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Abstract

Neural activity is highly variable in response to repeated stimuli. We used an open
dataset, the Allen Brain Observatory, to quantify the distribution of responses to
repeated natural movie presentations. A large fraction of responses are best fit by
log-normal distributions or Gaussian mixtures with two components. These distri-
butions are similar to those from units in deep neural networks with dropout. Using
a separate set of electrophysiological recordings, we constructed a population cou-
pling model as a control for state-dependent activity fluctuations and found that the
model residuals also show non-Gaussian distributions. We then analyzed responses
across trials from multiple sections of different movie clips and observed that the
noise in cortex aligns better with in-clip versus out-of-clip stimulus variations. We
argue that noise is useful for generalization when it moves along representations of
different exemplars in-class, which is similar to the structure of cortical noise.

1 Introduction

One of the hallmarks of neural codes is the high level of trial-to-trial variability [1, 2]. This variability
has been studied using multiple stimuli [3], along with its relation to attention [4] and other behavioral
variables [5]. Previous theories on the possible role of noise center on its potential usefulness in
inference [6]. In the field of machine learning, noise can have a regularizing effect and enable better
model generalization (e.g. dropout [7]). Here, we explore the hypothesis that networks of cortical
neurons use noise with the goal of building general representations from a small number of exemplars.

First, we show that cortical noise is often non-Gaussian, and better captured by long-tailed distri-
butions or mixtures of Gaussians. This result was consistent across experiments using two-photon
calcium imaging and electrophysiological recordings. To control for possible state-dependent effects,
we used a population coupling model where the activity of all other simultaneously recorded neurons
is used to predict the activity of a single neuron (and as a proxy for brain state). Finally, we defined a
set of neural subspace measures and found that cortical noise aligns with in-class stimulus variations.
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Figure 1: Neural variability in the Allen Brain Observatory. (A) Visual areas where recordings
were performed. (B) The distribution of responses for an example cell. The two components of the
Gaussian mixture are shown in dotted black lines. (C) The distribution of activations for an example
unit in the neural network (second convolutional layer, fourth feature map). (D) Percent of cells in
each of the recorded visual areas, broken down by the best-fitting distribution.

2 Results

Noise distribution in the Allen Brain Observatory [8]. We used the 30 s long “natural movie one”
stimulus. The movie was presented 10 times over 3 imaging sessions (N = 30 trials). We analyzed
all excitatory cells in the dataset, excluding cells with a mean trial-to-trial correlation below zero,
which resulted in N = 11, 428 cells. As an additional control to remove extremely unreliable cells,
we only analyzed cells above a minimum trial-to-trial correlation threshold of 0.1, which yielded
qualitatively similar results (see Appendix for details). We split the movie into non-overlapping 1 s
epochs, and computed the mean change in calcium fluorescence response relative to baseline (dF/F )
for each cell over each epoch. The “preferred” stimulus for each cell was defined as the epoch which
elicited the max mean dF/F response over all trials.

We analyzed trial-to-trial variability in neural responses to each cell’s “preferred” stimulus across
visual areas. We find that the majority of cells are best fit by log-normal distributions or Gaussian
mixtures with two components, with 40.4% of cells showing dropout-like distributions (see Methods
and Appendix for more details). We performed a similar analysis on units from a convolutional neural
network1 trained on CIFAR-10 [9], using each unit’s “preferred” image. Dropout (p = 0.5) was used
in all layers during training and inference, which may act as a form of Bayesian approximation [10].
We find that two-component Gaussian mixtures can also capture the responses from the network
with dropout (see Appendix for more details). Figure 1 shows example response distributions, and a
summary of the distribution fits across cells in our dataset.

