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Abstract

Sequence-to-sequence attention-based models are a promising approach for end-to-
end speech recognition. The increased model power makes the training procedure
more difficult, and analyzing failure modes of these models becomes harder because
of the end-to-end nature. In this work, we present various analyses to better
understand training and model properties. We investigate on pretraining variants
such as growing in depth and width, and their impact on the final performance,
which leads to over 8% relative improvement in word error rate. For a better
understanding of how the attention process works, we study the encoder output
and the attention energies and weights. Our experiments were performed on
Switchboard, LibriSpeech and Wall Street Journal.

1 Introduction

The encoder-decoder framework with attention [Bahdanau et al., 2015, Luong et al., 2015, Wu et al.,
2016] has been successfully applied to automatic speech recognition (ASR) [Chan et al., 2015, Chiu
et al., 2017, Toshniwal et al., 2018, Krishna et al., 2018, Zeyer et al., 2018b, Zeghidour et al., 2018a,
Weng et al., 2018, Sabour et al., 2018] and is a promising end-to-end approach. The model outputs
are words, sub-words or characters, and training the model can be done from scratch without any
prerequisites except the training data in terms of audio features with corresponding transcriptions.

In contrast to the conventional hybrid hidden Markov models (HMM) / neural network (NN) approach
[Bourlard and Morgan, 1994, Robinson, 1994], the encoder-decoder model does not model the
alignment explicitly. In the hybrid HMM/NN approach, a latent variable of hidden states is introduced,
which model the phone state for any given time position. Thus by searching for the most probable
sequence of hidden states, we get an explicit alignment. There is no such hidden latent variable in
the encoder decoder model. Instead there is the attention process which can be interpreted as an
implicit soft alignment. As this is only implicit and soft, it is harder to enforce constraints such as
monotonicity, i.e. that the attention of future label outputs will focus also only to future time frames.
Also, the interpretation of the attention weights as a soft alignment might not be completely valid, as
the encoder itself can shift around and reorder evidence, i.e. the neural network could learn to pass
over information in any possible way. E.g. the encoder could compress all the information of the
input into a single frame and the decoder can learn to just attend on this single frame. We observed
this behavior in early stages of the training. Thus, studying the temporal "alignment" behavior of the
attention model becomes more difficult.

Other end-to-end models such as connectionist temporal classification [Graves et al., 2006] has often
been applied to ASR in the past [Graves and Jaitly, 2014, Hannun et al., 2014, Miao et al., 2015,
Amodei et al., 2016, Soltau et al., 2017, Audhkhasi et al., 2017, Krishna et al., 2018, Zenkel et al.,
2018, Zhang and Lei, 2018]. Other approaches are e.g. the inverted hidden Markov / segmental
encoder-decoder model [Doetsch et al., 2017, Beck et al., 2018a], the recurrent transducer [Rao et al.,
2017, Battenberg et al., 2017, Prabhavalkar et al., 2017a], or the recurrent neural aligner [Sak et al.,
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2017, Dong et al., 2018]. Depending on the interpretation, these can all be seen as variants of the
encoder decoder approach. In some of these models, the attention process is not soft, but a hard
decision. This hard decision can also become a latent variable such that we include several choices in
the beam search. This is also referred to as hard attention. Examples of directly applying this idea on
the usual attention approach are given by Raffel et al. [2017], Aharoni and Goldberg [2016], Chiu*
and Raffel* [2018], Luo et al. [2017], Lawson et al. [2018].

We study recurrent NN (RNN) encoder decoder models in this work, which use long short-term
memory (LSTM) units [Hochreiter and Schmidhuber, 1997]. Recently the transformer model
[Vaswani et al., 2017] gained attention, which only uses feed-forward and self-attention layers, and
the only recurrence is the label feedback in the decoder. As this does not include any temporal
information, some positional encoding is added. This is not necessary for a RNN model, as it can
learn such encoding by itself, which we demonstrate later for our attention encoder.

