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Abstract

Temporal-difference learning (TD), coupled with neural networks, is among the
most fundamental building blocks of deep reinforcement learning. However, due
to the nonlinearity in value function approximation, such a coupling leads to non-
convexity and even divergence in optimization. As a result, the global convergence
of neural TD remains unclear. In this paper, we prove for the first time that neural
TD converges at a sublinear rate to the global optimum of the mean-squared pro-
jected Bellman error for policy evaluation. In particular, we show how such global
convergence is enabled by the overparametrization of neural networks, which also
plays a vital role in the empirical success of neural TD. Beyond policy evaluation,
we establish the global convergence of neural (soft) Q-learning, which is further
connected to that of policy gradient algorithms.

1 Introduction

Given a policy, temporal-different learning (TD) [49] aims to learn the corresponding (action-
)value function by following the semigradients of the mean-squared Bellman error in an online
manner. As the most-used policy evaluation algorithm, TD serves as the “critic” component of many
reinforcement learning algorithms, such as the actor-critic algorithm [31] and trust-region policy
optimization [47]. In particular, in deep reinforcement learning, TD is often applied to learn value
functions parametrized by neural networks [36, 39, 24], which gives rise to neural TD. As policy
improvement relies crucially on policy evaluation, the optimization efficiency and statistical accuracy
of neural TD are critical to the performance of deep reinforcement learning. Towards theoretically
understanding deep reinforcement learning, the goal of this paper is to characterize the convergence
of neural TD.

Despite the broad applications of neural TD, its convergence remains rarely understood. Even
with linear value function approximation, the nonasymptotic convergence of TD remains open until
recently [6, 33, 14, 48, 45], although its asymptotic convergence is well understood [28, 55, 9, 32,
8]. Meanwhile, with nonlinear value function approximation, TD is known to diverge in general
[4, 11, 55]. To remedy this issue, [7] propose nonlinear (gradient) TD, which uses the tangent
vectors of nonlinear value functions in place of the feature vectors in linear TD. Unlike linear TD,
which converges to the global optimum of the mean-squared projected Bellman error (MSPBE),
nonlinear TD is only guaranteed to converge to a local optimum asymptotically. As a result, the
statistical accuracy of the value function learned by nonlinear TD remains unclear. In contrast to such
conservative theory, neural TD, which straightforwardly combines TD with neural networks without
the explicit local linearization in nonlinear TD, often learns a desired value function that generalizes
well to unseen states in practice [18, 2, 26]. Hence, a gap separates theory from practice.
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There exist three obstacles towards closing such a theory-practice gap: (i) MSPBE has an expectation
over the transition dynamics within the squared loss, which forbids the construction of unbiased
stochastic gradients [50]. As a result, even with linear value function approximation, TD largely
eludes the classical optimization framework, as it follows biased stochastic semigradients. (ii) When
the value function is parametrized by a neural network, MSPBE is nonconvex in the weights of the
neural network, which may introduce undesired stationary points such as local optima and saddle
points [30]. As a result, even an ideal algorithm that follows the population gradients of MSPBE may
get trapped. (iii) Due to the interplay between the bias in stochastic semigradients and the nonlinearity
in value function approximation, neural TD may even diverge [4, 11, 55], instead of converging to
an undesired stationary point, as it lacks the explicit local linearization in nonlinear TD [7]. Such
divergence is also not captured by the classical optimization framework.

Contribution. Towards bridging theory and practice, we establish the first nonasymptotic global rate
of convergence of neural TD. In detail, we prove that randomly initialized neural TD converges to the
global optimum of MSPBE at the rate of 1/T with population semigradients and at the rate of 1/

p
T

with stochastic semigradients. Here T is the number of iterations and the (action-)value function is
parametrized by a sufficiently wide two-layer neural network. Moreover, we prove that the projection
in MSPBE allows for a sufficiently rich class of functions, which has the same representation power
of a reproducing kernel Hilbert space associated with the random initialization. As a result, for a
broad class of reinforcement learning problems, neural TD attains zero MSPBE. Beyond policy
evaluation, we further establish the global convergence of neural (soft) Q-learning, which allows
for policy improvement. In particular, we prove that, under stronger regularity conditions, neural
(soft) Q-learning converges at the same rate of neural TD to the global optimum of MSPBE for
policy optimization. Also, by exploiting the connection between (soft) Q-learning and policy gradient
algorithms [46, 24], we establish the global convergence of a variant of the policy gradient algorithm
[58, 53, 50].

