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ABSTRACT

We present a weakly-supervised data augmentation approach to improve Named
Entity Recognition (NER) in a challenging domain: extracting biomedical entities
(e.g., proteins) from the scientific literature. First, we train a neural NER (NNER)
model over a small seed of fully-labeled examples. Second, we use a reference set
of entity names (e.g., proteins in UniProt) to identify entity mentions with high
precision, but low recall, on an unlabeled corpus. Third, we use the NNER model
to assign weak labels to the corpus. Finally, we retrain our NNER model itera-
tively over the augmented training set, including the seed, the reference-set exam-
ples, and the weakly-labeled examples, which results in refined labels. We show
empirically that this augmented bootstrapping process significantly improves NER
performance, and discuss the factors impacting the efficacy of the approach.

1 INTRODUCTION

The increasing wealth of available data fuels numerous machine learning applications. Unfortu-
nately, much of this data is unlabeled, unstructured and noisy. Supervised learning achieves the
best task performance, but obtaining training labels is expensive. Crowd-sourcing could provide
labels at scale, but may not be feasible for acquiring high-quality labels in technical domains, such
as biomedicine that requires expert annotators. In this paper, we explore augmented bootstrapping
methods that leverage automatically assigned noisy labels obtained from a large unlabeled corpus.
The biomedical literature is a high-impact domain with scarce annotations. Unlocking the knowl-
edge in this data requires machine reading systems that automatically extract important concepts in
the text, such as entities and their relations. A critical component of such systems is reliable Named
Entity Recognition (NER), which aims to identify parts of the text that refer to a named entity (e.g.,
a protein). In line with advancements in many domains, most state-of-the-art NER approaches use a
deep neural network model that relies on a large labeled training set, which is not usually available
in biomedical domains. To address label scarcity, we propose a framework to train any effective
neural NER model by leveraging partially labeled data. We do this by creating an augmented train-
ing set using a small fully-labeled seed set, and an unlabeled corpus set, which we weakly and
automatically label, and then refine its labels via an iterative process.
Our main contributions include: (1) An augmented bootstrapping approach combining information
from a reference set with iterative refinements of soft labels to improve NER in a challenging domain
(biomedicine) where labelling is expensive. (2) A detailed analysis in a controlled setting to study
different aspects affecting performance. (3) An analysis of reference-based automated approaches
to labeling data, showing that naive labeling decreases performance and how to overcome it.

2 RELATED WORK

Many effective NER systems assume a fully-supervised setting to train a neural network model (Liu
et al., 2018; Ma & Hovy, 2016; Lample et al., 2016). Recently, distant supervision has been applied
to language-related tasks such as phrase mining (Shang et al., 2018a), relation extraction (Mintz
et al., 2009), and entity extraction (He, 2017). For NER, Fries et al. (2017) automatically generated
candidate annotations on an unlabeled dataset using weak labellers. Ren et al. (2015) and He (2017)
used knowledge bases and linguistic features to tag entities. Our approach combines knowledge
extracted from an external reference set with noisy predicted labels and refines them an iteratively.
Using a reference set Ratner et al. (2017) proposed heuristic-based functions to label data with
low accuracy. Shang et al. (2018a;b) described techniques to automatically tag phrases based on
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knowledge bases such as MeSH and CTD in the biomedical domain. However, in NER systems
with weak supervision, wrongly-labeled entities negatively affects the overall performance (Shang
et al., 2018b). We show that our proposed iterative training technique is able to make the learning
process more robust to noisy labels.
Our method is closely related to bootstrapping approaches. Yarowsky (1995) introduced the boot-
strapping technique by training a tree-based classifier for word-sense disambiguation on labeled
seed data and then using it to predict on an unlabeled corpus which further is used for training the
model iteratively until convergence. Later Kozareva (2006) bootstrapped statistical classifiers for
NER. Abney (2004) and Haffari & Sarkar (2007) applied bootstrapping for language processing,
and Reed et al. (2015) for image classification.
We propose an augmented bootstrapping technique for the state-of-the-art neural NER model applied
to biomedical literature. In contrast to the standard bootstrapping techniques that use hard labels, we
leverage and refine soft label values, which may be more suitable for noisy data. More importantly,
we further augment the bootstrapping process via a simple domain-independent data annotation
scheme based on a reference set, which is in contrast to the hand-crafted domain specific rules or
the linguistic or morphological characteristics used in standard bootstrapping approaches.

