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ABSTRACT

Consider a world in which events occur that involve various entities. Learning
how to predict future events from patterns of past events becomes more difficult
as we consider more types of events. Many of the patterns detected in the dataset
by an ordinary LSTM will be spurious since the number of potential pairwise
correlations, for example, grows quadratically with the number of events. We pro-
pose a type of factorial LSTM architecture where different blocks of LSTM cells
are responsible for capturing different aspects of the world state. We use Datalog
rules to specify how to derive the LSTM structure from a database of facts about
the entities in the world. This is analogous to how a probabilistic relational model
(Getoor & Taskar, 2007) specifies a recipe for deriving a graphical model struc-
ture from a database. In both cases, the goal is to obtain useful inductive biases
by encoding informed independence assumptions into the model. We specifically
consider the neural Hawkes process, which uses an LSTM to modulate the rate
of instantaneous events in continuous time. In both synthetic and real-world do-
mains, we show that we obtain better generalization by using appropriate factorial
designs specified by simple Datalog programs.

1 INTRODUCTION

Temporal sequence data is abundant in applied machine learning. A common task is to impute
missing events, e.g., to predict the future from the past. Often this is done by fitting a generative
probability model. For evenly spaced sequences, historically popular models have included hidden
Markov models and discrete-time linear dynamical systems, with more recent interest in recurrent
neural network models such as LSTMs. For irregularly spaced sequences, a good starting point is
the Hawkes process, a self-exciting temporal point process; many variations and enhancements have
been published, including neural variants using LSTMs.

All of these models can be described schematically by Figure 1a. Events ei, ei+1, . . . are assumed
to be conditionally independent of previous events, given the system state si (which may or may not
be fully known given events e1, . . . , ei). That is, si is enough to determine the joint distribution of
the ith event and the updated state si+1, which is needed to recursively predict all subsequent events.

Figure 1a and its caption show the three types of influence in the model. The update, affect,
and depend arrows are characterized by parameters of the model. In the case of a recurrent neural
network, these are the transition, input, and output matrices.

Our main idea in this paper is to inject structural zeros into these weight matrices. Structural zeros
are weights that are fixed at zero regardless of the model parameters. In other words, we will
remove many connections (synapses) from both the recurrent and non-recurrent portions of the
neural network. Parameter estimation must use the sparse remaining connections to explain the
observed data.

Specifically, we partition the neural state si ∈ Rd into a number of node blocks. Different node
blocks are intended to capture different aspects of the world’s state at step i. By zeroing out rect-
angular blocks of the weight matrix, we will restrict how these node blocks interact with the events
and with one another. An example is depicted in Figures 1b (affect, depend) and 1d (update).
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In addition, by reusing nonzero blocks within a weight matrix, we can stipulate (for example) that
event e affects node block b in the same way in which event e′ affects node block b′. Such
parameter tying makes it possible to generalize from frequent events to rare events of the same type.

Although our present experiments are small, we are motivated by the challenges of scale. Real-world
domains may have millions of event types, including many rare types. To model organizational be-
havior, we might consider a dataset of meetings and emails in a large organization. To model supply
chains, we might consider purchases of goods and services around the world. In an unrestricted
model, anything in the past could potentially influence anything in the future, making estimation
extremely difficult. Structural zeroes and parameter tying, if chosen carefully, should help us avoid
overfitting to coincidental patterns in the data.

Analogous architectures have been proposed in the world of graphical models and causal models.
Indeed, to write down such a model is to explicitly allow specific direct interactions and forbid the
rest. For example, the edges of a Gaussian graphical model explicitly indicate which blocks of the
inverse covariance matrix are allowed to be nonzero. Some such models reuse blocks (Hojsgaard &
Lauritzen, 2008). As another example, a factorial HMM (Ghahramani & Jordan, 1997)—an HMM
whose states are m-tuples—can be regarded as a simple example of our architecture. The state si
can be represented using m node blocks, each of which is a 1-hot vector that encodes the value of
a different tuple element. The key aspect of a factorial HMM is that the stochastic transition matrix
(update in Figure 1d) is fully block-diagonal. The affect matrix is 0, since the HMM graphical
model does not feed the output back into the next state; the depend matrix is unrestricted.

But how do we know which interactions to allow and which to forbid? This is a domain-specific
modeling question. In general, we would like to exploit the observation that events are structured
objects with participants (which is why the number of possible event types is often large). For
example, a travel event involves both a person and a place. We might assume that the probability
that Alice travels to Chicago depends only on Alice’s state, the states of Alice’s family members, and
even the state of affairs in Chicago. Given that modeling assumption, parameter estimation cannot
try to derive this probability (presumably incorrectly) from the state of the coal market.

These kinds of systematic dependencies can be elegantly written down using Datalog rules, as we
will show. Datalog rules can refer to database facts, such as the fact that Alice is a person and that
she is related to other people. Given these facts, we use Datalog rules to automatically generate the
set of possible events and node blocks, and the ways in which they influence one another. Datalog
makes it easy to give structured names to the events and node blocks. The rules can inspect these
structures via pattern-matching.

In short, our contribution is to show how to use a Datalog program to systematically derive a
constrained neural architecture from a database. Datalog is a blend of logic and databases, both of
which have previously been used in various formalisms for deriving a graphical model architecture
from a database (Getoor & Taskar, 2007).

2 PRELIMINARIES1

Our methods could be applied to RNN sequence models. In this setting, each possible event type
would derive its unnormalized probability from selected node blocks of state si. Normalizing these
probabilities to sum to 1 would yield the model’s distribution for event ei. Only the normalizing
constant would depend on all node blocks.

In this paper, we focus on the even more natural setting of real-time events. Here no normalizing
constant is needed: the events are not in competition. As we will see in section 5.1, it is now even
possible for different node blocks to generate completely independent sequences of timestamped
events. The observed dataset is formed by taking the union of these sequences.