At the core of our analysis is the overparametrization of the two-layer neural network for value
function approximation [59, 41, 1, 3], which enables us to circumvent the three obstacles above. In
particular, overparametrization leads to an implicit local linearization that varies smoothly along the
solution path, which mirrors the explicit one in nonlinear TD [7]. Such an implicit local linearization
enables us to circumvent the third obstacle of possible divergence. Moreover, overparametrization
allows us to establish a notion of one-point monotonicity [25, 19] for the semigradients followed by
neural TD, which ensures its evolution towards the global optimum of MSPBE along the solution
path. Such a notion of monotonicity enables us to circumvent the first and second obstacles of bias
and nonconvexity. Broadly speaking, our theory backs the empirical success of overparametrized
neural networks in deep reinforcement learning. In particular, we show that instead of being a curse,
overparametrization is indeed a blessing for minimizing MSPBE in the presence of bias, nonconvexity,
and even divergence.

More Related Work. There is a large body of literature on the convergence of linear TD under
both asymptotic [28, 55, 9, 32, 8] and nonasymptotic [6, 33, 14, 48] regimes. See [16] for a detailed
survey. In particular, our analysis is based on the recent breakthrough in the nonasymptotic analysis
of linear TD [6] and its extension to linear Q-learning [60]. An essential step of our analysis is
bridging the evolution of linear TD and neural TD through the implicit local linearization induced by
overparametrization.

To incorporate nonlinear value function approximation into TD, [7] propose the first convergent
nonlinear TD based on explicit local linearization, which however only converges to a local optimum
of MSPBE. See [21, 5] for a detailed survey. In contrast, we prove that, with the implicit local
linearization induced by overparametrization, neural TD, which is simpler to implement and more
widely used in deep reinforcement learning than nonlinear TD, provably converges to the global
optimum of MSPBE.

There exist various extensions of TD, including least-squares TD [12, 10, 34, 22, 56] and gradient
TD [51, 52, 7, 37, 17, 57, 54]. In detail, least-squares TD is based on batch update, which loses the
computational and statistical efficiency of the online update in TD. Meanwhile, gradient TD follows
unbiased stochastic gradients, but at the cost of introducing another optimization variable. Such a
reformulation leads to bilevel optimization, which is less stable in practice when combined with
neural networks [42]. As a result, both extensions of TD are less widely used in deep reinforcement
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learning [18, 2, 26]. Moreover, when using neural networks for value function approximation, the
convergence to the global optimum of MSPBE remains unclear for both extensions of TD.

Our work is also related to the recent breakthrough in understanding overparametrized neural
networks, especially their generalization error [59, 41, 1, 3]. See [20] for a detailed survey. In
particular, [15, 1, 3, 13, 29, 35] characterize the implicit local linearization in the context of supervised
learning, where we train an overparametrized neural network by following the stochastic gradients
of the mean-squared error. In contrast, neural TD does not follow the stochastic gradients of any
objective function, hence leading to possible divergence, which makes the convergence analysis more
challenging.

2 Background

In Section 2.1, we briefly review policy evaluation in reinforcement learning. In Section 2.2, we
introduce the corresponding optimization formulations.

