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ABSTRACT

Aucxiliary learning has been shown to improve the generalisation performance
of a principal task. But typically, this requires manually-defined auxiliary tasks
based on domain knowledge. In this paper, we consider that it may be possi-
ble to automatically learn these auxiliary tasks to best suit the principal task, to-
wards optimum auxiliary tasks without any human knowledge. We propose a
novel method, Meta Auxiliary Learning (MAXL), which we design for the task
of image classification, where the auxiliary task is hierarchical sub-class image
classification. The role of the meta learner is to determine sub-class target labels
to train a multi-task evaluator, such that these labels improve the generalisation
performance on the principal task. Experiments on three different CIFAR datasets
show that MAXL outperforms baseline auxiliary learning methods, and is compet-
itive even with a method which uses human-defined sub-class hierarchies. MAXL
is self-supervised and general, and therefore offers a promising new direction to-
wards automated generalisation.

1 INTRODUCTION

Auxiliary learning is a method to improve the generalisation of a task. It works by training on
additional auxiliary tasks simultaneously with the principal task. Extra data may be available for
those auxiliary tasks, but not the principal task. If the auxiliary tasks and the principal task share
some common reasoning, then the prediction model is encouraged to learn additional relevant fea-
tures which otherwise would not be learned from single-task learning. The broader support of these
features then assists with generalisation of the principal task.

We now rethink this generalisation by considering that not all auxiliary tasks are created equal. In
supervised auxiliary learning (Liebel & Korner, [2018;|Toshniwal et al.|[2017), auxiliary tasks can be
carefully chosen to complement the principal task, but at the expense of a dependency on labelled
data. Unsupervised auxiliary learning (Flynn et al.l 2016; Zhou et al., 2017 [Zhang et al.l 2018;
Jaderberg et al., |2017) alleviates this, but at the expense of a limited set of auxiliary tasks which
may not be well aligned with the principal task. By combining the merits of both supervised and
unsupervised auxiliary learning, the ideal auxiliary learning framework is one with the flexibility to
automatically determine the optimum auxiliary tasks, but without the requirement of any manually-
labelled data.

In this paper, we propose to achieve such a framework with a simple and general meta-learning
algorithm which we call Meta AuXiliary Learning (MAXL). Given a principal task, the goal of
MAXL is to discover the auxiliary tasks which, when trained alongside the principal task, give the
greatest generalisation performance of the principal task on a meta dataset. In our work, we focus
on the problem of image classification, where an auxiliary task is required to assign a sub-class label
to an image. As such, data is classified both at a coarse level as the principal task, and at a fine level
as the auxiliary task. The meta learner’s role is then to determine the target labels for this sub-class
labelling, in such a way that the learned features induced by learning these additional, more complex
auxiliary tasks generate the best generalisation performance for the principal task.

As well as our method being able to automatically learn the optimum auxiliary tasks, we achieve
this in an unsupervised manner, giving potential to scale well beyond any datasets without manually-
labelled auxiliary tasks, such as a class hierarchy as in our experiments. And even when such a
hierarchy is available, in our experiments we show that MAXL is at least as competitive despite
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this hierarchy being learned in an unsupervised manner. In our experiments, we define the auxiliary
tasks as sub-class labelling with MAXL learning to generate target sub-class labels, but MAXL is
general and in future work this could be relaxed to actually learn the auxiliary tasks themselves. The
ability to learn these tasks in a purely unsupervised and scalable manner opens up an exciting new
way of thinking about how we can achieve generalisation in an automated manner.

Ground-truth Principal Label

____________________________

| 1
L. R ] dog car :
/ \ 1 class o class 1 ¢
{ 1 1 1
) i N e e e e e e e e e
E & K % Fe. 4 ! Principal ?
! - ‘ . ! Prediction Task . o
1 ! ..
1 5 ! Auxilia I A l
| : i . i ) Predictionr"lxask
! S/ Lo = ' Muld-task  o-----------omoooooooooo-o ~ Meta
" g ! ! Evaluator | Yorkshire Terrier Persian cat ! Generator
_________________________ - | class o class 2 i
1
Input Image E i
1 Border Collie Siamese cat !
. class 1 class 3 )

Generated Auxiliary Label

Figure 1: Illustration of our proposed MAXL framework. The Multi-task evaluator takes an input
image and is trained to predict both the principal class (e.g. Dog), and the auxiliary class (e.g.
Border Collie). The principal class has a ground-truth label, but the label for the auxiliary class
is determined by the meta generator. The meta generator is trained by outputting auxiliary class
labels which, when used to train the multi-task evaluator, improve its prediction performance on the
principal task.