Control for eye movements. A potential source of variability is eye movements. In primates, small
fixational eye movements can drive trial-to-trial variability and correlations between neurons [11].
Mice, which do not have a fovea, have much lower visual acuity and may move their heads more
than their eyes in order to view different parts of the visual scene [12]. Furthermore, bilateral eye

1Network architecture: conv5-10, conv5-10, conv5-20, conv5-20, fc-320, fc-50, where ‘conv’ represents
convolutional layers (<kernel size>-<number of features>) and ‘fc’ represents fully connected layers (<number
of features>). Max pooling was used after every second convolutional layer. The model achieved a test accuracy
of ∼ 60%, which we did not optimize for as this was not the focus of our paper.
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Figure 2: Quantification of eye movements during repeated natural movie presentations. (A) Eye
positions recorded for an example mouse during repeated natural movie presentations from the
Allen Brain Observatory. The mouse’s gaze position was relatively localized on screen coordinates.
(B) Distribution of correlation coefficients between eye position and neural activity for all cells
with associated eye tracking information, which shows a mean close to zero. (C) Cumulative
distribution of correlation coefficients for the cells in panel (B), conditioned on their best-fitting
distribution (lognormal, two-component Gaussian mixture, or one-component Gaussian). There were
no significant differences in the cumulative distributions of correlation coefficients.

movements have been found to be more active and divergent in freely moving compared to head-fixed
mice [13]. In all our experiments, mice were head-fixed, and we found that eye positions were
relatively stable over the course of the experiment (mean standard deviation = 3.03 deg, which is
small compared to the median V1 receptive field size of ∼10 deg [14], Figure 2A). We quantified the
trial-to-trial correlation between eye position and neural activity, and found that the mean correlation
coefficient across all cells was not significantly different from zero (p < 0.05, Figure 2B). If eye
movements are the source of differences in the observed response distributions, we should see
differences in the correlations between eye position and neural responses based on each cell’s best-
fitting distribution. However, we did not find significant differences between the correlations for cells
conditioned on their best-fitting distribution (KS test, p > 0.05, Figure 2C). An alternative approach
to control for eye movements is to use the gaze position as an additional signal when fitting predictive
models of neural responses, for example by using a shifter network [15], however given the very
small variations compared to receptive field sizes present, we did not pursue this.

Noise distribution and state dependence in electrophysiological recordings. In vivo recordings
were performed in the visual cortex of awake, head-fixed mice using Neuropixels probes [16]. The
repeated natural movie stimulus was 81 s long, consisting of 11 shorter clips ranging from 4 to 9 s
each (N = 98 trials). All spike data were acquired with a 30-kHz sampling rate and recorded with the
Open Ephys GUI. A 300-Hz analog high-pass filter was present in the Neuropixels probe, and a digital
300-Hz high-pass filter (3rd-order Butterworth) was applied offline prior to spike sorting. Spike times
and waveforms were automatically extracted from the raw data using Kilosort2. After filtering out
units with “noise” waveforms using a random forest classifier trained on manually annotated data, all
remaining units were packaged into the Neurodata Without Borders format for further analysis. This
resulted in a total of N = 936 units across three mice.

One potential source of variability is state-dependent changes in neural activity [5], which we control
for by using a population coupling model (see Methods). We again analyzed trial-to-trial variability
by fitting different distributions to the neural response residuals from this model. We find that the
majority of cells are still better fit by either log-normal distributions or Gaussian mixtures, even when
including Poisson and negative binomial distributions (Figure 3).

Trial-to-trial variability mimics in-class exemplar changes. We randomly choose 10 non-
overlapping 200 ms long sections (“exemplars”) from each of the 11 movie clips. We exclude
the first 1 s following a clip transition to avoid onset transient effects. We define the activity for neu-
ron i of exemplar j in clip k during trial n as the spike count during the presentation of the exemplar
ai,j,k,n. The signal for neuron i of exemplar j in clip k is the average over trials si,j,k = 〈ai,j,k,n〉n.
The noise for neuron i of an exemplar j in clip k during trial n is the activity minus the signal
ni,j,k,n = ai,j,k,n − si,j,k. We also define the following neural subspaces:

The exemplar coding subspace for an exemplar and clip is defined as the set of neurons for which
the signal is larger than the mean, Ej,k = {i|si,j,k > 〈si,j,k〉j,k}. The clip coding subspace
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Figure 3: Neural variability in the electrophysiological recordings after controlling for state depen-
dence. A large fraction of cells are still best fit by log-normal distributions or Gaussian mixtures.