2.1 Policy Evaluation

We consider a Markov decision process (S,A,P, r, �), in which an agent interacts with the environ-
ment to learn the optimal policy that maximizes the expected total reward. At the t-th time step, the
agent has a state st 2 S and takes an action at 2 A. Upon taking the action, the agent enters the
next state st+1 2 S according to the transition probability P(· | st, at) and receives a random reward
rt = r(st, at) from the environment. The action that the agent takes at each state is decided by a
policy ⇡ : S ! �, where � is the set of all probability distributions over A. The performance of
policy ⇡ is measured by the expected total reward, J(⇡) = E[

P
1

t=0 �
trt | at ⇠ ⇡(st)], where � < 1

is the discount factor.

Given policy ⇡, policy evaluation aims to learn the following two functions, the value function
V ⇡(s) = E[

P
1

t=0 �
trt | s0 = s, at ⇠ ⇡(st)] and the action-value function (Q-function) Q⇡(s, a) =

E[
P

1

t=0 �
trt | s0 = s, a0 = a, at ⇠ ⇡(st)]. Both functions form the basis for policy improvement.

Without loss of generality, we focus on learning the Q-function in this paper. We define the Bellman
evaluation operator,

T
⇡Q(s, a) = E[r(s, a) + �Q(s0, a0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(s0)], (2.1)

for which Q⇡ is the fixed point, that is, the solution to the Bellman equation Q = T
⇡Q.

2.2 Optimization Formulation

Corresponding to (2.1), we aim to learn Q⇡ by minimizing the mean-squared Bellman error (MSBE),

min
✓

MSBE(✓) = E(s,a)⇠µ

⇥� bQ✓(s, a)� T
⇡ bQ✓(s, a)

�2⇤
, (2.2)

where the Q-function is parametrized as bQ✓ with parameter ✓. Here µ is the stationary distribution
of (s, a) corresponding to policy ⇡. Due to Q-function approximation, we focus on minimizing the
following surrogate of MSBE, namely the projected mean-squared Bellman error (MSPBE),

min
✓

MSPBE(✓) = E(s,a)⇠µ

⇥� bQ✓(s, a)�⇧FT
⇡ bQ✓(s, a)

�2⇤
. (2.3)

Here ⇧F is the projection onto a function class F . For example, for linear Q-function approximation
[49], F takes the form { bQ✓0 : ✓0 2 ⇥}, where bQ✓0 is linear in ✓0 and ⇥ is the set of feasible
parameters. As another example, for nonlinear Q-function approximation [7], F takes the form
{ bQ✓ +r✓

bQ>

✓ (✓
0
� ✓) : ✓0 2 ⇥}, which consists of the local linearization of bQ✓0 at ✓.

Throughout this paper, we assume that we are able to sample tuples in the form of (s, a, r, s0, a0)
from the stationary distribution of policy ⇡ in an independent and identically distributed manner,
although our analysis can be extended to handle temporal dependence using the proof techniques of
[6]. With a slight abuse of notation, we use µ to denote the stationary distribution of (s, a, r, s0, a0)
corresponding to policy ⇡ and any of its marginal distributions.
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3 Neural Temporal-Difference Learning

TD updates the parameter ✓ of the Q-function by taking the stochastic semigradient descent step
[49, 53, 50],

✓0  ✓ � ⌘ ·
� bQ✓(s, a)� r(s, a)� � bQ✓(s

0, a0)
�
·r✓

bQ✓(s, a), (3.1)
which corresponds to the MSBE in (2.2). Here (s, a, r, s0, a0) ⇠ µ and ⌘ > 0 is the stepsize. In
a more general context, (3.1) is referred to as TD(0). In this paper, we focus on TD(0), which is
abbreviated as TD, and leave the extension to TD(�) to future work.