We study attention models in more detail here. We are interested in when, why and how they fail
and do an analysis on the search errors and relative error positions. We study the implicit alignment
behavior via the attention weights and energies. We also analyze the encoder output representation
and find that it contains information about the relative position and that it specially marks frames
which should not be attended to, which correspond to silence.

2 Related work

Karpathy [2015] analyzes individual neuron activations of a RNN language model and finds a neuron
which becomes sensitive to the position in line. Belinkov and Glass [2017] analyzed the hidden
activations of the DeepSpeech 2 [Amodei et al., 2016] CTC end-to-end system and shows their
correlation to a phoneme frame alignment. Palaskar and Metze [2018] analyzed the encoder state
and the attention weights of an attention model and makes similar observations as we do. Attention
plots were used before to understand the behaviour of the model [Chorowski et al., 2015]. Beck
et al. [2018b] performed a comparison of the alignment behavior between hybrid HMM/NN models,
the inverted HMM and attention models. [Prabhavalkar et al., 2017b] investigate the effects of
varying block sizes, attention types, and sub-word units. Understanding the inner working of a
speech recognition system is also subject in [Tang et al., 2017], where the authors examine activation
distribution and temporal patterns, focussing on the comparison between LSTM and GRU systems.

A number of saliency methods [Simonyan et al., 2014, Luisa M Zintgraf and Welling, 2017, Sun-
dararajan et al., 2017] are used for interpreting model decisions.

3 ASR tasks and baselines

In all cases, we use the RETURNN framework [Zeyer et al., 2018a] for neural network training and
inference, which is based on TensorFlow [TensorFlow Development Team, 2015] and contains some
custom CUDA kernels. In case of the attention models, we also use RETURNN for decoding. All
experiments are performed on single GPUs, we did not take advantage of multi-GPU training. In
some cases, the feature extraction, and in the hybrid case the decoding, is performed with RASR
[Wiesler et al., 2014]. All used configs as well as used source code are published.1

3.1 Switchboard 300h

The Switchboard corpus [Godfrey et al., 2003] consists of English telephone speech. We use the
300h train dataset (LDC97S62), and a 90% subset for training, and a small part for cross validation,
which is used for learning rate scheduling and to select a few models for decoding. We decode and
report WER on Hub5’00 and Hub5’01. We use Hub5’00 to select the best model which we report the
numbers on.

Our hybrid HMM/NN model uses a deep bidirectional LSTM as described by Zeyer et al. [2017]. Our
baseline has 6 layers with 500 nodes in each direction. It uses dropout of 10% on the non-recurrent
input of each LSTM layer, gradient noise with standard deviation of 0.3, Adam with Nesterov

1
https://github.com/rwth-i6/returnn-experiments/tree/master/2018-nips-irasl-paper
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Table 1: Switchboard results. 1is our baseline, and we selected the best model from multiple runs. 2is
our best model with improved pretraining, see Section 5, Table 7.

model paper LM label WER[%]

unit Hub5’00 Hub5’01

Σ SWB CH Σ

hybrid [Povey et al., 2016] 4-gram CDp 9.6 19.3
[Weng et al., 2018] 4-gram CDp 9.6 19.3

[Zeyer et al., 2018b] LSTM CDp 8.3 17.3 12.9
this work 4-gram CDp 14.3 9.6 19.0 14.5

inverted HMM [Beck et al., 2018a] 4-gram CDp 19.3 13.0 25.6

CTC [Zweig et al., 2017] none chars 24.7 37.1
[Zweig et al., 2017] n-gram chars 19.8 32.1
[Zweig et al., 2017] word RNN chars 14.0 25.3

attention

[Lu et al., 2016] none words 26.8 48.2
[Lu et al., 2016] 3-gram words 25.8 46.0

[Toshniwal et al., 2017] none chars 23.1 40.8
[Weng et al., 2018] none chars 12.2 23.3

[Zeyer et al., 2018b] none BPE 1k 19.6 13.1 26.1 19.7
[Zeyer et al., 2018b] LSTM BPE 1k 18.8 11.8 25.7 18.1

attention
this work1 none BPE 1k 19.1 12.8 25.3 19.0
this work2 none BPE 1k 17.8 11.9 23.7 17.7
this work2 LSTM BPE 1k 17.1 11.0 23.1 16.6

momentum (Nadam) [Dozat, 2015], Newbob learning rate scheduling [Zeyer et al., 2017], and focal
loss [Lin et al., 2017].

