evolution has had millions of years to configure
the sensory organs to provide signals to the neocortex in ways that it can make sense of them, and
that serve the animal’s ecological niche. We should not expect, for example, cortical unsupervised
learning algorithms to cluster frozen white noise images. A neocortical solution requires a neocortical
problem (e.g. from the so-called “Brain set” (Richards et al.,2019)), so if we are to successfully take
inspiration from it, we must also work within its limitations.
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