
Under review as a conference paper at ICLR 2020

CONTEXTUAL INVERSE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the Inverse Reinforcement Learning problem in Contextual Markov
Decision Processes. In this setting, the reward, which is unknown to the agent, is a
function of a static parameter referred to as the context. There is also an “expert”
who knows this mapping and acts according to the optimal policy for each context.
The goal of the agent is to learn the expert’s mapping by observing demonstrations.
We define an optimization problem for finding this mapping and show that when
it is linear, the problem is convex. We present and analyze the sample complexity
of three algorithms for solving this problem: the mirrored descent algorithm,
evolution strategies, and the ellipsoid method. We also extend the first two methods
to work with general reward functions, e.g., deep neural networks, but without the
theoretical guarantees. Finally, we compare the different techniques empirically in
driving simulation and a medical treatment regime.

1 INTRODUCTION

We study sequential decision-making in a Contextual Markov Decision Process (CMDP, Hallak et al.
(2015)), where the reward, while unknown to the agent, depends on a static parameter referred to as
the context. For a concrete example, consider the dynamic treatment regime (Chakraborty & Murphy,
2014). Here, there is a patient and a clinician which acts to improve the patient’s health. The context
is composed of static information of the patient (such as age and weight); the state is composed of the
patient’s dynamic measurements (such as heart rate and blood pressure); and the clinician’s actions
are a set of intervention categories (e.g., infusion). The reward is different for each patient (context),
and there is a mapping from the context to the reward.

Recent trends in personalized medicine motivate this model – instead of treating the ”average patient”,
patients are separated into different groups for which the medical decisions are tailored (Fig. 1b).
For example, in Wesselink et al. (2018), the authors study organ injury, which may occur when
a specific measurement (mean arterial pressure) decreases below a certain threshold. They found
that this threshold varies across different patient groups (context). In other examples, clinicians set
treatment goals for the patients, i.e., they take actions to make the patient measurements reach some
pre-determined values. For instance, in acute respiratory distress syndrome (ARDS), clinicians argue
that these treatment goals should depend on the static patient information (the context) (Berngard
et al., 2016).

There are serious issues when trying to manually define a reward signal in real-world tasks. When
treating patients with sepsis, for example, the only available signal is the mortality of the patient at
the end of the treatment (Komorowski et al., 2018). This signal is sparse, and it is unclear how to
manually tweak the reward to maximize the patient’s health condition (Leike et al., 2017; Raghu
et al., 2017; Lee et al., 2019).

To address these issues, we propose the Contextual Inverse Reinforcement Learning (COIRL)
framework. Similarly to Inverse Reinforcement Learning (Ng & Russell, 2000, IRL), we focus on
trying to infer the mapping from contexts to rewards by observing experts. The main challenge in
our problem is that for each context there is a different reward, hence, a different optimal policy for
each context. Therefore, Apprenticeship Learning algorithms (Abbeel & Ng, 2004; Syed & Schapire,
2008) that try to mimic the expert cannot be used and, instead, we focus on directly learning the
mapping.

1

Under review as a conference paper at ICLR 2020

In particular, our main contributions are:

1. We formulate COIRL with a linear mapping as a convex optimization problem.
2. We propose and analyze the sample complexity of three algorithms for COIRL: the mirrored

descent alg. (MDA), evolution strategies (ES), and the ellipsoid method.
3. For nonlinear mappings, we implement a deep learning version for MDA and ES (without

theoretical guarantees).
4. We compare these methods empirically on two frameworks: an autonomous driving simulator

(Abbeel & Ng, 2004) and a dynamic treatment regime (Komorowski et al., 2018).

(a) COIRL diagram (b) Personalized medicine (Itenov et al., 2018)

Figure 1: The COIRL framework (left): a context vector parametrizes the environment. For each
context, the expert uses the true mapping from contexts to rewards,W ∗, and provides demonstrations.
The agent learns an estimation of this mapping Ŵ and acts optimally with respect to it.

2 PRELIMINARIES

Contextual MDPs: A Markov Decision Process (Puterman, 1994, MDP) is defined by the tuple
(S,A, P, ξ, R, γ) where S is a finite state space, A a finite action space, P : S × S ×A→ [0, 1] the
transition kernel, ξ the initial state distribution, R : S → R the reward function and γ ∈ [0, 1) is the
discount factor. A Contextual MDP (Hallak et al., 2015, CMDP) is an extension of an MDP, and is
defined by (C,S,A,M, γ) where C is the context space, andM is a mapping from contexts c ∈ C
to MDPs: M(c) = (S,A, P,Rc, ξ, γ). In addition, each state is associated with a feature vector
φ : S → [0, 1]k. Note that P and ξ are not context dependent.