Our attention model uses byte pair encoding [Sennrich et al., 2015] as subword units. We follow the
baseline with about 1000 BPE units as described by Zeyer et al. [2018b]. All our baselines and a
comparison to results from the literature are summarized in Table 1.

3.2 LibriSpeech 1000h

The LibriSpeech dataset [Panayotov et al., 2015a] are read audio books and consists of about 1000h of
speech. A subset of the training data is used for cross-validation, to perform learning rate scheduling
and to select a number of models for full decoding. We use the dev-other set for selecting the final
best model.

The end-to-end attention model uses byte pair encoding (BPE) [Sennrich et al., 2015] as subword
units with a vocabulary of 10k BPE units. We follow the baseline as described by Zeyer et al. [2018b].
A comparison of our baselines and other models are in Table 2.

3.3 Wall Street Journal 80h

The Wall Street Journal (WSJ) dataset [Paul and Baker, 1992] is read text from the WSJ. We use
90% of si284 for training, the remaining for cross validation and learning rate scheduling, dev93 for
validation and selection of the final model, and eval92 for the final evaluation.

We trained an end-to-end attention model using BPE subword units, with a vocabulary size of about
1000 BPE units. Our preliminary results are shown in Table 3. Our attention model is based on the
improved pretraining scheme as described in Section 5.

4 Error analysis

We analyze the errors in the decoding process during beam search. In Fig. 1 we collected the
correspondence between the beam size and the WER or the amount of search errors. We just count

3



Table 2: LibriSpeech results. 1is our baseline, and we selected the best model from multiple runs. 2is
our best model with improved pretraining, see Section 5.

model paper LM label WER[%]

unit dev test

clean other clean other

hybrid [Panayotov et al., 2015b] 4-gram CDp 4.90 12.98 5.51 13.97
[Han et al., 2018] 4-gram CDp 3.35 8.78 3.63 8.94
[Han et al., 2018] RNN CDp 3.12 8.28 3.51 8.58

CTC [Amodei et al., 2016] 4-gram chars 5.33 13.25
[Zhou et al., 2017] 4-gram chars 5.10 14.26 5.42 14.70

ASG [Liptchinsky et al., 2017] none chars 6.70 20.80
[Liptchinsky et al., 2017] 4-gram chars 4.80 14.50
[Zeghidour et al., 2018b] CNN chars 3.16 10.05 3.44 11.24

attention [Zeyer et al., 2018b] none BPE 10k 4.87 14.37 4.87 15.39
[Zeyer et al., 2018b] LSTM BPE 10k 3.54 11.52 3.82 12.76
[Sabour et al., 2018] none BPE 10k 4.5 13.3

attention this work1 none BPE 10k 4.68 14.27 4.81 15.43
this work2 none BPE 10k 4.71 13.95 4.70 15.20

Table 3: WSJ results. Marked are the best results with and without language model.
WER[%]

model paper comment LM label unit dev93 eval92

GMM [Panayotov et al., 2015a] 3-gram CDp 9.39 6.26

hybrid [Panayotov et al., 2015a] feed-forward 3-gram CDp 6.97 3.92
[Chan and Lane, 2015] 3-gram CDp 6.58 3.47

CTC [Liu et al., 2017] Gram-CTC none word piece 16.7
[Liu et al., 2017] Gram-CTC LM word piece 6.7

attention [Chan et al., 2016] LSD none word piece 9.6
[Chorowski and Jaitly, 2016] LS none chars 13.7 10.6
[Chorowski and Jaitly, 2016] LS 3-gram chars 9.7 6.7

[Zhang et al., 2017] quite deep none chars 10.5
[Renduchintala et al., 2018] augmentation none chars 22.7 17.5

[Sabour et al., 2018] OCD none chars 9.3
attention this work SWB best config none BPE 1k 16.1 14.0

this work improved pretrain none BPE 1k 15.3 13.6

the search errors where the models recognized sentence (via beam search) has a worse model score
than the ground truth sentence. We observe that we do only very few search errors, and the amount of
search errors seems independent from the final WER performance. Thus we conclude that we mostly
have a problem in the model.