2  RELATED WORK
This work brings ideas together from a number of related areas of machine learning.

Multi-task & Transfer Learning The aim of multi-task learning (MTL) is to achieve shared
representations by simultaneously training a set of related learning tasks. In this case, the learned
knowledge used to share across domains is encoded into the feature representations, to improve
performance of each individual task, since knowledge distilled from related tasks are interdepen-
dent. The success of deep neural networks has led to some recent methods advancing the multi-task
architecture design, such as applying a linear combination of task-specific features (Misra et al.,
2016; [Doersch & Zissermanl [2017; [Kokkinos, [2017). [Liu et al.| (2018)) applied soft-attention mod-
ules as feature selectors, allowing learning of both task-shared and task-specific features in a self-
supervised, end-to-end manner. Transfer learning is another common approach to improve generali-
sation, by incorporating knowledge learned from one or more related domains. Pre-training a model
with a large-scale dataset such as ImageNet (Deng et al., |2009) has become standard practise in
many vision-based applications. The transferability of different convolutional layers in CNNs has
also been investigated in |Yosinski et al.| (2014).

Auxiliary Learning Whilst in multi-task learning the goal is high test accuracy across all tasks,
auxiliary learning differs in that high test accuracy is only required for a single principal task, and the
role of the auxiliary tasks is to assist in generalisation of this principal task. [Toshniwal et al.|(2017)
applied auxiliary supervision with phoneme recognition at intermediate low-level representations of
deep networks to improve the performance of conversational speech recognition. [Liebel & Korner,
(2018) chose auxiliary tasks which can be obtained with low effort, such as global descriptions of
a scene, to boost the performance for single scene depth estimation and semantic segmentation. By
carefully choosing a pair of learning tasks, we may also perform auxiliary learning without ground
truth labels, in an unsupervised manner. Jaderberg et al.|(2017)) introduced a method for improving
the learning agents in Atari games, by building unsupervised auxiliary tasks to predict the onset of
immediate rewards from a short historical context. [Flynn et al.|(2016);|Zhou et al.[(2017) proposed
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image synthesis networks to perform unsupervised monocular depth estimation by predicting the
relative pose of multiple cameras. Different from these works which require prior knowledge to
manually define suitable auxiliary tasks, our proposed method requires no additional task knowl-
edge, since our meta learner generates useful auxiliary knowledge in a purely unsupervised fashion.
The most similar work to ours is|Zhang et al.| (2018)), in which meta learning was used in auxiliary
data selection. However, this still requires manually-labelled data from which these selections are
made, whilst our method is able to generate auxiliary data from scratch.

Meta Learning Meta learning (or learning to learn) aims to design a higher-level learning system
which itself is trained using the experiences of a lower-level learning system, in an attempt to im-
prove this lower-level system. Early works in meta learning explored automatically learning update
rules for neural models (Bengio et al., [1990; (1992} Schmidhuber, [1992). Recent approaches have
focused on learning optimisers for deep networks based on LSTMs (Ravi & Larochellel 2016) or
synthetic gradients (Andrychowicz et al.,|2016; |Jaderberg et al.,|2016). Meta learning has also been
studied for finding optimal hyper-parameters (Li et al., 2017} and a good initialisation for few-shot
learning (Finn et al.,|2017). (Santoro et al.,2016) also investigated few shot learning via an external
memory module. |Vinyals et al.| (2016); [Snell et al.| (2017) realised few shot learning in the instance
space via a differentiable nearest-neighbour approach. Our method also performs in the instance
space, but induces auxiliary knowledge as an implicit regularisation to improve generalisation of the
principal task.

3 META AUXILIARY LEARNING

In this section, we introduce our method for automatically generating optimum auxiliary tasks,
which we call Meta AuXiliary Learning (MAXL).