We consider a setting in which the reward for context c is a linear combination of the state features:
R∗c(s) = f∗(c)Tφ(s). The goal is to approximate f∗(c) using a function fW (c), with parameters
W . This notation allows us to present our algorithms for any function approximator fW (c), and in
particular, a deep neural network (DNN). For the theoretical analysis, we will further assume a linear
setting, where f∗(c) = cTW ∗, fW (c) = cTW and that W ∗ is in some convex setW.

We assume that c ∈ C = ∆d−1, the standard d− 1 dimensional simplex. This assumption makes the
contexts bounded (which we use in our proofs), and it also allows a straight-forward expansion to a
model in which the transitions are also a linear mapping of the context (Modi et al., 2018). One way
of viewing this model is that each row in the mapping W ∗ is a base rewards coefficient vector, and
the reward for a specific context is a convex combination of these base rewards.

We consider deterministic policies π : S → A which dictate the agent’s behaviour at each state.
The value of a policy π for reward coefficients vector r is: V πr = Eξ,P,π[

∑∞
t=0 γ

tR(st)] = rTµ(π)
where µ(π) := Eξ,P,π[

∑∞
t=0 γ

tφ(st)] ∈ Rk is called the feature expectations of π. For the optimal
policy with respect to (w.r.t.) a reward coefficients vector r, we denote the value by V ∗r . For any
context c, π∗c denotes the optimal policy w.r.t. reward R∗c(s) = f∗(c)Tφ(s) and π̂c(W) denotes the
optimal policy w.r.t. reward R̂c(s) = fW (c)Tφ(s).

Inverse Reinforcement Learning in CMDPs: In standard IRL, the goal is to learn a reward which
best explains the behavior of an observed expert. The model describing this scenario is the MDP\R -

2

Under review as a conference paper at ICLR 2020

an MDP without a reward function (also commonly called a controlled Markov chain). Similarly, we
denote a CMDP without a mapping of context to reward by CMDP\M. The goal in Contextual IRL
is to approximate the mapping f∗(c) by observing an expert. The expert knows f∗(c), and for each
context c, can provide a demonstration from π∗c .

Contextual dynamics: Learning a transition kernel and an initial state distribution that is
parametrized by the context is an orthogonal problem to COIRL. Therefore, we focus only on
a contextual reward which simplifies our analysis. Existing methods, such as in Modi et al. (2018),
can be used to learn the mappings for the transition kernel and initial distribution in a contextual
model. In conjunction with the simulation lemma (Kearns & Singh, 2002), these methods can extend
our results to the more general CMDP setting.

3 OPTIMIZATION METHODS FOR COIRL

In this section, we propose and analyze optimization algorithms for minimizing the following loss
function; Lemma 1 below justifies its use for COIRL.

Loss(W) = Ec max
π

[
fW (c) ·

(
µ(π)− µ(π∗c)

)]
= Ec

[
fW (c) ·

(
µ(π̂c(W))− µ(π∗c)

)]
. (1)

Lemma 1. Loss(W) satisfies the following properties: (1) ∀W, Loss(W) ≥ 0, and Loss(W ∗) = 0.
(2) If Loss(W) = 0 then ∀c ∈ C, the expert policy π∗c is the optimal policy w.r.t. reward cTW.

To evaluate the loss, the optimal policy π̂c(W) and its features expectations µ(π̂c(W)) must be
computed for all contexts. For a specific context, finding π̂c(W) can be solved with standard RL
methods such as Value or Policy Iteration. Computing µ(π̂c(W)) is equivalent to policy evaluation
(solving linear equations).

The challenge is that Eq. (1) is is not differentiable in W . We tackle this problem using two methods
for computing descent directions that do not involve differentiation: (i) computing subgradients and
(ii) randomly perturbing the loss function. In addition, as the loss is defined in expectation over the
contexts, computing it requires to calculate the optimal policy for all contexts. We deal with this issue
at the end of Section 3.1. In the special case that fW (c) is a linear function, Eq. (1) is convex. The
following Lemma characterizes Eq. (1) in this case.