We also were interested in the score difference between the best recognized sentence and the ground
truth sentence. The results are in Fig. 2. We can see that they concentrate on the lower side, around
10%, which is an indicator why a low beam size seems to be sufficient.

5 Analysis on pretraining

It has been observed that pretraining can be substantial for good performance, and sometimes to get a
converging model at all [Zeyer et al., 2018a,b]. We provide a study on cases with attention-based
models where pretraining benefits convergence, and compare the performance with and without
pretraining.
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Figure 1: Beam score difference within
a beam, relative to the score variations
within the beam. This is for an atten-
tion model using beam size 12 on Lib-
riSpeech (test-other).
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Figure 2: Beam search errors and word
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ages. Search error occurance per sen-
tence. This is with an attention model on
LibriSpeech (test-other).

Table 4: Comparison of different encoder
depth and width with the original pretraining
scheme enabled or disabled. We had to lower
the initial learning rate to allow the model to
converge: 1lr 5 · 10−4, 2lr 10−4

Encoder Hub5’01 WER[%]

Hidden Pretraining
Layers units No Yes

4
500 19.4 19.9
700 19.0 19.4

1000 18.3 19.1

5
500 19.9 20.5
700 19.0 20.5

10001 19.1 19.7

6
500 20.1 19.8
700 19.4 19.4

10002 20.9 19.7

Table 5: Comparison of different start number of layers and start
time reduction factor in pretraining. In all cases, the pretraining
scheme ends up with a 6 layer encoder, and time reduction factor
8.

Encoder pretrain start WER[%]

Time Hub5’00 Hub5’01

Layers reduction Σ CH SWB Σ

2 32 19.6 26.2 13.1 19.7
3 32 19.2 25.7 12.7 18.6
4 32 18.9 25.2 12.6 18.5
5 32 18.7 24.9 12.5 18.2
6 32 >100 >100 >100 >100

3 8 19.0 25.5 12.6 18.9
4 8 18.4 24.3 12.5 18.3
5 8 >100 >100 >100 >100
6 8 >100 >100 >100 >100

The pretraining variant of the Switchboard baseline (6 layers, time reduction 8 after pretraining)
consists of these steps: 1. starts with 2 layers (layer 1 and 6), time reduction 32, and dropout as
well as label smoothing disabled; 2. enable dropout; 3. 3 layers (layer 1, 2 and 6); 4. 4 layers (layer
1, 2, 3 and 6); 5. 5 layers (layer 1, 2, 3, 4 and 6); 6. all 6 layers; 7. decrease time reduction to 8;
8. final model, enable label smoothing. Each pretrain step is repeated for 5 epochs, where one epoch
corresponds to 1/6 of the whole train corpus. In addition, a linear learning rate warm-up is performed
from 1e-4 to 1e-3 in 10 epochs. We have to start with 2 layers as we want to have the time pooling in
between the LSTM layers. In Table 4, performed on Switchboard, we varied the number of encoder
layers and encoder LSTM units, both with and without pretraining. We observe that the overall best
model is with 4 layers without the pretraining variant. I.e. we showed that we can directly start with 4
layers and time reduction 8 and yield very good results. We even can start directly with 6 layer with a
reduced learning rate. This was surprising to us, as this was not possible in earlier experiments. This
might be due to a reduced and improved BPE vocabulary. We note that overall all the pretraining
experiments seems to run more stable. We also can see that with 6 layers (and also more), pretraining
yields better results than no pretraining.
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Table 6: Comparison of number of pretrain step
repetitions. In all cases, the pretraining scheme
ends up with a 6 layer encoder, and time reduction
factor 8.