3 REFERENCE-SET LABELLING AND AUGMENTED BOOTSTRAPPING

Our main goal in this study is to use easily available external information to leverage unlabeled
data and reduce the need for an expensive fully-labeled dataset. We assume to have a small fully-
annotated seed dataset Ds that has every token tagged by entity type and a larger unlabeled corpus
Dc. We seek to automatically generate an augmented dataset by partially, and possibly noisily,
labeling Dc. We show that training a (Neural) NER system over the combined seed and augmented
datasets achieves the performance of systems trained with an order of magnitude more labels.

3.1 LEVERAGING REFERENCE SETS AND ITERATIVE LABEL REFINEMENT
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Figure 1: NNER with Augmented Bootstrapping
Architecture.

We propose an iterative solution to improve
NER by labeling the corpus dataset using two
complementary sources of information. First,
we train a NER model using the small seed
dataset Ds and use it to label the unlabeled cor-
pus Dc, we call this set of labels predicted la-
bels. Second, we use search policies over a ref-
erence set to find mentions of entity names in
the unlabeled corpus Dc, we call these set of
labels reference-based labels. We combine the
seed, the predicted and the reference labels to
retrain the NER model. We use the updated
model to iteratively refine the predicted labels
portion of the corpus set.
Figure 1 and Algorithm 1 show the overall process of our method. We use soft scores (between 0
and 1) to label the corpus set, instead of the binary labels produced by the CRF layer used in state-
of-the-art NER models. Our aim is to let the model iteratively reinforce the weak signals in the soft
scores to improve the label quality.

3.2 BASE NER MODEL AND SOFT LABELING

Recent high-performing neural NER (NNER) models (Lample et al., 2016; Ma & Hovy, 2016) use
Bi-directional LSTM (BiLSTM) layers trained on character and word embeddings. The character
embeddings are learned over the training data using a separate BiLSTM layer, and are concatenated
with GloVe word embeddings (Pennington et al., 2014). We use an open-source Tensorflow imple-
mentation of this model (Genthial, 2017), which achieves state-of-the-art NER performance on the
CoNLL 20031 dataset. To produce soft scores for each tag in our experiments, we replace the CRF
layer with a softmax layer. Entities found via the reference set receive a score of 1.

1https://www.clips.uantwerpen.be/conll2003/ner/
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4 EXPERIMENTAL ANALYSIS AND RESULTS

We show the effectiveness of our approach in a hard NER problem, extracting protein mentions from
the biomedical literature, and systematically evaluate the contribution of the different techniques.
We use the BioCreative VI Bio-ID dataset Arighi et al. (2018), which contains 13,573 annotated
figure captions corresponding to 3,658 figures from 570 full length articles from 22 journals, for a
total of 102,717 annotations. The Bio-ID dataset is split into a training set of 38,344 sentences, a
development set of 4,243 sentences, and a test set with 14,079 sentences. The tokens are tagged
using the BIO scheme (Beginning, Inside and Outside of entities).

Algorithm 1: Assignment algorithm
Function IterativeTrain (Ds, Dc)