Lemma 2. Let Llin(W) = Ec
[
cTW ·

(
µ(π̂c(W))−µ(π∗c)

)]
. We have that: (1) Llin(W) is a convex

function. (2) g(W) = Ec
[
c�

(
µ(π̂c(W))− µ(π∗c)

)]
is a sub gradient of Llin(W). (3) Llin is a

Lipschitz continuous function, with Lipschitz constant L = 2
1−γ w.r.t. ‖·‖∞ and L = 2

√
dk

1−γ w.r.t. ‖·‖2.

A technical proof (by definition) is provided in the supplementary material. Note that g(W) ∈ Rd×k;
we will sometimes refer to it as a matrix and sometimes as a flattened vector, no confusion will arise.
Remark 1. The Lipschitz of LLin(W) is related to the simulation lemma (Kearns & Singh, 2002); a
small change in the reward results in a small change in the optimal value.
Remark 2. As g(W) is a subgradient of Loss(W), it can be used to back-propagate DNNs. Clearly,
we cannot guarantee convexity (hence no theoretical guarantees), but we can design Loss(W) to be
Lipschitz continuous in W using the methods presented in Cisse et al. (2017); Arjovsky et al. (2017).
Remark 3. The subgradient g(W) is given in expectation over contexts, and in expectation over
trajectories (feature expectations). We will later see how to replace it with an unbiased estimate,
which can be computed by observing a single expert trajectory for a single context.

3.1 MIRRORED DESCENT FOR COIRL

Lemma 2 identifies LLin(W) as a convex function and provides a method to compute its subgradients.
A standard method for minimizing a convex function over a convex set is the subgradient projection
algorithm (Bertsekas, 1997): wt+1 = ProjW{wt − αtg(wt)}, where f(wt) is a convex function,
g(wt) is a subgradient of f(wt), and αt the learning rate.W is a convex set, and specifically, we
consider the `2 ball (Abbeel & Ng, 2004) and the simplex (Syed & Schapire, 2008)1. We focus on

1Scaling of the reward by a constant does not affect the resulting policy, thus, these sets are not restricting.

3

Under review as a conference paper at ICLR 2020

Algorithm 1 MDA for COIRL

input: a convex set W , T number of itera-
tions
initialize w1 ∈ W
for t = 1, . . . , T do

Observe c, µ(π∗c)
Compute π̂c(W), µ(π̂c(W))
Compute gt according to Lemma 2
if PSGD then

αt = (1− γ)
√

1
2dkt

wt+1 = wt − αtgt
if ‖wt+1‖ > 1 then

wt+1 = wt+1/ ‖wt+1‖2
else if Exponential weights then

αt = (1− γ)
√

log(dk)
2t

for i = 1, . . . , dk do
wt+1(i) = wt(i) exp (−αtgt(i))

wt+1 = wt+1/
∑
i wt+1(i)

return 1
t

∑T
t=1 wt

Algorithm 2 ES for COIRL

input: step sizes {αt}Tt=1s, noise STD σ, num-
ber of evaluations m and smoothing parameter
ν > 0
initialize: W ∈ Rk
for t = 1, . . . , T do

Observe c, µ(π∗c)
for j = 1, ...,m do

uj ∼ N k(0, σ2)

Lossj(W) = Loss
(
W +

uj
||uj ||ν

)
dLoss(W) =

∑m
j=1 Lossj(W)

uj
||uj ||ν

If Loss(W − αt
b dLoss(W)) < Loss(W)

then W = W − αt
mσdLoss(W)

return W

a generalization of the subgradient projection algorithm that is called the mirror descent algorithm
(Nemirovsky & Yudin, 1983, MDA): wt+1 = arg minw∈W

{
w · ∇f (wt) + 1

αt
Dψ(w,wt)

}
, where

Dψ(w,wt) is a Bregman distance2, associated with a strongly convex function ψ. The following
theorem characterizes the convergence rate of MDA.

Theorem 1 (Convergence rate of MDA). Let ψ be a σ-strongly convex function onW w.r.t. ‖·‖, and
let D2 = supw1,w2∈W Dψ(w1, w2). Let f be convex and L-Lipschitz continuous w.r.t. ‖·‖. Then,

MDA with αt = D
L

√
2σ
t satisfies: f

(
1
T

∑T
s=1 xs

)
− f(x∗) ≤ DL

√
2
σT .