is defined as the set of neurons for which the signal is larger than the mean for more than half
the exemplars in the clip, Ck = {i|meanj(si,j,k > 〈si,j,k〉j,k) >= 0.5}. The clip variance
subspace is defined as the set of neurons for which the variance of the signal for exemplars in-clip
is larger than out-of-clip, Vk = {i|stdj(si,j,k) > stdj,k(si,j,k)}. The noise subspace is defined as
the set of neurons for which the absolute value of the noise is larger than its standard deviation,
Nj,k,n = {i|abs(ni,j,k,n) > stdj,k,n(ni,j,k,n)}.
Intuitively, the measures defined above allow us to measure the “alignment” between different
subspaces used to code for the stimulus. If two subspaces are relatively aligned, they will share a
common set of neurons which are active and span both subspaces, which we can quantify with a
distance measure (with smaller distances being more aligned, larger distances being less aligned). Our
main hypothesis is that noise for an exemplar in clip k1 should lie in the clip k1 variance subspace,
but not the clip k2 variance subspace. This allows noise to move along representations of different
exemplars in the same clip, which may be useful for generalization from a small number of exemplars.

We found that the distance between the noise subspace for exemplars in clip k1 is smaller for the clip
k1 versus the the clip k2 variance subspace, suggesting that noise aligns better with in-clip variations.
We also found that noise aligns with the same clip coding subspace and the exemplar coding subspace
(Figure 4). We computed these measures for each mouse and visual area with at least 20 reliable
neurons (9 areas passed this threshold). The differences are in the right direction and statistically
significant in each individual area analyzed (p < 0.05). As a control (not shown here), we randomly
shuffle the exemplar identity in the original data and the same analysis showed no differences in the
distances between in and out classes. This suggests that there is greater alignment between the clip
variance subspace and the noise subspace for exemplars in the same clip compared to other clips.

Relation to dropout and new avenues of machine learning research. Dropout has been shown
to be an effective regularization technique that prevents model overfitting and reduces feature co-
adaptation [7]. The non-Gaussian distributions we observed in the data inspired us to use a subspace
analysis. As dropout-like noise generates projections in neuronal space, eliminating some neurons
altogether, it is a natural place to focus on for the analysis of how trial-to-trial variability and noise
aligns with different neural subspaces. Future work will study how different forms of subspace-aligned
noise may help deep neural networks generalize better from fewer examples.

3 Discussion

In the first part of the paper, we observed complex, non-Gaussian distributions in the responses of
neurons even for their preferred stimulus. In the second part of the paper, we found that trial-to-trial
noise for an exemplar in a clip aligns better with exemplar-by-exemplar variation in the same clip
than for other clips. We believe that research into the structure and role of biological noise will be
useful for developing new methods to train neural networks with better generalization capabilities.
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Figure 4: Noise aligns with in-clip variations. (A) Exemplars from different clips (stars and circles)
activate different sets of neurons (clip coding subspace and clip variance subspace). Trial-to-trial
variability due to cortical noise (red arrows) is more likely to be aligned with these subspaces (noise
subspace). (B-D) Cumulative distribution of Hamming distances between the noise subspace and
three other subspaces: the clip variance subspace (B), clip coding subspace (C), and exemplar coding
subspace (D). Distances are lower in-class (blue) versus out-of-class (orange), suggesting a shared
subspace. See definitions above for more detailed descriptions of the subspace measures.

4 Methods

Noise distribution fitting. For each cell, we quantified the distribution of neural responses across
trials by fitting different distributions using the scikit-learn package. We fit one- and two-component
Gaussian mixtures, log-normal, Poisson, and negative binomial distributions. We only fit the Poisson
and negative binomial distributions to the electrophysiological recording data since these require
discrete count data. We used the Akaike information criterion (AIC) to select between model fits,
although other information theoretic measures yielded qualitatively similar results. We used a
bootstrap parametric cross-fitting test with N = 10, 000 samples to determine the significance of
the two-component Gaussian mixture model fits. For cells best fit by the two-component Gaussian
mixture, we performed an additional test to determine whether their response distributions were
dropout-like. For each of these cells, we calculated a z-score on the component with the lower mean,
and those cells with z-scores less than two (meaning their means are not significantly different than
zero) were counted as cells with dropout-like response distributions.