In the sequel, we denote the state-action pair (s, a) 2 S⇥A by a vector x 2 X ✓ Rd with d > 2. We
consider S to be continuous and A to be finite. Without loss of generality, we assume that kxk2 = 1
and |r(x)| is upper bounded by a constant r for any x 2 X . We use a two-layer neural network

bQ(x;W ) =
1
p
m

mX

r=1

br�(W
>

r x) (3.2)

to parametrize the Q-function. Here � is the rectified linear unit (ReLU) activation function �(y) =
max{0, y} and the parameter ✓ = (b1, . . . , bm,W1, . . . ,Wm) are initialized as br ⇠ Unif({�1, 1})
and Wr ⇠ N(0, Id/d) for any r 2 [m] independently. During training, we only update W =
(W1, . . . ,Wm) 2 Rmd, while keeping b = (b1, . . . , bm) 2 Rm fixed as the random initialization.
To ensure global convergence, we incorporate an additional projection step with respect to W . See
Algorithm 1 for a detailed description.

Algorithm 1 Neural TD
1: Initialization: br ⇠ Unif({�1, 1}), Wr(0) ⇠ N(0, Id/d) (r 2 [m]), W = W (0),

Initialization: SB = {W 2 Rmd : kW �W (0)k2  B} (B > 0)
2: For t = 0 to T � 2:
3: Sample a tuple (s, a, r, s0, a0) from the stationary distribution µ of policy ⇡
4: Let x = (s, a), x0 = (s0, a0)
5: Bellman residual calculation: �  bQ(x;W (t))� r � � bQ(x0;W (t))

6: TD update: fW (t+ 1) W (t)� ⌘� ·rW
bQ(x;W (t))

7: Projection: W (t+ 1) argminW2SB
kW �fW (t+ 1)k2

8: Averaging: W  t+1
t+2 ·W + 1

t+2 ·W (t+ 1)
9: End For

10: Output: bQout(·) bQ(· ;W )

To understand the intuition behind the global convergence of neural TD, note that for the TD update
in (3.1), we have from (2.1) that
E(s,a,r,s0,a0)⇠µ

⇥� bQ✓(s, a)� r(s, a)� � bQ✓(s
0, a0)

�
·r✓

bQ✓(s, a)
⇤

= E(s,a)⇠µ

⇥� bQ✓(s, a)� E[r(s, a) + �Q(s0, a0) | s0 ⇠ P(· | s, a), a0 ⇠ ⇡(s0)]
�
·r✓

bQ✓(s, a)
⇤

= E(s,a)⇠µ

⇥� bQ✓(s, a)� T
⇡ bQ✓(s, a)

�
| {z }

(i)

·r✓
bQ✓(s, a)| {z }
(ii)

⇤
. (3.3)

Here (i) is the Bellman residual at (s, a), while (ii) is the gradient of the first term in (i). Although the
TD update in (3.1) resembles the stochastic gradient descent step for minimizing a mean-squared
error, it is not an unbiased stochastic gradient of any objective function. However, we show that the
TD update yields a descent direction towards the global optimum of the MSPBE in (2.3). Moreover,
as the neural network becomes wider, the function class F that ⇧F projects onto in (2.3) becomes
richer. Correspondingly, the MSPBE reduces to the MSBE in (2.2) as the projection becomes closer
to identity, which implies the recovery of the desired Q-function Q⇡ such that Q⇡ = T

⇡Q⇡. See
Section 4 for a more rigorous characterization.

4 Main Results

In Section 4.1, we characterize the global optimality of the stationary point attained by Algorithm 1
in terms of minimizing the MSPBE in (2.3) and its other properties. In Section 4.2, we establish the
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nonasymptotic global rates of convergence of neural TD to the global optimum of the MSPBE when
following the population semigradients in (3.3) and the stochastic semigradients in (3.1), respectively.

We use the subscript Eµ[·] to denote the expectation over the randomness of the tuple (s, a, r, s, a0)
(or its concise form (x, r, x0)) conditional on all other randomness, e.g., the random initialization
and the random current iterate. Meanwhile, we use the subscript Einit,µ[·] when we are taking the
expectation over all randomness, including the random initialization.