3.1 PROBLEM SETUP

The goal of meta auxiliary learning is to train a meta generator that can generate higher complex-
ity auxiliary tasks, to improve performance of the principal task. To accomplish this, we use two
networks: a multi-task evaluator which trains on the principal and auxiliary tasks, and evaluates
the performance of the auxiliary tasks on a meta set, and a meta generator which generates these
auxiliary tasks. For simplicity, we consider image classification tasks in this section, where the aux-
iliary task is sub-class labelling, and the meta generator determines target sub-class labels, but the
approach can be considered general for any type of task.

We denote the multi-task evaluator as a function fy, () that takes an input x with network pa-
rameters 6, and the meta generator as a function gy, () that takes the same input = with network
parameters 5. For a dataset with input x and ground-truth label y for the principal task, we split
into three subsets: training (Tain, Yuain )» Meta-training (Tmea, Ymeta)» and test (Test, Yrest)- Training
data is used for updating 6,, meta-training data is used for updating the 65, and test data is used for
overall evaluation.

In the multi-task evaluator, we apply a hard parameter sharing approach (Ruder;, [2017)) in which we
predict the principal and auxiliary tasks using the shared set of features 6; in the multi-task network.
At the end of the last feature layer fp, (z), we then apply further task-specific layers to output the
corresponding prediction for each task. We denote the predicted principal labels by fgf'(:c) and

predicted auxiliary labels by f3'*(z).

In the meta generator, we pre-define a hierarchical structure ¢ which determines the number of sub-
classes for each class in the principal task. At the end of the last feature layer gg, (), this hierarchy,
together with the ground-truth label y for the principal task, are used to generate the target auxiliary
labels, denoted by ggzn(x, y, ). We allow for soft assignment labelling rather than enforcing one-
hot encoding, which enables greater flexibility to learn optimum auxiliary tasks. The meta generator
uses a masked SoftMax to ensure that each output node represents a sub-class label for only one
class in the principal task, as described further in Section[3.3] The visualisation of the our proposed
MAXL approach is shown in Figure
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Figure 2: (a) [lustration of the two networks which make up our meta auxiliary learning algorithm.
(b) Ilustration of vanilla SoftMax and Mask SoftMax with 3 principal classes. Vanilla SoftMax
outputs over all 5 auxiliary classes, where as Mask Softmax outputs over a hierarchical structure
1 = [2, 2, 1] to constrain the prediction space.

3.2 MODEL OBJECTIVES

The multi-task evaluator is trained in a tightly-coupled manner with the meta generator: the meta
generator determines target labels for the multi-task evaluator, which in turn determines the suitabil-
ity of those labels.

Given target labels as determined by the meta generator, the multi-task evaluator is trained to predict
these labels, alongside the ground-truth labels for the principal task. For both the principal and
auxiliary classification tasks, we apply focal loss (Lin et al.,2017) with a focusing parameter v = 2,

defined as:
L(9,y) = —y(1 — )" log(9), (1)

where ¢ is the predicted label and y is the ground-truth label. The focal loss helps to focus on
the incorrectly predicted labels, which we found improved performance during our experimental
evaluation compared with the regular cross-entropy log loss.

To update parameters 6, in the multi-task evaluator, we define the multi-task objective as follows:

arg min (L0757 (x{ah). va) + LB (), 85 (2l Y ¥)) @)
1

where () represents the i*" batch from the training data.

The meta generator is then trained by encouraging target labels for the auxiliary task to be chosen
such that, if the multi-task evaluator were to be trained on these labels, the performance on the
principal task would be maximised. This requires evaluation on a separate dataset, the meta-training
set, to train the meta generator, to ensure that the target auxiliary labels encourage generalisation
beyond the data supplied to the multi-task evaluator.

To update parameters 65 in the meta generator, we define the meta objective as follows:

argmlnﬁ( o (mge)ta) yfngta)' ®)

02

Here 6, represents the weights of the multi-task network were it to be trained, with one gradient
update, using auxiliary labels Ymeta:

07 = 01— aVa, (LUB (05), vida) + LB (0800), 5 @k Y V) s @)



Under review as a conference paper at ICLR 2019

where « is the learning rate.

The trick in this meta objective is that we perform the derivative over a derivative (a Hessian matrix)
to update 6, by using a retained computational graph of ¢, in order to compute derivatives with
respect to 6. This second derivative trick in meta learning was also proposed in Finn et al.|(2017)
and Zhang et al.|(2018)).