We refer the reader to Beck & Teboulle (2003) and Bubeck (2015) for the proof. Next, we provide
two MDA instances (see, for example Beck & Teboulle (2003) for derivation) and analyze them for
COIRL.

Projected subgradient descent (PSGD): LetW be an `2 ball with radius 1. Fix || · ||2, and ψ(w) =
1
2 ||w||

2
2. ψ is strongly convex w.r.t. || · ||2 with σ = 1. The associated Bregman divergence is

given by Dψ(w1, w2) = 0.5||w1 − w2||22. Thus, mirror descent is equivalent to PSGD. D2 =

maxw1,w2∈W Dψ(w1, w2) ≤ 1, and according to Lemma 2, L = 2
√
dk

1−γ . Thus, we have that after T

iterations Llin
(

1
T

∑T
t=1 wt

)
− Llin(w∗) ≤ O

(√
dk

(1−γ)
√
T

)
.

Exponential Weights (EW): Let W be the standard dk − 1 dimensional simplex. Let ψ(w) =∑
i w(i) log(w(i)). ψ is strongly convex w.r.t. || · ||1 with σ = 1. We get that the associated Bregman

divergence is given by Dψ(w1, w2) =
∑
i w1(i) log(w1(i)

w2(i)), also known as the Kullback-Leibler
divergence. In addition, D2 = maxx,y∈W Dψ(w1, w2) ≤ log(dk) and according to Lemma 2,
L = 2

1−γ . Furthermore, the projection onto the simplex w.r.t. to this distance amounts to a simple
renormalization w ← w/||w||1. Thus, we get that MDA is equivalent to the exponential weights

algorithm and Llin
(

1
T

∑T
t=1 wt

)
− Llin(w∗) ≤ O

(√log(dk)

(1−γ)
√
T

)
.

Practical MDA: One of the “miracles” of MDA is its robustness to noise. If we replace gt with an
unbiased estimate g̃t, such that Eg̃t = gt and E ‖g̃t‖ ≤ L, we obtain the same convergence results
as in Lemma 2 (Robbins & Monro, 1951) (see, for example, (Bubeck, 2015, Theorem 6.1)). Such
an unbiased estimate can be obtained in the following manner: (i) sample a context ct, (ii) compute

2We refer the reader to Appendix C for definitions of the Bregman distance, the dual norm, etc.

4

Under review as a conference paper at ICLR 2020

µ(π∗
cTt wt

), (iii) observe a single expert demonstration τEi = {si0, a0, s
i
1, a1, . . . , }, where ai is chosen

by the expert policy π∗
cTt w

∗ (iv) let µ̂i =
∑
t∈[0,...,|τEi |−1] γ

tφ(sit) be the accumulated discounted
features across the trajectory such that Eµ̂i = µ(π∗c).

The challenge is, that for µ̂i to be an unbiased estimate of µ(π∗
cTt w

∗), τEi needs to be of infinite length.
There are two ways in which we can tackle this issue. We can either (1) execute the expert trajectory
online, and terminate it at each time step with probability 1− γ (as in (Kakade & Langford, 2002)),
or (2) execute a trajectory of length H = 1

1−γ log(1/εH). The issue with the first approach is that
since the trajectory length is unbounded, the estimate µ̂i cannot be shown to concentrate to µ(π∗c) via
Hoeffding type inequalities. Nevertheless, it is possible to obtain a concentration inequality using
the fact that the length of each trajectory is bounded in high probability (similar to Zahavy et al.).
The second approach can only guarantee that ‖gt − Eg̃t‖ ≤ εH (Syed & Schapire, 2008). Therefore,
using the robustness of MDA to adversarial noise (Zinkevich, 2003), we get that MDA converges with
an additional error of εH , i.e., Llin

(
1
T

∑T
t=1 wt

)
− Llin(w∗) ≤ O

(
1√
T

)
+ εH . While this sampling

mechanism comes with the cost of a controlled bias, usually it is more practical, in particular when
the trajectories are given as a set demonstrations (offline data).