Population coupling model. If neural variability is exclusively the result of state fluctuations, it
should be captured by the coupling of each cell’s activity to a lower-dimensional representation of
population activity. We isolated each neuron and clustered the activity of the other neurons into 100
clusters. We used agglomerative clustering from the scikit-learn package with average linkage and
the pairwise Pearson correlation coefficient of single-trial activities. The average activity of neurons
within each cluster was used as predictors for the single-trial activity of the held-out neuron. For each
neuron, we then fit a generalized linear model with the Gaussian family and an identity link function
using the statsmodels package. We split the single-trial activities into two equal halves, using the
first half for training and the second half for testing. The difference between the model predicted
responses and the experimentally observed responses was used to calculate the residual activity for
each neuron. The distribution of residuals was then fit using the methods outlined above.
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Appendix

Additional Analysis of Allen Brain Observatory Data

Bootstrap parametric cross-fitting test. As an alternative to the AIC method for testing best fit
distributions, we supplement the results with a bootstrap test. For each cell, we identified its preferred
“stimulus” within the movie clip and quantified trial-to-trial variability by fitting Gaussian mixture
models to the distribution of responses across trials (N = 30) for the cell’s preferred “stimulus”.

For each cell, we quantified the distribution of neural responses across trials by fitting Gaussian
mixture models with either one or two components to the distributions using the scikit-learn package.
We used a bootstrap parametric cross-fitting test with N = 10, 000 samples to determine the
significance of the two component model fits. This test effectively compares how likely the difference
in log-likelihoods between the one and two component models can be achieved purely by chance,
given the null hypothesis that the data is generated from a single component distribution.

We find that 88.7% of the cells (10403/11731 cells) are better fit by Gaussian mixture models with two
components compared to one component, indicating a two component Gaussian Mixture Model better
fit the distribution in their responses compared to one component (p < 0.05, bootstrap parametric
cross-fitting test). Model selection based on information theoretic measures such as AIC resulted in a
similar proportion of cells with two component response distributions (92.0%, 10794/11731 cells).
Using only a subset of the cells with reliabilities above a minimum reliability threshold (see below for
details) resulted in a lower, but still substantial proportion of cells (80.6%, 1430/1775 cells). Figure 5
shows the variability in neural responses for an example cell in our dataset.

Comparison with convolutional neural networks. We also performed a similar analysis using the
units within a convolutional neural network. For this analysis, we trained a simple network with
dropout on the CIFAR-10 image dataset [9]. As this model was trained with static images rather than
movies, we instead performed our analyses using the set of 118 natural images in the Allen Brain
Observatory. We passed each natural image through the model 50 times, and recorded the distribution
of activations for each unit within the model to its “preferred” stimulus. Normally, dropout is only

A B C

Figure 5: Neural variability for an example cell from the Allen Brain Observatory and an example
unit within a neural network trained on the CIFAR-10 image dataset. (A) Track plot visualization
of neural responses to the natural movie stimulus in the Allen Brain Observatory for an example
cell (session A, cell specimen id 517447794). Frames of the movie are shown clockwise starting
with the gray arrow, with the ten repeats within a session shown in red extending radially. The mean
response across trials is shown by the outer blue ring. For many frames of the movie, the cell does
not respond on every trial, even though the stimulus shown is exactly the same. (B) The distribution
of responses for the example cell in (A) across all trials (three sessions with ten repeats each). The
two components of the Gaussian mixture model are shown overlaid in the dotted black lines. (C) The
distribution of activations for an example unit within a neural network (second convolutional layer,
fourth feature map) across all trials (50 repeat presentations of natural images).
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Figure 6: Quantification of neural variability in the full population of cells across visual areas,
layers, and transgenic mouse lines. (A) The distribution of mean reliabilities (average trial-to-trial
correlations) across the three imaging sessions for all cells included in our analysis. The vertical gray
line shows the reliability threshold criterion of 0.1 which we used. (B) The fraction of cells with
response distributions consistent with dropout across visual areas (mean = 0.74). Error bars show
standard deviations. (C) The fraction of cells with distributions consistent with dropout across layers
and transgenic mouse lines in primary visual cortex (VISp). Error bars show standard deviations.