However, we found that the generated auxiliary labels can easily collapse (i.e. degenerate by sim-
ply learning a similar level of complexity as the principal task), which leaves parameters 5 in
a local minimum without producing any extra useful knowledge. Thus, to encourage the net-
work to learn more complex and informative auxiliary tasks, we further apply an entropy loss

H(go, (xr(,fe)m, y,Etha, 1)) as a regularisation term in the meta objective. A detailed explanation of
the entropy loss and the collapsing label problem will be given in Section 3.4}

Finally, the entire MAXL algorithm is defined as follows:

Algorithm 1: The MAXL algorithm

Dataset: D = {(mlraina ytrain); (wmetm ymela)}

Initialise: Network parameters: 61, 65; Hierarchical structure: v

Initialise: Hyper-parameter (learning rate): «, 3; Hyper-parameter (task weighting): A
for each training iteration i do

# fetch one batch of trammg and meta data

{(mt(:a)lm yt(ram) (xl(l;Lgta7 ymeta } { mlralm ytram) (xmetaa ymeta)}

# training step

Update: 01« 01 — aVa, (LU (@), viom) + LUE@00) 90 (20 v )
# meta-training step

Compute: 8 = 1 — aVa, (LU (@) yhda) + LUE ks 9os (28 Yo ©))
Update: 02 — 02 - Bv% ( ( 9+( r(rfeta) yr(ngla) + )‘H(ggzn( r(ngtavyr(nfztaa )))

end

3.3 MASK SOFTMAX FOR HIERARCHICAL PREDICTIONS

In the prediction layer of the meta generator, we designed a modified SoftMax function to predict
target auxiliary labels which conform to a pre-defined hierarchy . As shown in Figure [2| (upper
right), the original softmax function does not constrain sub-class labelling to lie within this hierarchy.
Our mask SoftMax structure resolves this issue by applying a binary mask to the original SoftMax
function.

The overall hierarchical structure ¢ determines the number of sub-classes 1 [¢] in each principal class
i. As such, the total prediction space for auxiliary labels is ) _, +/[i]. This hierarchy, together with the
ground-truth principal class label y of the current image, creates the mask with a binarise function
M = B(y,). Using the principal ground-truth label y, the corresponding range of sub-classes
1[y] is selected, and a binary mask M is created with size ), +/[i] with a multi one-hot encoding
]127‘,<u oD (145 is denoted as a multi one-hot encoding in which indexes from a to b are

encoded as 1).

Using the example in Figure[2] consider the principal task to have 3 classes with ground truth labels
y = 0,1,2, and hierarchical structure ¢y = [2,2,1]. In this case, the auxiliary prediction space
is equal to 5 and the corresponding binary masks are M = [1,1,0,0,0],[0,0,1,1,0],[0,0,0,0,1]
respectively.

Finally, we apply binary mask M with an element-wise multiplication on the original SoftMax
function for the final auxiliary task predictions:

exp ¥ exp M © 7,
> exp Ui Y expM g’

where p(g; ) represents the probability of the predicted principal label §j over class 4, and © represents
element-wise multiplication.

SoftMax: p(4;) = , Mask SoftMax: p(4;) =

M = B(y,v),
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3.4 THE COLLAPSING CLASS PROBLEM

As previously discussed, we predict each auxiliary label within a hierarchical structure v. However,
the number of sub-classes defined in 4[] is the maximum auxiliary label prediction space, with no
guarantee that all ¢[i] classes will be predicted. This may result in some auxiliary labels defined
in ¢[7] being overlooked, with the output of the meta generator collapsing into a smaller sub-class
space. In experiments, we found that this phenomenon is particularly apparent when we either have
a large learning rate for training the meta generator, or a large sub-class prediction space ).

To avoid the collapsing class problem, we introduced an additional regularisation loss, which we
call the entropy loss ’H(gj(i)). This encourages the meta generator to utilise the full prediction space,
by encouraging a large prediction entropy across this space.

Assuming we have a well-balanced dataset, the entropy loss calculates the KL divergence between
the predicted auxiliary label space §(*), and a uniform distribution ¢/ for each i*" batch. This is
equivalent to calculating the entropy of the predicted label space, and is defined as:

K

N
~ (4 J— — —_ 1 ~ (2
H(y())zzykbgyk» ykzﬁzy()~ &)
k=1 i=1

where K is the number of auxiliary labels and N is the training batch size.