WER[%]

Pretrain Hub5’00 Hub5’01

repetitions Σ CH SWB Σ

1 19.0 25.2 12.8 18.5
2 19.1 25.3 12.8 18.8
3 19.1 25.4 12.9 18.7
4 18.5 24.7 12.3 18.3
5 18.4 24.3 12.5 18.3

Table 7: Comparison of different time reduction factors (al-
ways the same during pretraining and in the final model),
adding the LSTM layer always on top instead of in between,
and growing in width.

Time Pretraining WER[%]

red. add grow Hub5’00 Hub5’01

top l. width Σ CH SWB Σ

8 no no 18.4 24.3 12.5 18.3
yes no 18.4 24.3 12.5 17.8

6 no no 18.3 24.4 12.0 18.2
no yes 17.9 23.8 11.9 18.0
yes no 17.9 23.8 11.9 17.7
yes yes 17.8 23.7 11.9 17.7

These results motivated us to perform further investigations into different variants of pretraining. It
seems that pretraining allows to train deeper model, however using too much pretraining can also hurt.
We showed that we can directly start with a deeper encoder and lower time reduction. In Table 5,
we analyzed the optimal initial number of layers, and the initial time reduction. We observed that
starting with a deeper network improves the overall performance, but also it still helps to then go
deeper during pretraining, and starting too deep does not work well. We also observed that directly
starting with time reduction 8 also works and further improves the final performance, but it seems
that this makes the training slightly more unstable. In further experiments, we directly start with 4
layers and time reduction 8. We were also interested in the optimal number of repetitions of each
pretrain step, i.e. how much epochs to train with each pretrain step; the baseline had 5 repetitions.
We collected the results in Table 6. In further experiments, we keep 5 repetitions as the default.

It has already been shown by Zeyer et al. [2018b] that a lower final time reduction performed better.
So far, the lowest time reduction was 8 in our experiments. By having a pool size of 3 in the first time
max pooling layer, we achieve a better-performing model with time reduction factor of 6 as shown
in Table 7. So far we always kept the top layer (layer 6) during pretraining as our intuition was that
it might help to get always the same time reduction factor as an input to this layer. When directly
starting with the low time reduction, we do not need this scheme anymore, and we can always add a
new layer on top. Comparisons are collected in Table 7. We can conclude that this simpler scheme to
add layers on top performs better.

We also did experiments with growing the encoder width / number of LSTM units during pretraining.
We do this orthogonal to the growing in depth / number of layers. As before, our final number of
LSTM units in each direction of the bidirectional deep LSTM encoder is 1024. Initially, we start with
50% of the final width, i.e. with 512 units. In each step, we linearly increase the number of units such
that we have the final number of units in the last step. We keep the weights of existing units, and
weights from/to newly added units are randomly initialized. We also decrease the dropout rate by the
same factor. We can see that this width growing scheme performs better. This leads us to our current
best model.

Our findings are that pretraining is in general more stable, esp. for deep models. However, the
pretraining scheme is important, and less pretraining can improve the performance, although it
becomes more unstable. We also used the same improved pretraining scheme and time reduction 6
for WSJ as well as LibriSpeech and observed similar improvements, compare Table 2 and Table 3.

6 Analysis on training variance

We have observed that training attention models can be unstable, and careful tuning of initial learning
rate, warm-up and pretraining is important. Related to that, we observe a high training variance.
I.e. with the same configuration but different random seeds, we get some variance in the final WER
performance. We observed this even for the same random seed, which we suspect stems from
non-deterministic behaviour in TensorFlow operations such as tf.reduce_sum based on kernels
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Table 8: Training variance. Results on Switchboard 300h, with an attention model with 157M
parameters, and a hybrid HMM/LSTM model with 41M parameters. We select the best epoch w.r.t.
the best overall Hub5’00 result. Experiments with different random seeds, and same random seed but
multiple different runs, i.e. showing non-determinism in the implementation.