used during training, and turned off during evaluation. Here, we continued to use dropout during
evaluation, which introduces variability in the responses of each unit. Using dropout in this way
has been proposed as a form of Bayesian approximation [10]. Critically, we find that the bimodal
distribution in neural responses across trials can also be captured by a convolutional neural network
trained with dropout (compare Fig 5b and Fig 5c).

Control with minimum relability threshold. We also quantified neural variability at the population
level. One measure of response reliability is the mean trial-to-trial correlation of neural activity within
a session, which is bounded between 0 (low reliability) and 1 (high reliability) [8]. Over the entire
population of cells, we find very low mean response reliabilities across sessions (Figure 6a), with a
mean reliability of 0.11. To remove extremely unreliable cells from our analysis, we set a reliability
threshold of 0.1. Our subsequent analyses are performed using this set of cells (N = 1775), which
has a mean reliability of 0.37.

Dropout-like response distributions. To identify cells with dropout-like response distributions,
we first found the cells that were better fit by Gaussian mixture models with two components,
and for each of these cells, we computed a z-score on the component with the lower mean to test
whether it was significantly different from zero. For cells which were deemed better fit by the
two-component Gaussian mixture model, we performed an additional test to determine whether their
response distributions were dropout-like. For each of these cells, we calculated a z-score on the
component with the lower mean, and those cells with z-scores less than two (meaning their means are
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Figure 7: Dependence of noise distribution on cell types. We found relatively consistent results across
all Cre-lines tested. The selected Cre-lines selectively label excitatory cells in different areas and
layers.

not significantly different than zero) were counted as cells with dropout-like response distributions.
The number of cells that pass these two tests divided by the total number of cells gives the fraction of
cells which have dropout-like response distributions.

Additional analyses. We also performed additional analyses, separating cells by visual area, layer,
and transgenic mouse line. Based on this measure, we find that the fraction of cells with dropout-like
response distributions is high and relatively constant across visual areas, with a mean fraction of
0.74 (Figure 6b). We also find only modest differences in the fraction of cells with dropout-like
distributions across layers and mouse transgenic lines, with the lowest fraction of cells being in the
superficial layers (Figure 6c). Finally, we also studied the noise distributions across Cre-lines in
our dataset (Figure 7). We found consistent results across all Cre-lines, which selectively labeled
excitatory cells in different cortical areas and layers.
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Figure 8: Cumulative distributions for similarity metrics using data aggregated across areas for mouse
1. Projection similarity (left column) and Hamming distance (right column) between clip variance
subspace Vk and noise subspace Nj,k,n (line 1), between clip coding subspace Ck and noise subspace
Nj,k,n (line 2) and between exemplar coding subspace Ek and noise subspace Nj,k,n (line 3). All
the observed differences are statistically significant (KS test, p < 0.05).
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Figure 9: Cumulative distributions for similarity metrics using data aggregated across areas for mouse
2. Projection similarity (left column) and Hamming distance (right column) between clip variance
subspace Vk and noise subspace Nj,k,n (line 1), between clip coding subspace Ck and noise subspace
Nj,k,n (line 2) and between exemplar coding subspace Ek and noise subspace Nj,k,n (line 3). All
the observed differences are statistically significant (KS test, p < 0.05).
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Figure 10: Cumulative distributions for similarity metrics using data aggregated across areas for
mouse 3. Projection similarity (left column) and Hamming distance (right column) between clip
variance subspace Vk and noise subspace Nj,k,n (line 1), between clip coding subspace Ck and noise
subspace Nj,k,n (line 2) and between exemplar coding subspace Ek and noise subspace Nj,k,n (line
3). All the observed differences are statistically significant (KS test, p < 0.05).
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