3.2 EVOLUTION STRATEGIES FOR COIRL

To minimize Eq. (1), we also design a derivative free algorithm (Algorithm 2) that is based on
Evolution Strategies (Salimans et al., 2017, ES). For convex optimization problems, ES is a gradient-
free descent method that is based on computing finite differences (Nesterov & Spokoiny, 2017),
whose sample complexity is provided below in Theorem 2. The Theorem is given in terms of the
Lipschitz constant, which is upper bounded by 2

√
dk

1−γ (Section 3.1). While this approach has looser
upper-bound guarantees compared to MDA (Theorem 1), Nesterov & Spokoiny (2017) observed that
in practice, it often outperforms subgradient based methods. Thus, we test this method empirically
and compare it with the subgradient method (Section 3.1). ES is also known to perform well in
practice, even with nonconvex objectives. Specifically, Salimans et al. (2017) has shown that ES can
be used to optimize the parameters of a DNN to solve challenging high dimensional RL tasks like
playing Atari.

Theorem 2 (ES Convergence Rate (Nesterov & Spokoiny, 2017)). Let Llin(W) be a non-smooth
convex function with Lipschitz constant L, such that ||x0 − x∗|| ≤ D, step size of αt =

D
(dk+4)

√
T+1L

and ν ≤ ε
2L
√
dk

then in T = 4(dk+4)2D2L2

ε2 ES finds a solution which is bounded
by EUT−1

[Llin(x̂T)]− Llin(x∗) ≤ ε, where UT = {u0, . . . , uT } denotes the random variables of the
algorithm up to time T and x̂T = arg mint=1,...,T Llin(xt).

3.3 ELLIPSOID ALGORITHMS FOR COIRL

Algorithm 3 Ellipsoid algorithm for COIRL

Initialize: Θ0 ← B∞(0, 1) ={x ∈ Rd·k : ||x||∞ ≤ 1}
Θ1 ← MVEE(Θ0)
for t = 1, 2, . . . do

Observe ct, let W t be the center of Θt

Play episode using π̂t = arg maxπ V
π
cTt Wt

if V ∗
cTt W

∗ − V π̂tcTt W∗ > ε then
µ(π∗ct) is revealed
Let at = ct �

(
µ(π∗ct)− µ(π̂t)

)
Θt+1← MVEE

({
θ ∈ Θt : θTat ≥WT

t at
})

else
Θt+1 ← Θt

The final algorithm we consider is an el-
lipsoid method, introduced to the IRL set-
ting by Amin et al. (2017). In this sec-
tion we extend it to the contextual set-
ting, specifically, we focus on finding a
linear mapping W and further assume
that W = {W : ||W ||∞ ≤ 1}, and that
W ∗ ∈ W .

The algorithm maintains an ellipsoid-
shaped feasibility set that contains W ∗.
At any step, the current estimation Wt of
W ∗ is defined as the center of the ellip-
soid, and the agent acts optimally w.r.t.
this estimation. If the agent performs sub-
optimally, the expert provides a demonstration in the form of the optimal feature expectations for ct,
µ(π∗ct). The feature expectations are used to generate a linear constraint (hyperplane) on the ellipsoid
that is crossing its center. Under this constraint, we construct a new feasibility set that is half of the

5

Under review as a conference paper at ICLR 2020

previous ellipsoid, and still contains W ∗. For the algorithm to proceed, we compute a new ellipsoid
that is the minimum volume enclosing ellipsoid (MVEE) around this ”half-ellipsoid” 3. These updates
are guaranteed to gradually reduce the volume of the ellipsoid (a well-known result (Boyd & Barratt,
1991)) until its center is a mapping which induces ε-optimal policies. Theorem 3 shows that this
algorithm achieves a polynomial upper bound on the number of sub-optimal time-steps. Finally, note
that in Algorithm 3 we use an underline notation to denote a ”flattening” operator for matrices, and �
to denote a composition of an outer product and the flattening operator. The proofs in this section are
provided in the supplementary material, and are adapted from (Amin et al., 2017).
Theorem 3. In the linear setting where R∗c(s) = cTW ∗φ(s), for an agent acting according to
Algorithm 1, the number of rounds in which the agent is not ε-optimal is O(d2k2 log(dk

(1−γ)ε)).

Remark 4. Note that the ellipsoid method presents a new learning framework, where demonstrations
are only provided when the agent performs sub-optimally. Thus, the theoretical results in this section
cannot be directly compared with those of the descent methods. We further discuss this in the
experiments and discussion sections.
Remark 5. The ellipsoid method does not require a distribution over contexts - an adversary may
choose them. MDA can also be easily extended to the adversarial setting via known regret bounds on
online MDA (Hazan, 2016).