4.1 Properties of Stationary Point

We consider the population version of the TD update in Line 6 of Algorithm 1,
fW (t+ 1) W (t)� ⌘ · Eµ

⇥
�
�
x, r, x0;W (t)

�
·rW

bQ
�
x;W (t)

�⇤
, (4.1)

where µ is the stationary distribution and �(x, r, x0;W (t)) = bQ(x;W (t))� r� � bQ(x0;W (t)) is the
Bellman residual at (x, r, x0). The stationary point W † of (4.1) satisfies the following stationarity
condition,

Eµ[�(x, r, x
0;W †) ·rW

bQ(x;W †)]>(W �W †) � 0, for any W 2 SB . (4.2)
Also, note that

bQ(x;W ) =
1
p
m

mX

r=1

br�(W
>

r x) =
1
p
m

mX

r=1

br 1{W
>

r x > 0}W>

r x

and rWr
bQ(x;W ) = br 1{W>

r x > 0}x almost everywhere in Rmd. Meanwhile, recall that SB =
{W 2 Rmd : kW �W (0)k2  B}. We define the function class

F
†

B,m =

⇢
1
p
m

mX

r=1

br 1{(W
†

r )
>x > 0}W>

r x : W 2 SB

�
, (4.3)

which consists of the local linearization of bQ(x;W ) at W = W †. Then (4.2) takes the following
equivalent form

⌦ bQ(· ;W †)� T
⇡ bQ(· ;W †), f(·)� bQ(· ;W †)

↵
µ
� 0, for any f 2 F

†

B,m, (4.4)

which implies bQ(· ;W †) = ⇧
F

†
B,m

T
⇡ bQ(· ;W †) by the definition of the projection induced by h·, ·iµ.

By (2.3), bQ(· ;W †) is the global optimum of the MSPBE that corresponds to the projection onto
F

†

B,m.

Intuitively, when using an overparametrized neural network with width m ! 1, the average
variation in each Wr diminishes to zero. Hence, roughly speaking, we have 1{Wr(t)>x > 0} =
1{Wr(0)>x > 0} with high probability for any t 2 [T ]. As a result, the function class F†

B,m defined
in (4.3) approximates

FB,m =

⇢
1
p
m

mX

r=1

br 1{Wr(0)
>x > 0}W>

r x : W 2 SB

�
. (4.5)

In the sequel, we show that, to characterize the global convergence of Algorithm 1 with a sufficiently
large m, it suffices to consider FB,m in place of F†

B,m, which simplifies the analysis, since the
distribution of W (0) is given. To this end, we define the approximate stationary point W ⇤ with
respect to the function class FB,m defined in (4.5).
Definition 4.1 (Approximate Stationary Point W ⇤). If W ⇤ = (W ⇤

1 , . . . ,W
⇤

m) 2 Rmd satisfies

Eµ[�0(x, r, x
0;W ⇤) ·rW

bQ0(x;W
⇤)]>(W �W ⇤) � 0, for any W 2 SB , (4.6)

where we define

bQ0(x;W ) =
1
p
m

mX

r=1

br 1{Wr(0)
>x > 0}W>

r x, (4.7)

�0(x, r, x
0;W ) = bQ0(x;W )� r � � bQ0(x

0;W ), (4.8)
then we say that W ⇤ is an approximate stationary point of the population update in (4.1). Here W ⇤

depends on the random initialization b = (b1, . . . , bm) and W (0) = (W1(0), . . . ,Wm(0)).
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The next lemma proves that such an approximate stationary point uniquely exists, since it is the fixed
point of the operator ⇧FB,mT

⇡ , which is a contraction in the `2-norm associated with the stationary
distribution µ.
Lemma 4.2 (Existence, Uniqueness, and Optimality of W ⇤). There exists a unique approximate
stationary point W ⇤ for any b 2 Rm and W (0) 2 Rmd. Also, bQ0(· ;W ⇤) is the global optimum of
the MSPBE that corresponds to the projection onto FB,m in (4.5).

Proof. See Appendix C.1 for a detailed proof.