Input: Labeled seed data (Ds)
Input: Unlabeled corpus (Dc)
Output: Iteratively trained model (MK )
Train modelM0 on Ds

for i in 1 . . . K do
D(i−1)∗

c ← Predict usingMi−1

D(i−1)
c ← Relabel D(i−1)∗

c

s.t.
if token ∈ Reference Set then

scoretag(token)← 1
end
Train modelMi on Ds + D(i−1)

c

end
returnMK

The Bio-ID dataset provides us with a controlled en-
vironment where we can evaluate our methods, since
it provides ground truth on the labels. The rationale of
the following experiments is to simulate our desired
data augmentation scenario, which is to search for
sentences containing relevant bioentities (e.g., pro-
teins) in a large corpus, such as PubMed Central. We
evaluate our three main techniques, namely (1) using
a reference set of entity names (i.e., protein names
from UniProt), (2) predicting labels for unknown to-
kens using a NNER system trained in a small fraction
of the data, and (3) refining the label predictions by
retraining the NNER system iteratively. We focus on
protein/gene annotations for simplicity (51,977 men-
tions with 5,284 distinct entities).
Our experimental evaluation appears in Table 1,
which shows Precision, Recall and F1 over the Bio-
ID test set for different conditions. Experiments 1
and 2 (rows 1, 2) show results of the NNER system
trained over the full Bio-ID training dataset, which on the test set achieves F1 of 82.99% (BiLSTM)
and 83.34% (BiLSTM-CRF). This simulates the performance over a large amount of labeled data
and is our gold standard upper limit. For the remaining rows, we train a NNER system over a small
dataset (3% of the Bio-ID training dataset), which we refer as NNER-3%. We use the NNER-3%
model to predict labels for unknown tokens (noisily, since its accuracy is not perfect). Then, we ap-
ply different data augmentation techniques over the remaining 97% of the Bio-ID training dataset,
which simulates the accessibility of a large unlabeled corpus.

Experiment Name Arch Iters True
Labels

Ref
Set

Pred
Labels

Init
P

Init
R

Init
F1

Best
P

Best
R

Best
F1

Seed data (3%) Seed + Augmentation
1. 100% Training BiLSTM 0 100% No No - - - 78.73 87.73 82.99
2. ” + CRF 0 100% No No - - - 80.75 86.09 83.34
3. Partial Ref Set, No Iters BiLSTM 0 40% No No - - - 78.70 36.05 49.45
4. ” + CRF 0 40% No No - - - 68.51 51.31 58.67
5. Partial Ref Set, Iterative BiLSTM 10 40% No Yes 67.60 79.14 72.91 68.37 89.66 77.58
6. ” + CRF 10 40% No Yes 67.94 86.77 76.21 72.79 88.92 79.75
7. Ref Set, Iterative BiLSTM 10 No C1 Yes 69.71 75.96 72.70 61.60 84.71 71.33
8. ” BiLSTM 10 No C2 Yes 69.71 75.96 72.70 70.30 84.23 76.63
9. ” + CRF 10 No C2 Yes 69.71 75.96 72.70 71.03 85.74 77.70

Table 1: Experimental Evaluation. [C1 = Exact search (P=59.23, R=18.66). C2 = Removed words
in English dictionary and words less than 4 characters; case-insensitive search (P=90.20, R=39.35)].

Experiment 3 (row 3 in Table 1) shows the results for a simple baseline where we train our NNER
system over the 3% seed combined with one true protein label per sentence for the remaining 97% of
the Bio-ID training dataset, which removes ∼60% of the protein labels. This experiment simulates
an augmentation method with perfect precision, but a recall of only 40%. Experiment 4 adds the
CRF to the architecture over the same scenario, which results on a ∼9 point increase on F1 to reach
∼58% (although precision suffers). Even in this somehow unrealistic scenario that includes many of
the available labels, the overall performance is significantly diminished from the the system trained
on 100% of the data (∼25 percentage points below in F1).
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Table 2: Performance of iterative refinement (E4,5).