Practical ellipsoid algorithm: In many real-world scenarios, the expert cannot evaluate the value of
the agent’s policy and cannot provide its policy or feature expectations. To address these issues, we
follow Amin et al. (2017) and consider a relaxed approach, in which the expert evaluates each of the
individual actions performed by the agent rather than its policy, and provides finite rollouts instead
of a policy or feature expectations (see the supplementary material (Algorithm 4) for pseudo code).
We define the expert criterion for providing a demonstration to be Q∗

cTt W
∗(s, a) + ε < V ∗

cTt W
∗(s) for

each state-action pair (s, a) in the agent’s trajectory.

Near-optimal experts: In addition, we relax the optimality requirement of the expert and instead
assume that, for each context ct, the expert acts optimally w.r.t. W ∗t which is close to W ∗; the expert
also evaluates the agent w.r.t. this mapping. This allows the agent to learn from different experts,
and from non-stationary experts whose judgment and performance slightly vary over time. If a
sub-optimal action w.r.t. W ∗t is played at state s, the expert provides a roll-out of H steps from s
to the agent. As this roll-out is a sample of the optimal policy w.r.t. W ∗t , we aggregate n examples
to assure that with high probability, the linear constraint that we use in the ellipsoid algorithm does
not exclude W ∗ from the feasibility set. Note that these batches may be constructed across different
contexts, different experts, and different states from which the demonstrations start. Theorem 4 below
upper bounds the number of sub-optimal actions that Algorithm 4 chooses.4

Theorem 4. For an agent acting according to Algorithm 4 , with probability of at least 1 − δ,
for H = d 1

1−γ log(8k
(1−γ)ε)e and n = d 512k2

(1−γ)2ε2 log(4dk(dk + 1) log(16k
√
dk

(1−γ)ε)/δ)e, if ∀t :

W ∗t ∈ B∞(W ∗, (1−γ)ε
8k) ∩ Θ0 the number of rounds in which a sub-optimal action is played is

O
(

d2k4

(1−γ)2ε2 log
(

dk
(1−γ)δε log(dk

(1−γ)ε)
))

.

4 EXPERIMENTS

The simulations in this section include two domains: (1) an autonomous driving simulation (Abbeel
& Ng, 2004), that we adapted to the contextual setup and (2) a medical treatment regime, constructed
from a data set of expert (clinician) trajectories for treating patients with sepsis5. In each of these
domains we compare the algorithms in two setups: the ellipsoid learning framework and an offline
framework. All the results are averaged across 10 random seeds in Section 4.1 and 5 seeds in
Section 4.2 (we report the mean and the standard deviation). Due to space considerations we present
the simulations in the ellipsoid framework only for the car domain, and the simulations in the offline
framework only in the dynamic treatment regime. Complementary simulations can be found in the
supplementary material.

3This procedure follows a sequence of linear algebra operations which we explain in the appendix.
4MDA also works with near optimal experts due to the robustness of MDA. The analysis of this case is

identical to the analysis of biased trajectories, as we discuss in the end of Section 3.1.
5The data, code and implementation of our algorithms can be found in github.com/CIRLMDP/CIRL.

6

Under review as a conference paper at ICLR 2020

4.1 DRIVING SIMULATION – THE ELLIPSOID FRAMEWORK

In the ellipsoid framework, an expert evaluates the agent policy. If the agent’s policy is ε sub-optimal,
the expert provides the agent its feature expectations; otherwise, no demonstration is given. The
algorithm performs learning in between demonstrations. This setup enables a proper comparison with
the ellipsoid algorithm, which requires the additional expert supervision. We measure performance
w.r.t. the following criteria: (1) # demonstrations – the amount of contexts on which each algorithm
requested an expert demonstration (y-axis) as a function of time, i.e., the total number of contexts
(x-axis). (2) Value – the difference in value, between the agent policy and the expert policy w.r.t. the
true reward mapping, i.e.,

∑
c∈Ctest

fW∗(c) ·
(
µ(π̂c(W))− µ(π∗c)

)
, where Ctest is a holdout (test) set

of contexts. The x-axis measures the amount of demonstrations given.