4.2 Global Convergence

In this section, we establish the main results on the global convergence of neural TD in Algorithm 1.
We first lay out the following regularity condition on the stationary distribution µ.
Assumption 4.3 (Regularity of Stationary Distribution µ). There exists a constant c0 > 0 such that
for any ⌧ � 0 and w ⇠ N(0, Id/d), it holds almost surely that

Eµ

⇥
1{|w>x|  ⌧}

��w
⇤
 c0 · ⌧/kwk2. (4.9)

Assumption 4.3 regularizes the density of µ in terms of the marginal distribution of x. In particular, it
is straightforwardly implied when the density of µ in terms of state s is upper bounded.

Population Update: The next theorem establishes the nonasymptotic global rate of convergence of
neural TD when it follows population semigradients. Recall that the approximate stationary point W ⇤

and bQ0(· ;W ⇤) are defined in Definition 4.1. Also, B is the radius of the set of feasible W , which is
defined in Algorithm 1, T is the number of iterations, � is the discount factor, and m is the width of
the neural network in (3.2).
Theorem 4.4 (Convergence of Population Update). We set ⌘ = (1��)/8 in Algorithm 1 and replace
the TD update in Line 6 by the population update in (4.1). Under Assumption 4.3, the output bQout of
Algorithm 1 satisfies

Einit,µ
⇥� bQout(x)� bQ0(x;W

⇤)
�2⇤


16B2

(1� �)2T
+O(B3m�1/2 +B5/2m�1/4),

where the expectation is taken with respect to all randomness, including the random initialization and
the stationary distribution µ.

Proof. The key to the proof of Theorem 4.4 is the one-point monotonicity of the population semigra-
dient g(t), which is established through the local linearization bQ0(x;W ) of bQ(x;W ). See Appendix
D.5 for a detailed proof.

Stochastic Update: To further prove the global convergence of neural TD when it follows stochastic
semigradients, we first establish an upper bound of their variance, which affects the choice of the
stepsize ⌘. For notational simplicity, we define the stochastic and population semigradients as

g(t) = �
�
x, r, x0;W (t)

�
·rW

bQ
�
x;W (t)

�
, g(t) = Eµ[g(t)]. (4.10)

Lemma 4.5 (Variance Bound). There exists �2
g = O(B2) such that the variance of the stochastic

semigradient is upper bounded as Einit,µ[kg(t)� g(t)k22]  �2
g for any t 2 [T ].

Proof. See Appendix C.2 for a detailed proof.

Based on Theorem 4.4 and Lemma 4.5, we establish the global convergence of neural TD in Algorithm
1.
Theorem 4.6 (Convergence of Stochastic Update). We set ⌘ = min{(1��)/8, 1/

p
T} in Algorithm

1. Under Assumption 4.3, the output bQout of Algorithm 1 satisfies

Einit,µ
⇥� bQout(x)� bQ0(x;W

⇤)
�2⇤


16(B2 + �2
g)

(1� �)2
p
T

+O(B3m�1/2 +B5/2m�1/4).
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Proof. See Appendix D.6 for a detailed proof.

As the width of the neural network m ! 1, Lemma 4.2 implies that bQ0(· ;W ⇤) is the global
optimum of the MSPBE in (2.3) with a richer function class FB,1 to project onto. In fact, the
function class FB,1 �

bQ(· ;W (0)) is a subset of an RKHS with H-norm upper bounded by B.
Here bQ(· ;W (0)) is defined in (3.2). See Appendix B.2 for a more detailed discussion on the
representation power of FB,1. Therefore, if the desired Q-function Q⇡(·) falls into FB,1, it is the
global optimum of the MSPBE. In such a case, by Lemma 4.2 and Theorem 4.6, we approximately
obtain Q⇡(·) = bQ0(· ;W ⇤) through bQout(·).

More generally, the following proposition quantifies the distance between bQ0(· ;W ⇤) and Q⇡(·) in
the case that Q⇡(·) does not fall into the function class FB,m. In particular, it states that the `2-norm
distance k bQ0(· ;W ⇤)�Q⇡(·)kµ is upper bounded by the distance between Q⇡(·) and FB,m.