BiLSTM BiLSTM+CRF

It P R F1 P R F1

0 67.60 79.14 72.91 84.14 66.49 74.28
1 68.47 85.61 76.08 67.94 86.77 76.21
2 68.92 86.54 76.73 68.73 88.59 77.41
3 68.86 87.78 77.18 68.69 88.91 77.51
4 69.13 88.11 77.47 70.26 88.18 78.21
5 69.13 88.00 77.43 69.48 88.78 77.95
6 68.91 88.59 77.52 70.09 88.79 78.34
7 68.44 88.38 77.15 70.35 89.63 78.83
8 68.26 89.29 77.37 69.73 89.41 78.36
9 68.01 89.02 77.11 69.30 89.88 78.26

10 68.37 89.66 77.58 72.29 88.92 79.75

Experiments 5 and 6 show the effect of our
iterative label refinement method. We first
train NNER-3% on the seed data. Then we
combine the seed, with the perfect precision
(but partial) labels as in experiments 3 and
4, and with the noisy predicted labels for
the remaining tokens in the (97% of the)
training dataset. Surprisingly, training over
only 3% of the data already achieves a good
F1 of 72.91% for the BiLSTM architecture
and 76.21% for the BiLSTM+CRF architec-
ture. When we retrain this base system it-
eratively, the accuracy of the predicted la-
bels increases, which leads to an improve-
ment of ∼3-4 percentage points in F1 (to
77.58% for the BiLSTM and 79.75% for the
BiLSTM+CRF). Thus, the iterative label refinement method reduces the distance to the 100% trained
system from 25 to 4 percentage points, which is a substantial improvement.
Table 2 shows the evolution of the iterative label refinement procedure. We train NNER-3% (row 0)
and use it to predict labels for unknown tokens repeatedly, which yields a jump in performance in
the first iteration, since the predicted labels are informative, and then a more gradual improvement
as the labels are increasingly refined.
Finally, the remaining experiments simulate the more realistic scenario we seek, where we search for
sentences in a large corpus to be labeled automatically. In experiment 7, we simply use our reference
set to directly search for exact mentions in the corpus. That is, we search in a case sensitive way
for protein/gene names from UniProt in the 97% dataset that represents our large corpus. Matching
tokens are labeled as true proteins for training. Since we know the true labels, we can compute the
precision (=59.23%) and recall (=18.66%) of this selection technique, which is in fact quite poor.
Even using our iterative training technique that produced good results in the previous experiments,
somewhat decreases the performance (from F1 =72.70 for NNER-3% down to 71.33%). The low
quality of the augmented data introduces too much noise to improve performance.
To lower the noise, we refined our search procedure to improve the precision. For experiments
8 and 9, we filtered the names of our reference set, since after error analysis we discovered that
many protein names were ambiguous. For example, the token ANOVA is a name of Q9UNW
protein in UniProt, and a well-known statistical procedure. Thus, we removed all protein names that
appear in an English dictionary from our search. More drastically, we also removed protein names
of less than 3 characters, to avoid capturing acronyms that may not really be protein mentions.
Finally, we also relaxed the matching strategy to be case insensitive and also to allow for partial
matches. For example, when searching for TIGAR, we will accept ”Flag-tagged-TIGAR”. This
selection techniques yield an improved precision (=90.20%) and recall (=39.35%) on identifying
correct proteins in Bio-ID. We then reconstruct our augmented training dataset that combines the
seed, reference-set, and the predicted labels by NNER-3% and iterative refinement. Our method
achieves a F1 of 76.63% for BiLSTM and of 77.70% for BiLSTM+CRF.
In summary, through these experiments we show that using a small labeled dataset and our automatic
data augmentation procedure, we achieve a performance approaching that of a system trained with
over 30 times more labeled data.

5 CONCLUSION AND FUTURE DIRECTIONS

We proposed a method to improve NER with limited labeled data, which is often the case in tech-
nical domains, such as biomedicine. Our method combines bootstrapping and weakly-labeled data
augmentation by using a small fully-labeled seed dataset and a large unlabeled corpus, automated la-
belling using a reference set, and an iterative label refinement process. Our experimental evaluation
shows performance equivalent to systems trained with an order of magnitude more labeled data.
In future work, we aim to explore additional augmentation methods over other challenging datasets.
We plan to apply the findings of these controlled experiments to a much larger in-the-wild scenario
where we use all the available labeled data as the seed and operate over a large corpus (e.g., all of
PubMed, PubMed Central) to improve state-of-the-art NER performance.
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