The entropy loss is essential to achieve human-level performance, as shown in our experiments. The
higher entropy in the auxiliary target labels results in a more complex auxiliary task. This avoids
local minima during training, such as assigning a single label to all examples of a principal class.

4 EXPERIMENTS

In this section, we present experimental results to evaluate MAXL with respect to several baselines
and datasets on image classification tasks.

4.1 EXPERIMENTAL SETUP

Datasets We evaluated on three different datasets: CIFAR100, CIFAR10, and CIFAR10.1v6
(Rechtet al.,|2018)). CIFAR100 consists of 100 principal classes, whilst CIFAR10 and CIFAR10.1v6
consist of 10 principal classes and have the same training dataset as each other, but two different test
datasets. To assess the generalisation across different task complexities, we tested a range of differ-
ent combinations in the numbers of principal and auxiliary classes. For CIFAR100, we expanded
the dataset’s provided 2-level hierarchy (20 and 100 classes) into a 4-level hierarchy (additional 3
and 10 classes), by manually assigning examples for these new hierarchy levels (see Appendix [A).
Based on the new hierarchy, we then tested on all 6 possible combinations of principal and auxiliary
class numbers. Note that for MAXL, the hierarchy was used only to define the structure of ¢/ and
the principal task labels, to ensure a fair comparison with a method using human-defined auxiliary
tasks, but the auxiliary task labelling within that structure was learned by MAXL itself. CIFAR10
and CIFAR10.1v6 do not have an associated manually-defined hierarchy, and so we defined a range
of hierarchical structures ¢ [i] = 2,5, 10, 20, 50, 100, V3.

Baselines We compared MAXL to a number of baselines. Single Task trains only with the prin-
cipal class label. Random Assignment trains with auxiliary classes, and randomly assigns the aux-
iliary class labels. Prototypical Net is a clustering method based on (Snell et al., 2017), where
prototypes for auxiliary classes are defined by embedding examples from meta-training data, which
has human-defined auxiliary classes, using a pre-trained ImageNet network. Unsupervised, differ-
entiable, nearest-neighbour clustering is then used to produce the final auxiliary class labelling for
the remaining training data. The key difference to MAXL is that, whilst both methods are unsuper-
vised, the auxiliary class labelling with MAXL actually evaluates the generalisation performance of
this labelling on the principal task, whilst the Prototypical Net method does not. Finally, Human
trains with auxiliary classes, using the human-defined hierarchy. Note that due to the need for a
manually-defined hierarchy, Prototypical Net and Human were only evaluated on CIFAR100. For
all baselines, we use the same network architecture and training procedure as MAXL’s multi-task
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evaluator. For the meta-training for MAXL and Prototypical Net, we split each training dataset and
used 10% for meta-training the auxiliary labelling, and 90% for training the multi-task evaluator.
For all other baselines, we used the full training set for training the multi-task evaluator.

Training For both the multi-task evaluator and the meta generator use VGG-16 as its core
[monyan & Zisserman|, [2014)), together with batch normalisation. For all experiments, we used a
learning rate of 0.01 for the multi-task evaluator. For MAXL’s meta generator, we found that a
smaller learning rate of 10~ was necessary to help prevent the class collapsing problem. For all
training, we drop the learning rate by half after every 50 epochs, and train for a total of 200 epochs,
using vanilla stochastic gradient descent. For the meta generator, we apply an L; norm weight decay
of 5-10~* on the meta generator, with no regularisation on the multi-task evaluator. We chose the
weighting of the entropy regularisation loss term to be 0.2 based on empirical performance.

4.2 TEST PERFORMANCE

We now evaluate the performance of MAXL compared to these baselines, on all three datasets.
Results for CIFAR100 are presented in Figure [3] and results for CIFAR10 and CIFAR10.1v6 are
presented in Appendix
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Figure 3: Learning curves for the CIFAR100 test dataset, comparing MAXL with baseline methods.
We provide results in all 6 different combinations of principal and auxiliary class numbers.