In the real-time setting, event ei has the form ki@ti where ki ∈ K is the type of the event and ti ∈ R
is its time. The probability of an event of type k at any specific instant t is infinitesimal. We will
model how this infinitesimal probability depends on selected node blocks of si. There is no danger
that two events will ever occur at the same instant, i.e., the probability of this is 0.

1Our conventions of mathematical notation mainly follow those given by Mei & Eisner (2017, section 2).
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Figure 1: Diagram (a) shows how the system state si evolves over time, generating observable events along
the way. The event ei depends stochastically on the system’s current state si. The current state then updates
either deterministically or stochastically to si+1, where ei also affects this new state. Diagram (b) shows
how the state may be factored into 3 node blocks. In this example, the relative probability of green events now
depends on only the rightmost 2/3 of the state, and if a green event occurs, it affects only the leftmost 2/3 of
the state. The update computation involves a matrix multiplication shown in (c); by zeroing out some blocks
of the matrix, as illustrated in (d), we can ensure that the updated center node block is not affected by the
preceding state of the other node blocks at time i, nor vice-versa.

We begin by describing our baseline model for this setting, drawn from Mei & Eisner (2017).

2.1 BASELINE MODEL: THE NEURAL HAWKES PROCESS

In general, a multivariate point process is a distribution over possible sequences of events e1 =
k1@t1, e2 = k2@t2, . . . where 0 < t1 < t2 < . . .. A common paradigm for defining such processes,
starting with Hawkes (1971), is to describe their temporal evolution as in Figure 1a. Each si is
deterministically computed from si−1 (update) and ei−1 (affect), according to some formula, so
by induction, si is a deterministic summary of the first i − 1 events. ei = ki@ti is then emitted
stochastically from some distribution parameterized by si (depend).

The structure of the depend distribution is the interesting part. si is used, for each event type k ∈ K,
to define some time-varying intensity function λk : (ti−1,∞) → R≥0. This intensity function is
treated as the parameter of an inhomogeneous Poisson process, which stochastically generates a
set of future events of type k at various times in (ti−1,∞).2 Thus, all these |K| Poisson processes
together give us many events of the form e = k@t. The first such event—the one with the earliest
time t—is taken to be the next event ei. The remaining events are discarded (or in practice, never
generated).

As our baseline method, we take the neural Hawkes process (Mei & Eisner, 2017) to be our method
for computing si and defining the intensity function λk from it. In that work, si actually describes
a parametric function of the form h : (ti−1,∞)→ Rd, which describes how the hidden state of the
system evolves following event ei−1. That function is used to define the intensity functions via

λk(t) = fk(v>k h(t)) > 0 (1)

2Under an inhomogenous Poisson process, disjoint intervals generate events independently, and the number
of events on the interval (a, b] is Poisson-distributed with mean

∫ b
a
λk(t) dt. Thus, on a sufficiently narrow

interval (t, t+ dt], the probability of a single event is approximately λk(t) dt and the probability of more than
one event is approximately 0, with an error of O(dt2) in both cases.
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so the parameters of depend are the vectors vk and the monotonic functions fk. Once ei = ki@ti
has been sampled, the parameters for si+1 are obtained by

si+1 ← Ψ(Uwki + Vh(ti)) (2)

where Ψ is inspired by the structure of an LSTM, the affect parameters are given by matrix U and
the event embeddings wk, and the depend parameters are given by matrix V.

In this paper, we will show an advantage to introducing structural zeroes into vk, U, and V.

2.2 STRUCTURED EVENTS AND NODE BLOCKS

In real world, atomic events typically involve a predicate and a few arguments (called entities in the
following), in which case it makes sense to decompose an event type into a structured form3 such as
email(alice,bob), travel(bob,chicago), etc. For generality, we also allow entities to have
structured forms when necessary.

Then naturally, in such a world with many entities, we would like to partition the state vector h(t)
into a set of node blocks {hb(t)}b∈B and associate node blocks with entities. For example, we
may associate hmind(alice)(t) to alice and hmind(bob)(t) to bob. Note that mind(alice) is just an
example of the kind of node blocks that can be associated with alice. There can be another node
block associated with the physical condition of alice and be called body(alice). Of course when
there is only one node block associated with alice, we can also simply call it alice.

From now on, we use teal-colored typewriter font for events and orange-colored font for node blocks.

From Figure 1b, we already see that an event may only depend on and affect a subset of hidden
nodes in h(t), and this further prompts us to figure out a way to describe our inductive biases on
which node blocks are to determine the intensity of a given event as well as which node blocks are
to be updated by one.

3 THE DATALOG INTERFACE

We propose a general interface based on Datalog—a declarative logic programming language—to
assert our inductive biases into a deductive database as facts and rules. Then as each event happens,
we can query the database to figure out which node blocks determine its intensity and which node
blocks will be updated by it.

In this section, we walk through our Datalog interface by introducing its keywords one step a time.
We write keywords in boldfaced typewriter font, and color-code them for both presentation and
reading convenience. The colors we use are consistent with the examples in Figure 1.

3.1 THE is block AND is event KEYWORDS

We first need to specify what is a legal node block in our system by using the keyword is block:

is block(b). (3)

where b can be replaced with a node block name like alice, bob, chicago and etc. Such a Datalog
statement is a database fact.