Setup. This domain simulates a three-lane highway with two visible cars - cars A and B (illustration
provided in the appendix). The agent, controlling car A, can drive both on the highway and off-road.
Car B drives on a fixed lane, at a slower speed than car A. Upon leaving the frame, car B is replaced
by a new car, appearing in a random lane at the top of the screen. The feature vector φ(s) is composed
of 3 features: (1) a speed feature, (2) a collision feature, which is valued 0 in case of a collision and
0.5 otherwise, and (3) an off-road feature, which is 0.5 if the car is on the road and 0 otherwise.

In this task, the context vector implies different priorities for the agent; should it prefer speed or
safety? Is going off-road to avoid collisions a valid option? For example, an ambulance will prioritize
speed and may allow going off-road as long as it goes fast and avoids collisions, while a bus will
prioritize avoiding both collisions and off-road driving as safety is its primary concern. To demonstrate
the effectiveness of our solutions, the mapping f : C 7→ [−1, 1]k is constructed in a way that induces
different behaviors for different contexts, making generalization a challenging task. We provide
additional details on the domain as well as the hyper parameter selection in the appendix.

Linear: The optimal behavior is defined using a linear mapping W ∗. In this setting, all three
approaches obtain competitive results, in terms of generalization, although the ES is capable of
obtaining these results faster, as is seen through the regret and number of required demonstrations.

(a) # demonstrations (b) Value (c) # demonstrations (d) Value

Figure 2: Experimental results in the autonomous driving simulation with a linear mapping (a & b)
and a nonlinear mapping (c & d)

Nonlinear: For the nonlinear task, we consider two reward coefficient vectors r1 and r2, and define
the mapping by f∗(c) = r1 if ||c||∞ ≥ 0.55, and r2 otherwise - an illustration is provided in the
appendix. In order to learn the nonlinear mapping, we represent fW (c) using a DNN, a multi-layered
perceptron, which maps from context to reward vector. DNNs have proven to be capable of extracting
meaningful features from complex high-dimensional data, e.g., images - in these scenarios, the linear
assumption no longer holds, yet DNNs often overcome such issues. In this setting, the superiority
of the descent methods rises; as the linear assumption in the ellipsoid algorithm is not met, it fails
to generalize and keeps requiring new demonstrations. We believe these results to be crucial when
considering real-life applications, in which the problem is not necessarily linear. Such cases highlight
the strength of the descent methods, which, as Fig. 2 shows, are capable of scaling to nonlinear high
dimensional mappings.

4.2 DYNAMIC TREATMENT REGIME – THE OFFLINE FRAMEWORK

In the offline framework, we focus on the ability to learn from previously collected data. A data set
of previously collected trajectories is given, such that a single trajectory of finite length is observed for
each context and no context is observed more than once. We measure performance w.r.t. the following

7

Under review as a conference paper at ICLR 2020

criteria: (1) Value – as in the ellipsoid framework above, but here the x-axis corresponds to the
amount of iterations. Each iteration corresponds to a single subgradient step, where the subgradient is
computed from a mini batch of 10 contexts. (2) Loss – as in Eq. (1). (3) Accuracy % – the percent of
actions on which the expert and the agent agree on. All these criteria are evaluated on a holdout set.

Setup. In the dynamic treatment regime, there is a clinician which acts to improve a sick patient’s
medical condition. The context (static information) represents patient features, which do not change
during treatment, such as age and gender. The state summarizes the dynamic measurements of the
patient, e.g., blood pressure and EEG readouts. The actions are the forms of intervention a clinician
may take, including combinations of various treatments provided in parallel. Dynamic treatment
regimes are particularly useful for managing chronic disorders and fit well into the broader paradigm
of personalized medicine (Komorowski et al., 2018; Prasad et al., 2017).

The agent needs to choose the right treatment for a patient that is diagnosed with sepsis. We use the
MIMIC-III data set (Johnson et al., 2016) and follow the data processing steps that were taken in
Jeter et al. (2019). As performing off-policy evaluation is not possible using this data set, due to it not
satisfying basic requirements (Gottesman et al., 2018; 2019), we designed a simulator of a CMDP.
The simulator is based on this data set; a complete overview and explanation on how it was created is
provided in the appendix. The mapping W ∗ is linear, W ∗ ∈ R8×42, which we constructed from the
data. In the simulator, the expert acts optimally w.r.t. this W ∗.