model variant
WER[%] (min–max, µ, σ)

Hub5’00 Hub5’01

Σ CH SWB Σ

attention 5 seeds 19.3–19.9, 19.6, 0.24 25.6–26.6, 26.1, 0.38 12.8–13.3, 13.1, 0.17 19.0–19.7, 19.4, 0.20
attention 5 runs 19.1–19.6, 19.3, 0.22 25.3–26.3, 25.8, 0.40 12.7–13.0, 12.9, 0.12 18.9–19.6, 19.2, 0.27
hybrid 5 seeds 14.3–14.5, 14.4, 0.08 19.0–19.3, 19.1, 0.12 9.6– 9.8, 9.7, 0.06 14.3–14.7, 14.5, 0.16
hybrid 5 runs 14.3–14.5, 14.4, 0.07 19.0–19.2, 19.1, 0.09 9.6– 9.8, 9.7, 0.08 14.4–14.6, 14.5, 0.07
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using CUDA atomics. 2 This training variance seems to be about the same as due to random seeds,
which is higher than we expected. Note that it also depends a lot on other hyper parameters. For
example, in a previous iteration of the model using a larger BPE vocabulary, we have observed
more unstable training with higher variance, and even sometimes some models diverge while others
converge with the same settings. We also compare that to hybrid HMM/LSTM models. It can be
observed that it is lower compared to the attention model. We argue that is due to the more difficult
optimization problem, and also due to the much bigger model. All the results can be seen in Table 8.

7 Analysis of the encoder output

The encoder creates a high-level representation of the input. It also arguably represents further
information needed for the decoder to know where to attend to. We try to analyze the output of the
encoder and identify and examine the learned function. In Fig. 5, we plotted the encoder output and
the attention weights, as well as the word positions in the audio.

One hypothesis for an important function of the encoder is the detection of frames which should not
be attended on by the decoder, e.g. which are silent or non-speech. Such a pattern can be observed
in Fig. 5. By performing a dimensionality reduction (PCA) on the encoder output, we can identify
the most important distinct information, which we identify as silence detection and encoder time
position, compare Fig. 3. Similar behavior was shown by Palaskar and Metze [2018]. We further try
to identify individual cells in the LSTM which encodes the positional information. By qualitatively
inspecting the different neurons activations, we have identified multiple neurons which perform the
hypothesized function as shown in Fig. 4.

2This problem has been acknowledged in this GitHub issue.
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We also observed that the attention weights are always very local in the encoder frames, and often
focus mostly on a single encoder frame, compare Fig. 5. The sharp behavior in the converged
attention weight distribution has been observed before [Chan et al., 2015, Beck et al., 2018b,
Palaskar and Metze, 2018]. We conclude that the information about the label also needs to be
well-localized in the encoder output. To support this observation, we performed experiments
where we explicitly allowed only a local fixed-size window of non-zero attention weights around
the arg max of the attention energies, to understand how much we can restrict the local context.

Table 9: Local attention window on
Switchboard, WER on Hub5’00.

Model Win. size WER[%]

baseline ∞ 19.6
local 10 20.7

The results can be seen in Table 9. This confirms the
hypothesis that the information is localized in the encoder.
We explain the gap in performance with decoder frames
where the model is unsure to attend, and where a global
attention helps the decoder to gather information from
multiple frames at once. We observed that in such case,
there is sometimes some relatively large attention weight
on the very first and/or very last frame.

8 Conclusion

We provided an overview of our recent attention models results on Switchboard, LibriSpeech and
WSJ. We performed an analysis on the beam search errors. By our improved pretraining scheme, we
improved our Switchboard baseline by over 8% relative in WER. We pointed out the high training
variance of attention models compared to hybrid HMM/NN models. We analyzed the encoder
output and identified the representation of the relative input position, both clearly visible in the PCA
reduction of the encoder but even represented by individual neurons. Also we found indications that
the encoder marks frames which can be skipped by decoder, which correlate to silence.
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