Then we use the keyword is event to specify what is a legal event type in our system:

is event(k). (4)

where k can be replaced with email(alice,bob), email(bob,alice), travel(bob,chicago)
and etc. As we may have noticed, there may be many variants of email(S,R) where the variables
S and R can take values as alice, bob and etc. To avoid writing a separate fact for each pair of S
and R, we may summarize facts of the same pattern as a rule:

is event(email(S,R))︸ ︷︷ ︸
head of rule

:- is block(S), is block(R).︸ ︷︷ ︸
body of rule

(5a)

3Similar structured representation of events has been common in natural language semantics (Davidson,
1967) and philosophy (Kim, 1993).
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where :- is used to separate the head and body. Capitalized identifiers such as S and R denote
variables. A rule mean: for any value of the variables, the head is known to be true if the body is
known to be true. A fact such as is event(email(alice,bob)) is simply a rule with no body (so
the :- is omitted), meaning that the body is vacuously true.

To figure out what event types are legal in our system, we can query the database by:
is event(K)? (6)

which returns every event type k that instantiates is event(k). Note that, unlike a fact or rule that
ends with a period (.), a query ends with a question mark (?).

3.2 THE depend KEYWORD

We can declare database rules and facts about which events depend on which node blocks using the
depend keyword as:

depend(k,b):- condition1,...,conditionN. (7)
where k and b are replaced with Datalog variables or values for event and node block respectively,
and condition1,...,conditionN stands for the body of rule. An example is as follows:

depend(travel(bob,chicago), X):- resort(X),at(X,chicago). (8a)
depend(travel(bob,chicago), X):- friend(bob,X),at(X,chicago). (8b)

By querying the database for a given k using
depend(k,B)? (9)

we get Bd
k that is the set of all the node blocks b that instantiates depend(k,b) and has superscript

d for depend. Then we have:
λk(t) = fk(v>k σ(⊕rArσ(⊕′b:r`depend(k, b)BrCDk,Db

hb(t)))) (10)

where σ(·) is the sigmoid function, r ranges over all the rules and r ` depend(k, b) means “the
rule r proves the fact depend(k, b)”. The matrices Ar ∈ RDk×Dk

≥0 and Br ∈ RDk×De learn how k

depends on each b. The “conversion” matrix CDk,Db
∈ RDk×Db projects hb(t) ∈ RDb into RDk for

dimension compatibility with Br. Note that the number of CD,D′ only increases with the number
of possibilities of Dk ×Db but not the number of b values: the former is usually much smaller than
the latter.

The aggregator ⊕ represents pooling operation on a set of non-negative vectors. We choose ⊕ =
∑

and ⊕′ = max because it is appropriate to sum the dependencies over all the rules but extract the
“max-dependency” among all the node blocks for each rule. As shown in equation (8), the intensity
of travel(bob,chicago) is determined by both resorts and his friends at chicago so these two
possible motivations should be summed up. But bob may only stay at one of his friends’ home and
can only afford going to a few places, so only the “best friend” and “signature resort” matter and
that is why we use max-pooling for ⊕′.
As a matter of implementation, we modify each depend rule to have the rule index r as a third
argument:

depend(k,b,r):- condition1,...,conditionN. (11)
This makes it possible to apply semantics-preserving transformations to the resulting Datalog pro-
gram without inadvertently changing the neural architecture. Moreover, if the Datalog programmer
specifies the third argument r explicitly, then we do not modify that rule. As a result, it is possible
for multiple rules to share the same r, meaning that they share parameters.

3.3 THE affect KEYWORD

We can declare database rules and facts about which events affect which node blocks using the
affect keyword as:

affect(k,b):- condition1,...,conditionN. (12)
such that we know which node blocks to update as each event happens. For example, we can allow
travel(bob,chicago) to update hX(t) for any X who is a friend of bob and at chicago:

affect(travel(bob,chicago), X)):- friend(bob,X), at(X,chicago).
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By querying the database for a given k using

affect(k,B)?

we get Ba
k that is the set of all the node blocks b that instantiates affect(k,b) where the superscript

a stands for affect. Then each node block hb(t) updates itself as shown in equation (2)—but it
raises an important question: what are the U and V to use?

Similar to how Ar and Br in equation (10) are declared, a Ur is implicitly declared by each affect
rule such that we have:

ψ0,b,k(t) = ⊕r:r`affect(k, b)Urwk (13)

where ⊕ =
∑

. This term is analogous to the Uwk term in section 2.1

Note that we can also modify each affect rule (as we do for depend in section 3.2) to have the rule
index r as a third argument. By explicitly specifying r, the Datalog programmer can allow multiple
affect rules to share Ur.

3.4 THE update KEYWORD

We can specify how node blocks update one another by using the update keyword:

update(b′,b,k):- condition1,...,conditionN. (14)

meaning the node block b′ updates the node block b when k happens. Note that b′ can equal b. It is
often useful to write this rule:

update(B,B,K):- affect(K,B). (15)

which means that whenever K causes B to update, B gets to see its own previous state (as well as K).

To update the node block b with event k, we need

ψ1,b,k(t) = ⊕r ⊕′b′:r`update(b′, b, k) VrCDb,Db′hb′(t) (16)

where r ranges over all rules and⊕ = ⊕′ =
∑

. The matrices Vr ∈ RDb×Db′ learns how b′ updates
b and CDb,Db′ ∈ RDb×Db′ helps to make dimensions compatible. This term is analogous to the
Vh(t) term in section 2.1.

Having equations (13) and (16), we pass ψ0,b,k + ψ1,b,k through the activation functions and obtain
the updated hb,new.

Similar to depend and affect, we can also explicitly specify an extra argument r in each update
rule to allow multiple rules to share Vr. Parameter sharing (in depend, affect and update) is
important because it works as a form of regularization: shared parameters tend to get updated more
often than the individual ones, thus leaving the latter less likely to overfit the training data when we
“early-stop” the training procedure.

3.5 REVISITING is event KEYWORD

When each event type k is declared using is event(k), the system automatically creates event
embedding vectors vk and wk and they will be used in equations (10) and (13) respectively. When
some event types involve many entities which results in a very large number of event types, this
design might end up with too many parameters, thus being hard to generalize to unseen data.