For CIFAR100, we observe that MAXL performs similarly to when human knowledge is used in 4
out of the 6 hierarchical structures, and performs worse in 2 out of the 6. For all other baselines,
MAXL performs at least as well, and in the majority of cases outperforms other baselines by a
significant margin. We therefore see that MAXL is able to learn auxiliary tasks effectively by tightly
coupling the auxiliary task generation and the principal task training, in a superior manner than
when these auxiliary tasks are assigned independently, such as with random assignment or using
prototypical net. With performance of MAXL approaching that of a system using a human-defined
auxiliary tasks, we see strong evidence that MAXL is able to learn to generalise effectively in an
unsupervised manner.

4.3  EFFECT OF AUXILIARY TASK COMPLEXITY

We now evaluate how the complexity of the auxiliary tasks affects the performance of the principal
task. In Figure[d](a), we present results from CIFAR10 and CIFAR10v1.6 showing the performance
increase over single-task learning, when there are 10 principal classes, but a range of auxiliary class
numbers ([i] = 2,5, 10, 20,50, 100, ¥i). For each data point, the performance is calculated by
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averaging the test accuracy from the last 5 epochs, after a total of 200 epochs. Experiments were
performed both with and without the entropy loss term to show the benefit of this regularisation.

We observe an interesting trend in which test performance rises as the number of auxiliary classes
increases, but then begins to fall. This suggests that for a given complexity of principal task, there is
an optimum complexity in the auxiliary tasks. One explanation for this may be that as the auxiliary
tasks increase in complexity, the learned features favour learning these auxiliary tasks rather than the
principal task, encouraging further generalisation beyond the features learned only for the principal
task. But if the auxiliary task is too complex, then these features begin to overfit and lose the overlap
between the reasoning required for the principal and auxiliary tasks, begins to decrease.

=== CIFAR10 w/ entropy
===s CIFARI10 w/o entropy

=== CIFARI10.1v6 w/ entropy
===s CIFAR10.1v6 w/o entropy

Mean Performance Improvement (%)

20 50 100 200 500 1000
Auxiliary #Class

Figure 4: Performance improvement in percentages when training with MAXL compared with
single-task learning, with 10 principal classes and a range of auxiliary classes.

4.4 VISUALISATIONS OF GENERATED KNOWLEDGE

In Figure [5] we visualise 2D embeddings of examples from the CIFAR100 test dataset, on two
different task complexities. This was computed using t-SNE (Maaten & Hinton| [2008)) on the final
feature layer of the multi-task evaluator, and compared across three methods: our MAXL method,
our baseline using human-defined hierarchy, and our baseline using single-task learning.

PRI 3 | AUX 10 | PRI20 | AUX 100 |

Single Task Human MAXL Single Task Human MAXL

Figure 5: t-SNE visualisation of the learned final layer of the multi-task evaluator network, trained

with two combinations of principal and auxiliary class numbers from CIFAR100. Colours represent
the principal classes.

This visualisation shows the separability of principal classes after being trained with the multi-task
evaluator. We see that both MAXL and Human show better separation of the principal classes than
with Single-Task, owing to the generalisation effect of the auxiliary task learning. The distinction
between the separability of the MAXL and Human visualisations is not as clear, despite their very
similar performance for these two task complexities in Figure [3] But given that MAXL uses the
same hierarchical structure as Human, we see from the visualisation that these two methods are
clearly learning different representations.

We also show examples of images assigned to the same auxiliary class through MAXL’s multi-task
evaluator. Figure[6]shows example images with the highest prediction probabilities for three random
auxiliary classes from CIFAR100, using the combination of 20 principal classes and 5 auxiliary
classes per principal class, which showed the best performance of MAXL in Figure 3] In addition,

we also applied MAXL to MNIST, in which 3 auxiliary classes were used for each of the 10 principal
classes.
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Figure 6: Visualisation of 5 test examples with the highest prediction probability, for each of 3
randomly selected auxiliary classes, for a number of different principal classes. We present the
visualisation for CIFAR100 (top) when trained with 20 principal classes and 5 auxiliary classes per
principal class, and for MNIST (bottom) when trained with 10 principal classes and 3 auxiliary
classes per principal class.

To our initial surprise, the generated auxiliary labels visualised in both datasets show no clear
human-understandable knowledge. In particular, there are no obvious similarities within each aux-
iliary class whether in terms of shape, colour, style, structure or semantic meaning. However, this
makes more sense when we re-consider the task of the meta generator, which is to assign auxiliary
labels which assist the principal task. Rather than grouping images in terms of semantic or visual
similarity, the meta generator would therefore be more effective it it were to group images in terms
of a shared aspect of reasoning which the multi-task evaluator is currently facing difficulty on. If the
multi-task evaluator is then able to improve its ability to determine the auxiliary class of an image in
such a cluster, then the learned features will help in overcoming this challenging aspect of reasoning.
It therefore makes sense that the examples within an auxiliary class do not share semantic or visual
similarity, but instead share a more complex underlying property.