Proposition 4.7 (Convergence of Stochastic Update to Q⇡). It holds that k bQ0(· ;W ⇤)�Q⇡(·)kµ 
(1� �)�1

· k⇧FB,mQ⇡(·)�Q⇡(·)kµ, which by Theorem 4.6 implies

Einit,µ
⇥� bQout(x)�Q⇡(x)

�2⇤


32(B2 + �2
g)

(1� �)2
p
T

+
2Einit,µ

⇥�
⇧FB,mQ⇡(x)�Q⇡(x)

�2⇤

(1� �)2

+O(B3m�1/2 +B5/2m�1/4).

Proof. See Appendix C.3 for a detailed proof.

Proposition 4.7 implies that if Q⇡(·) 2 FB,1, then bQout(·)! Q⇡(·) as T,m!1. In other words,
neural TD converges to the global optimum of the MSPBE in (2.3), or equivalently, the MSBE in
(2.2), both of which have objective value zero.

5 Extension to Policy Optimization

With the Q-function learned by TD, policy iteration may be applied to learn the optimal policy.
Alternatively, Q-learning more directly learns the optimal policy and its Q-function using temporal-
difference update. Compared with TD, Q-learning aims to solve the projected Bellman optimality
equation

Q = ⇧FT Q, with T Q(s, a) = E
⇥
r(s, a) + �max

a02A

Q(s0, a0)
�� s0 ⇠ P(· | s, a)

⇤
, (5.1)

which replaces the Bellman evaluation operator T ⇡ in (2.3) with the Bellman optimality operator
T . When ⇧F is identity, the fixed-point solution to (5.1) is the Q-function Q⇡⇤

(s, a) of the optimal
policy ⇡⇤, which maximizes the expected total reward [53, 50]. Compared with TD, the max operator
in T makes the analysis more challenging and hence requires stronger regularity conditions. In the
following, we first introduce neural Q-learning and then establish its global convergence. Finally, we
discuss the corresponding implication for policy gradient algorithms.

5.1 Neural Q-Learning

In parallel with (3.1), we update the parameter ✓ of the optimal Q-function by
✓0  ✓ � ⌘ ·

� bQ✓(s, a)� r(s, a)� �max
a02A

bQ✓(s
0, a0)

�
·r✓

bQ✓(s, a), (5.2)

where the tuple (s, a, r, s0) is sampled from the stationary distribution µexp of an exploration policy
⇡exp in an independent and identically distributed manner. We present the detailed neural Q-learning
algorithm in Algorithm 2 and defer it to Appendix E due to space limitations. Similar to Definition
4.1, we define the approximate stationary point W ⇤ of Algorithm 2 by

Eµexp [�0(x, r, x
0;W ⇤) ·rW

bQ0(x;W
⇤)]>(W �W ⇤) � 0, for any W 2 SB , (5.3)

where the Bellman residual is now �0(x, r, x0;W ) = bQ0(x;W ) � r � �maxa02A
bQ0(s0, a0;W ).

Following the same analysis of neural TD in Lemma 4.2, we have that bQ0(· ;W ⇤) is the unique
fixed-point solution to the projected Bellman optimality equation Q = ⇧FB,mT Q, where the function
class FB,m is defined in (4.5).
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5.2 Global Convergence

To establish the global convergence of neural Q-learning, we lay out an extra regularity condition on
the exploration policy ⇡exp, which is not required by neural TD. Such a regularity condition ensures
that x0 = (s0, a0) with the greedy action a0 in Line 4 of Algorithm 2 follows a similar distribution to
that of x = (s, a), which is the stationary distribution µexp of the exploration policy ⇡exp. Recall that
bQ0(x;W ) is defined in (4.7) and � is the discount factor.