We can allow event types to share embedding vectors by adding an extra argument to the keyword
is event:

is event(k,m):- condition1,...,conditionN. (17)

where m is an index to a pair of embedding vectors vm and wm. There can be more than one
pair that is used by an event type k as shown in this example: is event(email(S,R), S),
is event(email(S,R), R), is event(email(S,R), email) and etc. Then we compute the
final embedding vectors of email(S,R) as:

vemail(S,R) = vS + vR + vemail (18a)
wemail(S,R) = wS + wR + wemail (18b)
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Similar argument in section 3.4 applies here that sharing embedding vectors across event types is a
form of regularization.

In a simplified version of our approach, we could use a homogeneous neural architecture where all
events have the same dimension, etc. In our actual implementation, we allow further flexibility by
using Datalog rules to define dimensionalities, activation functions, and multi-layer structures for
event embeddings. This software design is easy to work with, but is orthogonal to the machine
learning contribution of the paper, so we describe it in Appendix A.4.

4 ALGORITHMS

Learning Following Mei & Eisner (2017), we can learn the parameters of the proposed model by
locally maximizing ` in equation (19) using any stochastic gradient method: Its log-likelihood given
the sequence over the observation interval [0, T ] is as follows:

` =
∑

i:ti≤T
log λki(ti)−

∫ T

t=0

∑
k∈K

λk(t)dt (19)

The only difference is that our Datalog program affects the neural architecture, primarily by dictating
that some weights in the model are structurally zero.

Concretely, to compute ` and its gradient, as each event ei = ki@ti happens, we need to query
the database with depend(k,B)? for the node blocks that each k depends on in order to compute
log λki(ti) and the Monte Carlo approximation to

∫ ti
t=ti−1

∑
k∈K λk(t)dt. Then we need to query

the database with affect(k,B)? for the node blocks to be affected and update them. A detailed
recipe is Algorithm 1 of Appendix B.1 including a down-sampling trick to handle large K.

Prediction Given an event sequence prefix k1@t1, k2@t2, . . . , ki−1@ti−1, we may wish to predict
the time and type of the next event. The time ti has density pi(t) = λ(t) exp

(
−
∫ t
ti−1

λ(s)ds
)

where λ(t) =
∑
k∈K λk(t), and we choose

∫∞
ti−1

tpi(t)dt as the time prediction because it
has the lowest expected L2 loss. Given the next event time ti, the most likely type would
simply be arg maxk λk(ti), but the most likely next event type without knowledge of ti is
arg maxk

∫∞
ti−1

λk(t)
λ(t) pi(t)dt. The integrals in the preceding equations can be estimated using i.i.d.

samples of ti drawn from pi(t).

We draw ti using the thinning algorithm (Lewis & Shedler, 1979; Liniger, 2009; Mei & Eisner,
2017). Given ti, we draw ki from the distribution where the probability of each type k is proportional
to λk(ti). A full sequence can be rolled out by repeatedly feeding the sampled event back into the
model and then drawing the next. See Appendix B.2 for implementation details.

5 EXPERIMENTS

We show how to use our Datalog interface to inject inductive biases into the neural Hawkes process
(NHP) on multiple synthetic and real-world datasets. On each dataset, we compare the model with
modified architecture—we call it structured neural Hawkes process (or structured-NHP) with the
plain vanilla NHP on multiple evaluation metrics. See Appendix C for experimental details (e.g.,
dataset statistics and training details). We implemented the model in PyTorch (Paszke et al., 2017).4

5.1 SYNTHETIC DATA—SUPERPOSITION OF EVENT SEQUENCES

As Mei & Eisner (2017) pointed out, it is important for a model family to handle the superposition
of real-time sequences, because in various real settings, some event types tend not to interact. For
example, the activities of two strangers rarely influence each other, although they are simultaneously
monitored and thus form a single observed sequence.

4Code will be released upon paper acceptance.
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Figure 2: Learning curves of structured NHP and NHP on sequences drawn from the superposition ofM neural
Hawkes processes. The red line indicates the oracle performance.

In this section, we experiment on the data known to be drawn from a superposition of M neu-
ral Hawkes processes with randomly initialized parameters. Each process X has four event types
event(K,X) where K can be 1, 2, 3 and 4.

To leverage the knowledge about the superposition structure, one has to either implement a mixture
of neural Hawkes processes or transform a single neural Hawkes process to a superposition model
by (a) zeroing out specific elements of vk such that λk(t) for k ∈ KX depends on only a subset S
of the LSTM hidden nodes, (b) setting specific LSTM parameters such that events of type k′ ∈ KY
don’t affect the nodes in S and (c) making the LSTM transition matrix a blocked-structured matrix
such that different node blocks don’t update each other. Neither way is trivial.

With our Datalog interface, we can explicitly construct such a superposition process rather easily by
writing simple datalog rules as follows:

depend(event(K,X), X, X):- is block(X). (20a)
affect(event(K,X), X):- is block(X). (20b)
update(X, unit(X)):- is block(X). (20c)

Events of X do not influence Y at all, and processes don’t share parameters.

We generated learning curves (Figure 2) by training a structured-NHP and a NHP on increasingly
long prefixes of the training set. As we can see, the structured model substantially outperform
NHP at all training sizes. The neural Hawkes process gradually improves its performance as more
training sequences become available: it perhaps learns to set its wk and LSTM parameters from data.
However, thanks to the right inductive bias, the structured model requires much less data to achieve
somewhat close to the oracle performance. Actually, as shown in Figure 2, the structured model
only needs 1/16 of training data as NHP does to achieve a higher likelihood. The improvement
of the structured model over NHP is statistically significant with p-value < 0.01 as shown by the
pair-permutation test at all training sizes of all the datasets.