Further, we discovered that the generated auxiliary knowledge is not deterministic, since the top
predicted candidates are different when we re-train the network from scratch. We therefore speculate
that using a human-defined hierarchy is just one out of a potentially infinite number of local optima,
and on each run of training the meta generator produces another of these local optimums.

5 CONCLUSION & FUTURE WORK

In this paper, we have presented and evaluated Meta AuXiliary Learning (MAXL). MAXL learns
to generate optimum auxiliary tasks which, when trained alongside a principal task in a multi-task
setup, maximise the generalisation of the principal task across a validation dataset. Rather than
employing domain knowledge and human-defined auxiliary tasks as is typically required, MAXL is
self-supervised and, combined with its general nature, has the potential to automate the process of
generalisation to new levels.
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Our evaluations on three image datasets have shown the performance of MAXL in an image clas-
sification setup, where the auxiliary task is to predict sub-class, hierarchical labels for an image.
We have shown that MAXL significantly outperforms other auxiliary learning baselines, and even
when human-defined knowledge is used to manually construct the auxiliary tasks, MAXL performs
similarly in the majority of experiments.

Despite this impressive performance from a self-supervised method, questioning why auxiliary tasks
generated by MAXL do not outperform those constructed by a human opens exciting future research
in this direction. Perhaps, human-defined auxiliary tasks are optimal themselves and cannot be
surpassed. However, we believe this not to be the case since such tasks are typically chosen due to the
availability of labelled data for these tasks, and not necessarily their optimality when combined with
the principal task. Alternatively, perhaps the power of the human knowledge is not from the domain
specific labels, but from higher-level reasoning about how auxiliary tasks should be structured. In
our experiments, training MAXL using the same structure as a human-defined hierarchy, but learning
its own auxiliary labels, typically led to similar performance as when the human-defined labels were
used.

The general nature of MAXL also opens up questions about how self-supervised auxiliary learning
may be used to learn generic auxiliary tasks beyond sub-class labelling. During our experiments,
we also ran preliminary experiments on predicting arbitrary vectors as the auxiliary task, but results
so far have been inconclusive. However, the ability of MAXL to potentially learn flexible auxiliary
tasks which can automatically be tuned for the principal task now offers an exciting direction towards
automated generalisation across a wide range of more complex tasks.
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A  4-LEVEL CIFAR100 DATASET

Table 1: Building a 4-level hierarchy for image classification task based on CIFAR100 dataset.
Originally, a 20-class and 100-class heirarchiy was provided, and we manually introduced a 3-class
and 10 class layer.

3 Class 10 Class 20 Class 100 Class
reptiles crocodile, dinosaur, lizard, snake, turtle
large animals large carnivores bear, leopard, lion, tiger, wolf

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

) . aquatic mammals beaver, dolphin, otter, seal, whale
medium animals
medium-sized mammals fox, porcupine, possum, raccoon, skunk
animals . .
) small mammals hamster, mouse, rabbit, shrew, squirrel
small animals
fish aquarium fish, flatfish, ray, shark, trout
) insects bee, beetle, butterfly, caterpillar, cockroach
invertebrates
non-insect invertebrates crab, lobster, snail, spider, worm
people people baby, boy, girl, man, woman
flowers orchids, poppies, roses, sunflowers, tulips
vegetations vegetations fruit and vegetables apples, mushrooms, oranges, pears, peppers
trees maple, oak, palm, pine, willow
food containers bottles, bowls, cans, cups, plates
household objects household electrical devices clock, keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
objects and scenes construction large man-made outdoor things bridge, castle, house, road, skyscraper
natural scenes large natural outdoor scenes cloud, forest, mountain, plain, sea
) vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor
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B LEARNING CURVES FOR CIFAR10/10.1v6
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Figure 7: Testing performance on CIFAR10 (bottom) and CIFAR10.1v6 (top) datasets, across 6

different numbers of auxiliary classes.
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