Assumption 5.1 (Regularity of Exploration Policy ⇡exp). There exists a constant ⌫ > 0 such that for
any W1,W2 2 SB , it holds that

Ex⇠µexp

⇥� bQ0(x;W1)� bQ0(x;W2)
�2⇤
� (� + ⌫)2 · Es⇠µexp

⇥� bQ]
0(s;W1)� bQ]

0(s;W2)
�2⇤

, (5.4)

where bQ]
0(s;W ) = maxa2A

bQ0(s, a;W ).

We remark that [38, 60] establish the global convergence of linear Q-learning based on an assumption
that implies (5.4). Although Assumption 5.1 is strong, we are not aware of any weaker regularity
condition in the literature, even for linear Q-learning. As our focus is to go beyond linear Q-learning
to analyze neural Q-learning, we do not attempt to weaken such a regularity condition in this paper.

The following regularity condition on µexp mirrors Assumption 4.3, but additionally accounts for the
max operator in the Bellman optimality operator.

Assumption 5.2 (Regularity of Stationary Distribution µexp). There exists a constant c3 > 0 such
that for any ⌧ � 0 and w ⇠ N(0, Id/d), it holds almost surely that

Es⇠µexp

⇥
max
a2A

1{|w>(s, a)|  ⌧}
��w

⇤
 c3 · ⌧/kwk2. (5.5)

In parallel with Theorem 4.6, the following theorem establishes the global convergence of neural
Q-learning in Algorithm 2.

Theorem 5.3 (Convergence of Stochastic Update). We set ⌘ to be of order T�1/2 in Algorithm 2.
Under Assumptions 5.1 and 5.2, the output bQout of Algorithm 2 satisfies

Einit,µexp

⇥� bQout(x)� bQ0(x;W
⇤)
�2⇤

= O(B2T�1/2 +B3m�1/2 +B5/2m�1/4).

Proof. See Appendix E.1 for a detailed proof.

Corresponding to Proposition 4.7, Theorem 5.3 also implies the convergence to Q⇡⇤
(s, a), which is

omitted due to space limitations.

5.3 Implication for Policy Gradient

Theorem 5.3 can be further extended to handle neural soft Q-learning, where the max operator in the
Bellman optimality operator is replaced by a more general softmax operator [23, 40]. By exploiting
the equivalence between soft Q-learning and policy gradient algorithms [46, 24], we establish the
global convergence of a variant of the policy gradient algorithm. Due to space limitations, we defer
the discussion to Appendix F.

6 Conclusions

In this paper we prove that neural TD converges at a sublinear rate to the global optimum of the
MSPBE for policy evaluation. In particular, we show how such global convergence is enabled by
the overparametrization of neural networks. Moreover, we extend the convergence result to policy
optimization, including (soft) Q-learning and policy gradient. Our results shed new light on the
theoretical understanding of RL with neural networks, which is widely employed in practice.
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[40] Neu, G., Jonsson, A. and Gómez, V. (2017). A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798.

[41] Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y. and Srebro, N. (2018). Towards understand-
ing the role of over-parametrization in generalization of neural networks. arXiv preprint

arXiv:1805.12076.

[42] Pfau, D. and Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic
methods. arXiv preprint arXiv:1610.01945.

[43] Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In Advances

in Neural Information Processing Systems.

[44] Rahimi, A. and Recht, B. (2008). Uniform approximation of functions with random bases. In
Annual Allerton Conference on Communication, Control, and Computing.

[45] Scherrer, B. (2010). Should one compute the temporal difference fix point or minimize the
bellman residual? the unified oblique projection view. In International Conference on Machine

Learning.

[46] Schulman, J., Chen, X. and Abbeel, P. (2017). Equivalence between policy gradients and soft
Q-learning. arXiv preprint arXiv:1704.06440.

[47] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P. (2015). Trust region policy
optimization. In International Conference on Machine Learning.

[48] Srikant, R. and Ying, L. (2019). Finite-time error bounds for linear stochastic approximation
and TD learning. arXiv preprint arXiv:1902.00923.

[49] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine

Learning, 3 9–44.

[50] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.

[51] Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C. and
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