5.2 REAL-WORLD DATASETS

Elevator System Dataset (Crites & Barto, 1996). In this dataset, two elevator cars transport pas-
sengers across five floors in a building (Lewis, 1991; Bao et al., 1994; Crites & Barto, 1996). Each
event type has the form stop(C,F) meaning that C stops at F to pick up or drop off passengers
where C can be car1 and car2 and F can be floor1, . . . , floor5. This dataset is representative
of many real-world domains where individuals physically move from one place to another for, e.g.,
traveling, job changing, etc.

With our Datalog interface, we can explicitly express our inductive bias that each stop(C,F) de-
pends on and affects the associated node blocks C and F:

depend(stop(C,F), C). depend(stop(C,F), F). (21a)
affect(stop(C,F), C). affect(stop(C,F), F). (21b)

The set of inductive biases is desirable because whether a C will head to a F and stops there is
primarily determined by C’s state (e.g., whether it is already on the way of sending anyone to that
floor) and F’s state (e.g., whether there is anyone on that floor waiting for a car).
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(a) Learning curves of structured NHP and NHP on the three datasets. On both datasets, the structured model
substantially outerperfoms NHP, especially in the data sparse scenarios.
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(b) Scatterplots of structured NHP vs. NHP, comparing the held-out log-likelihood of the two models (at the
right end of learning curves) with respect to each test sequence. On both datasets, nearly all points lie on the
top of y = x, since the structured model is consistently more predictive than NHP.
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(c) Prediction results of structured NHP vs. NHP (at the right end of learning curves). Error bars show 95%
bootstrap percentile confidence intervals. The MSE% denotes the mean squared error normalized by the vari-
ance of the true time interval, and error rate % denotes the fraction of the times our type prediction is incorrect.

Figure 3: Results on real-world datasets.

We also declare a global node block, building, that depends on and affects every event in order to
compensate for any missing knowledge (e.g., the state of the joint controller for the elevator bank,
and whether it’s a busy period for the humans) and/or missing data (e.g., passengers arrive at certain
floors and press the buttons).5

Appendix C.2 gives a full Datalog specification of the model that we used for the experiments in
this domain. More details about this dataset (e.g. pre-processing) can be found in Appendix C.1.2.

EuroEmail Dataset (Paranjape et al., 2017). In this domain, we model the email communications
between anonymous members of an European research institute. Each event type has the form
email(S,R) meaning that S sends an email to R where S and R are variables that take the actual
members as values.

With our Datalog interface, we can express our knowledge that each event depends on and affects
its sender and receiver as the following rules:

depend(send(S,R), S). depend(send(S,R), R). (22a)

5These missing events are actually available in our domain, but we chose not to model them, to make the
problem harder.
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affect(send(S,R), S). affect(send(S,R), R). (22b)

Appendix C.2 gives a full Datalog specification of the model that we used for the experiments in
this domain. More details about this dataset (e.g. pre-processing) can be found in Appendix C.1.3.

5.3 RESULTS

We evaluate the models in three ways as shown in Figure 3. We first plot learning curves (Figure 3a)
by training a structured-NHP and an NHP on increasingly long prefixes of each training set. Then
we show the per-sequence scatterplots in Figure 3b. We can see that either in learning curve or
scatterplots, structured-NHP consistently outperforms NHP, which proves that structured-NHP is
both more data-efficient and more predictive. Finally, we compare the models on the prediction
tasks and datasets as shown in Figure 3c. We make minimum Bayes risk predictions as explained
in section 4. We evaluate the type prediction with 0-1 loss, yielding an error rate. We can see, in
both of Elevator and EuroEmail datasets, structured-NHP could be significantly more accurate on
type prediction. We evaluate the time prediction with L2 loss, and reported the mean squared error
as a percentage of the variance of the true time interval (denoted as MSE%). Note that we get can
MSE%=1.0 if we always predict ti as ti−1 + ∆t where ∆t is the average length of time intervals.

Figure 3c shows that the structured model outperforms NHP on event type prediction on both
datasets, although for time prediction they perform neck to neck. We speculate that it might be
because the structure information is more directly related to the event type (because of its structured
term) but not time.

6 DISCUSSION

There has been extensive research about having inductive biases in the architecture design of a
machine learning model. The epitome of this direction is perhaps the graphical models where edges
between variables are usually explicitly allowed or forbidden (Koller & Friedman, 2009). There has
also been work in learning such biases from data. For example, Stepleton et al. (2009) proposed to
encourage the block-structured states for Hidden Markov Models (HMM) by enforcing a sparsity-
inducing prior over the non-parametric Bayesian model. Duvenaud et al. (2013) and Bratières et al.
(2014) attempted to learn structured kernels for Gaussian processes.

Our work is in the direction of injecting inductive biases into a neural temporal model—a class of
models that is useful in various domains such as demand forecasting (Seeger et al., 2016), personal-
ization and recommendation (Jing & Smola, 2017), event prediction (Du et al., 2016) and knowledge
graph modeling (Trivedi et al., 2017). Incorporating structural knowledge in the architecture design
of such a model has drawn increasing attention over the past few years. Shelton & Ciardo (2014)
introduced a factored state space in continuous-time Markov processes. Meek (2014) and Bhat-
tacharjya et al. (2018) proposed to consider direct dependencies among events in graphical event
models. Wang et al. (2019) developed a hybrid model that decomposes exchangeable sequences
into a global part that is associated with common patterns and a local part that reflects individual
characteristics.

However, their approaches are all bounded to the kinds of inductive biases that are easy to specify
(e.g. by hand). Our work enables people to use a Datalog program to conveniently specify the neural
architecture based on a deductive database—a much richer class of knowledge than the previous
work could handle. Although logic programming languages and databases have both previously
been used to derive a graphical model architecture (Getoor & Taskar, 2007), we are, to the best of
our knowledge, the first to develop such a general interface for a neural event model.

As future work, we hope to develop an extension where events can also trigger assertions and re-
tractions of facts in the Datalog database. Thanks to the Datalog rules, the model architecture will
dynamically change along with the facts. For example, if Yoyodyne Corp. hires Alice, then the Yoy-
odyne node block begins to influence Alice’s actions, and K expands to include a new (previously
impossible) event where Yoyodyne fires Alice. Moreover, propositions in the database—including
those derived via other Datalog rules—can now serve as extra bits of system state that help define the
λk intensity functions in (1). Then the system’s learned neural state si is usefully augmented by a
large, exact set of boolean propositions—a division of labor between learning and expert knowledge.
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Appendices
A FRAMEWORK DETAILS

A.1 LSTM DETAILS

In this section, we elaborate on the details of the transition function Ψ that is introduced in sec-
tion 2.1; more details about them may be found in Mei & Eisner (2017).

h(t) = oi � (2σ(2c(t))− 1) for t ∈ (ti−1, ti] (23)
where the interval (ti−1, ti] has consecutive observations ki−1@ti−1 and ki@ti as endpoints. At ti,
the continuous-time LSTM reads ki@ti and updates the current (decayed) hidden cells c(t) to new
initial values ci+1, based on the current (decayed) hidden state h(ti), as follows:

ii+1 ← σ (Uiwki + Vih(ti) + di) (24a)
f i+1 ← σ (Ufwki + Vfh(ti) + df) (24b)
zi+1 ← 2σ (Uzwki + Vzh(ti) + dz)− 1 (24c)
oi+1 ← σ (Uowki + Voh(ti) + do) (24d)

ci+1 ← f i+1 � c(ti) + ii+1 � zi+1 (25a)
ci+1 ← f i+1 � ci + ii+1 � zi+1 (25b)
δi+1 ← f (Udwki + Vdh(ti) + dd) (25c)

At time ti, the updated state vector is hnew(ti) = oi+1 � (2σ(2ci+1) − 1). Then, c(t) for t ∈
(ti, ti+1] is given by (26), which continues to control h(t) except that i has now increased by 1).

c(t)
def
= ci+1 +

(
ci+1 − ci+1

)
exp (−δi+1 (t− ti)) (26)

On the interval (ti, ti+1], c(t) follows an exponential curve that begins at ci+1 (in the sense that
limt→t+i

c(t) = ci+1) and decays, as time t increases, toward ci+1 (which it would approach as
t→∞, if extrapolated).

A.2 BOUNDARY CONDITIONS

We initialize each node block hb(0) = 0, and then have it read a special beginning-of-stream (BOS)
event bos@t0 where bos is a special event type and t0 is set to be 0. Then equations (24)–(25) define
c1 (from c0

def
= 0), c1, δ1, and o1. This is the initial configuration of the system as it waits for the

first event to happen: this initial configuration determines the hidden state h(t) and the intensity
functions λk(t) over t ∈ (0, t1].

The bos event affects every node block but depends on none of them because we do not generate it.
When the system is initiated, the following rule is automatically asserted by our program so users
don’t have to do it by themselves.

affect(bos,X):- is block(X). (27)

More details about why bos is desirable can be found in Mei & Eisner (2017).

A.3 CONSTRUCTING THE NEURAL HAWKES PROCESS WITH OUR INTERFACE

The vanilla neural Hawkes process can be specified using our interface as follows:
depend(K,global). (28a)
affect(K,global). (28b)
update(global,global,K). (28c)

where hglobal(t) is the only node block that every event type k depends on and affects. Equa-
tion (10) falls back to fk(v>k σ(Aσ(BChglobal(t)))) which is not exactly the same with, yet at least
as expressive as equation (1).

13
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A.4 OPTIONAL architecture, input AND output KEYWORDS

As discussed in section 3.5, the embedding vector of each event is just the sum of trainable vectors.
Actually, we further allow users to write Datalog rules to define embedding models that have multi-
layer structures and activation functions of interest.

We can define a L-layer neural network using the architecture keyword as:
architecture(n)= transform(...(transform(D0,D1,a1), ...),DL,aL). (29)

where n is a (structured) term as the model name, D0 is the input dimension, Dl and al are the
output dimension and activation type of l-th layer respectively. The example below defines a model
named emb that has a neural layer with hyper-tangent activation followed by a linear layer.

architecture(emb)= transform(transform(8,8,tanh),8,none) (30)

Note that we allow using = for architecture to indicate that there should be only one model under
each name n, although it is not supported in the standard datalog implementation.

We can assign to each k a model n and spell out its arguments x1, x2, . . . (to be concatenated in
order) for input embedding computation using the input keyword:

input(k)= n(x1, x2, . . .). (31)
and follow the same format for output embedding computation using the output keyword. Note
that we use = again. The example below means that each wemail(S,R) is computed by passing the
concatenation of S and R into model emb and that vemail(S,R) is computed the same way:

input(email(S,R))= emb(S,R). (32a)
output(email(S,R))= emb(S,R). (32b)

B ALGORITHM DETAILS

In this section, we elaborate on the details of algorithms.

B.1 LIKELIHOOD COMPUTATION

The log-likelihood in equation (19) can be computed by calling Algorithm 1.

The down sampling trick (line 32 of Algorithm 1) can be used when there are too many event types.
It gives an unbiased estimate of the total intensity

∑
k∈K λk(t), yet remains much less computation-

ally expensive especially when J � |K|. In our experiments, we found that its variance over the
entire corpus turned out small, although it may, in theory, suffer large variance. As future work, we
will explore sampling from proposal distributions where the probability of choosing any k is (per-
haps trained to be) proportional to its actual intensity λk(t), in order to further reduce the variance.
But this is not within the scope of this paper.

Note that, in principle, we have to make Datalog queries after every event, to figure out which node
blocks are affected by that event and to find the new intensities of all events. However, certain
Datalog queries may be slow. Thus, in practice, rather than repeatedly making the same queries, we
just memorize the result the first time and look it up when it is needed again.

Problems emerge when events are allowed to change the database (e.g. asserting and retracting facts
as in Appendix D), then this may change the results of some queries, and thus the memos for those
queries are now incorrect. In this case, we might explore using some other more flexible query
language that creates memos and keeps them up to date (Filardo & Eisner, 2012).

B.2 THINNING ALGORITHM FOR SAMPLING SEQUENCES

Given an event sequence prefix k1@t1, k2@t2, . . . , ki−1@ti−1, we can call Algorithm 2 to draw the
single next event. A full sequence can be rolled out by repeatedly feeding the sampled event back
into the model and then drawing the next (calling Algorithm 2 another time).

How do we construct the upper bound λ∗ (line 8 of Algorithm 2)? We express the upper bound as
λ∗ =

∑
k∈K λ

∗
k and find λ∗k ≥ λk(t) for each k. We copy the formulation of λk(t) here for easy

reference:
λk(t) = fk(v>k σ(⊕rArσ(⊕′b∈Bd

k
BrCDk,Db

hb(t))))
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Algorithm 1 Log-likelihood Computation

Input: observed sequence x = k1@t1, . . . , kI@tI over interval [0, T ];
datalog interface d and model p;
constant C, boolean flag downsample , down-sampling size J

Output: log-likelihood `
1: procedure COMPUTELOGLIKELIHOOD(x, d, p, C, downsample, J)
2: ` = 0, UPDATE(bos, 0, p, d)
3: for i = 1 to I : . loop over the sequence x
4: λki(ti)← COMPUTEINTENSITY(ki, ti, p, d) . compute intensity
5: ` += log λki(ti) . sum up log intensity
6: Λ← COMPUTEINTEGRAL(ti−1, ti,max{1, b ti−ti−1

T CIc}, downsample, J)
7: ` −= Λ
8: UPDATE(ki, ti, p, d) . update node blocks
9: Λ← COMPUTEINTEGRAL(tI , T,max{1, bT−tIT CIc}, downsample, J)

10: ` −= Λ
11: return `
12: procedure COMPUTEINTENSITY(k, t, p, d) . compute λk(t)
13: Bd

k ← depend(k,B)? . find node blocks that k depends on
14: λk(t)← fk(v>k σ(⊕rArσ(⊕′b∈Bd

k
BrCDk,Db

hb(t))))

15: return λk(t)

16: procedure UPDATE(k, t, p, d) . update node blocks that k affects
17: Ba

k ← affect(k,B)? . find node blocks that k affects
18: for b in Ba

k :
19: query update(B’,b,k)? . find all node blocks that b need to update its state
20: use equations (13) and (16) to update hb(t)

21: procedure COMPUTEINTEGRAL(tstart, tend, N, downsample, J)
22: . compute integral over interval (tstart, tend]
23: Λ← 0, β ← 1 . init total intensity Λ
24: if downsample : β ← |K|/J , K ← DOWNSAMPLE(K, J) . down sample event types
25: for n = 1 to N :
26: draw t ∼ Unif(tstart, tend)
27: for k in K :
28: λk(t)← COMPUTEINTENSITY(k, t, p, d)
29: Λ += λk(t)

30: Λ← (tend − tstart)βΛ/N
31: return Λ
32: procedure DOWNSAMPLE(K, J) . down sample the event types
33: K′ ← empty set
34: for j = 1 to J :
35: uniformly draw k′ ∈ K, add k′ to K′
36: return K′
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Algorithm 2 Thinning Algorithm for Drawing Next Event

Input: model p that has read sequence x = k1@t1, . . . , ki−1@ti−1, datalog interface d
Output: next event time ti, next event type ki

1: procedure DRAWNEXTEVENT(p, d)
2: ti, {λk(ti)}k∈K ← DRAWNEXTEVENTTIME(p, d)
3: draw ki ∈ K where probability of choosing any k is proportional to λk(ti)
4: return ti, ki
5: procedure DRAWNEXTEVENTTIME(p, d)
6: . the thinning algorithm that draws next event time by rejection sampling
7: t← ti−1
8: find upper bound λ∗ ≥∑k∈K λk(t) for all t ∈ (ti−1,∞)
9: repeat . thinning algorithm

10: draw ∆ ∼ Exp(λ∗), u ∼ Unif(0, 1)
11: t += ∆ . time of next proposed event (before thinning)
12: compute λk(t) for all k ∈ K . call the procedure line 12 of Algorithm 1
13: until uλ∗ ≤∑k∈K λk(t) . thinning: accept proposed time t only with prob

∑
k∈K λk(t)

λ∗ ≤ 1

14: return t, {λk(t)}k∈K

DATASET |K| # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

SYNTHETIC M = 4 16 42000 2100 2100 21 21 21
SYNTHETIC M = 8 32 42000 2100 2100 21 21 21
SYNTHETIC M = 16 64 42000 2100 2100 21 21 21
ELEVATOR 10 313043 31304 31206 235 313 370
EUROEMAIL 400 4915 483 483 23 48 74

Table 1: Statistics of each dataset.

Note that fk and σ are positive and monotonic functions and that Ar are non-negative matrices.
Then we can construct λ∗k as:

λ∗k = fk(v̄>k σ(⊕rArσ(⊕′b∈Bd
k
h̄b)))

where v̄k = vk+|vk|
2 (i.e. only keep positive elements of vk) and h̄b � BrCDk,Db

hb(t) for
t ∈ (ti−1,∞).

We can construct h̄b by adapting the recipe in Appendix B.3 of Mei & Eisner (2017). For notation
simplicity, we denote BrCDk,Db

as G and use gd as its d-th row vector. Then the d-th element of h̄b
can be expressed as

∑Db

d′=1 gdd′hbd′(t) where each summand gdd′hbd′(t) = gdd′ ·oid′ ·(2σ(2cd′(t))−
1) is upper-bounded by maxc∈{cid′ ,cid′} gdd′ ·oid′ · (2σ(2c)−1). Note that the coefficients gdd′ may
be either positive or negative.

C EXPERIMENTAL DETAILS

C.1 DATASET STATISTICS

Table 1 shows statistics about each dataset that we use in this paper.

C.1.1 SYNTHETIC DATASET DETAILS

We synthesize data by sampling event sequences from different structured processes. Each
structured process is a mixture model of M neural Hawkes processes and each neural Hawkes
process(X) has four event types event1(X), event2(X), event3(X) and event4(X). We chose
M = 4, 8, 16 and end up with three different datasets.

We chose the sequence length I = 21 and then used the thinning algorithm (Lewis & Shedler, 1979;
Liniger, 2009; Mei & Eisner, 2017) to sample the first I events over [0,∞). We set T = tI , i.e., the
time of the last generated event. We generate 2000, 100 and 100 sequences for each training, dev,
and test set respectively.
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C.1.2 ELEVATOR DATASET DETAILS

We examined our method in a simulated 5-floor building with 2 elevator cars. The system was
initially built in Fortran by Crites & Barto (1996) and then rebuilt in Python by Mei et al. (2019).

During a typical afternoon down-peak rush hour (when passengers go from floor-2,3,4,5 down to
the lobby), elevator cars travel to each floor and pick up passengers that have (stochastically) arrived
there according to a traffic profile that can be found in (Bao et al., 1994) and Mei et al. (2019).

In this dataset, each event type is stop(C,F) where C can be car1 and car2 and F can be floor1,
. . . , floor5. So there are 10 event types in total in this simulated building.

We repeated the (one-hour) simulation 1200 times to collect the event sequences, each of which has
around 1200 time-stamped records of which car stops at which floor. We randomly sampled disjoint
train, dev and test sets with 1000, 100 and 100 sequences respectively.

C.1.3 EUROEMAIL DATASET DETAILS

EuroEmail is proposed by Paranjape et al. (2017). It was generated using email data from a large
European research institute, and was highly anonymized. The emails only represent communications
between institution members, which are indexed by integers, with timestamps. In the dataset are 986
users and 332334 email communications spanning over 800 days. However, most users only send or
receive one or two emails, leaving this dataset extremely sparse. We extracted all the emails among
the top 20 most active users, and end up with 5881 emails. We split the single long sequence into 120
sequences with average length of 48, and set the training, dev, test size as 100, 10, 10 respectively.

In this dataset, event type is defined as send(S,R), where S and R are members in this organization.
Then there’re 20 × 20 = 400 different event types, where we assume that people may send emails
to themselves.

C.2 DATALOG PROGRAM DETAILS

In this section, we give a full Datalog specification of the model that we used for the experiments on
each dataset.

Here is the full program for Elevator domain.

is block(car1). (33a)
is block(car2). (33b)
is block(floor1). (33c)
is block(floor2). (33d)
is block(floor3). (33e)
is block(floor4). (33f)
is block(floor5). (33g)
is block(building). (33h)
is car(car1). (33i)
is car(car2). (33j)
is floor(floor1). (33k)
is floor(floor2). (33l)
is floor(floor3). (33m)
is floor(floor4). (33n)
is floor(floor5). (33o)
is event(stop(C,F)):- is car(C),is floor(F). (33p)
depend(stop(C,F), C). (33q)
depend(stop(C,F), F). (33r)
depend(stop(C,F), building). (33s)
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affect(stop(C,F), C). (33t)
affect(stop(C,F), F). (33u)
affect(stop(C,F), building). (33v)
update(C,C,stop(C,F)). (33w)
update(F,F,stop(C,F)). (33x)

Here is the full program for EuroEmail domain.

is block(user1). (34a)
. . . (34b)
is block(user20). (34c)
is block(global). (34d)
is user(user1). (34e)
. . . (34f)
is user(user20). (34g)
is event(email(S,R)):- is user(S),is user(R). (34h)
depend(send(S,R), S). (34i)
depend(send(S,R), R). (34j)
depend(send(S,R), global). (34k)
affect(send(S,R), S). (34l)
affect(send(S,R), R). (34m)
affect(send(S,R), global). (34n)
update(S,S,email(S,R)). (34o)
update(R,R,email(S,R)). (34p)

C.3 TRAINING DETAILS

On each dataset, given the architecture specified by the Datalog program (Appendix C.2), the hyper-
parameter left to tune is the number D of hidden nodes of each node block. For each model and
each training size (i.e., each point in Figures 2a–2c and 3), we searched for D that achieves the best
performance on the dev set. Our search space is {4, 8, 16, 32, 64, 128}.
For learning, we used the Adam algorithm with its default settings (Kingma & Ba, 2015) and set
minibatch size as 1. We performed early stopping based on log-likelihood on the held-out dev set.

D ONGOING AND FUTURE WORK

We are currently exploring several extensions to deal with more complex situations.

Interacting with the database. Events may interact with the database by imperatively retracting
and asserting certain facts. For example, when travel(bob,newyork,chicago) hap-
pens, the fact in(bob,newyork) should be retracted from the database but a new fact
in(bob,chicago) should be inserted to it. Such retraction and assertion may be specified
by using the retract and assert keywords.

Hard constraints. Certain datalog facts may enforce hard constraints on intensities of certain event
types. For example, in(bob,chicago) makes travel(bob,From,chicago) for any
From to have structural 0 intensities.
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