Specifically, when treating a sepsis patient, the clinician has several decisions to make, such as
whether or not to provide a patient with vasopressors, drugs which are commonly provided to restore
and maintain blood pressure in patients with sepsis. However, what is regarded as healthy blood
pressure differs based on the age and weight of the patient (Wesselink et al., 2018). In our setting,
W captures this information - as it maps from contextual (e.g., age) and dynamic information (e.g.,
blood pressure) to reward.

Results. Fig. 3 presents the ability of the descent methods to generalize to unseen contexts by learning
from offline data (without supervision). The data is composed of a set of trajectories, i.e., offline data,
that were collected from experts (clinicians treating patients). In each iteration, we sample a mini-
batch of 10 contexts, i.i.d, from the context distribution. For each context, there is a corresponding
expert trajectory of length H = 40. Performance is measured on a holdout set of 300 contexts (that
are sampled from the same context distribution) according to Theorem 1. We can see that both ES
and PSGD attain near-optimal performance using only previously collected expert trajectories.

(a) Loss (b) Value (c) Accuracy %

Figure 3: Experimental results in the dynamic treatment regime with a linear mapping

Looking at Fig. 3a, we can see that all the algorithms manage to minimize the loss to roughly the
same error. The small bias is explained by the fact that we use truncated trajectories (as we discussed
in the practical MDA paragraph) where in the ellipsoid framework experiments we used feature
expectations. We can also see that minimizing the loss leads to policies that attain ε−optimal value
w.r.t. the true reward Fig. 3b. Finally, in Fig. 3 we can see that all the algorithms reach around 70%
accuracy with the expert policy. We emphasize here that 100% accuracy should not be expected for
two reasons: (i) different policies may have the same feature expectations (hence the same value)
but make different decisions (ii) there exists reward for which there is more than one optimal policy.
Nevertheless, Fig. 3 suggests that accuracy is correlated with minimizing the COIRL loss (Eq. (1)).

Finally, we present results in the nonlinear setting. Here, there is a non-linear function of the context
that determines which one of the two reward coefficient vectors is used, i.e., f∗(c) = r1 if age >
0.1, and r2 otherwise. Where age refers to the normalized age of the patient, which is an element

8

Under review as a conference paper at ICLR 2020

(a) Loss (b) Value (c) Accuracy %

Figure 4: Experimental results in the dynamic treatment regime with a non-linear mapping

of the context vector. We use a DNN to learn the mapping and follow Section 3.1 (PSGD). As seen in
Fig. 4, the PSGD algorithm minimizes the loss and achieves a value that is close to that of the expert.
In addition, similarly to Fig. 7, accuracy and performance do not necessarily correlate one to another.

5 RELATED WORK

We begin with a short discussion on contextual policies, i.e., a policy that is a function of both the
state and the context. While there is empirical evidence that learning such a policy may perform
well in practice (e.g., Xu et al. (2018); Fu et al. (2019)), from a theoretical point of view, there exist
hardness results in this setting. Specifically, given an MDP with k + 1 states, there is a reduction
from the training problem of the union of k hyperplanes to the policy (see appendix E for proof).

Alternatively, one may consider applying an AL algorithm on a single, large MDP that includes all
the states and the contexts. For a concrete example, consider a reduction from the CMDP model to
a large MDP where each state is expanded by concatenating the context to it. The new states are
s′ = (s, c), and the new features are φ(s′) = c�φ(s). Generally speaking, applying an AL algorithm
to this large MDP will give the same scalability and sample complexity as COIRL. However, as the
large MDP has |S ′| = |C||S| states, computing the optimal policy in each iteration of the algorithm
will require at least |C| times more time.

To illustrate this problem we conducted a simple grid world experiment on a 3× 4 grid world MDP
(with 12 states) and one-hot features (φ(si) = ei ∈ R12). The dynamics are deterministic, and the
actions correspond to going up, down, left and right (with cyclic transitions on the borders). The
contexts correspond to ”preferences” on the grid; mathematically, each context is sampled from a
uniform distribution over the simplex. The mapping W ∗ is set to be I12·12, and for AL, we let w∗ to
be a flattened version of W ∗.

(a) Loss (b) Value (c) Accuracy %

Figure 5: Comparison between COIRL and AL on a large MDP

We compare the performance of PSGD with the projection algorithm of (Abbeel & Ng, 2004) in
Fig. 5. We measure performance by three metrics: run-time, value, and accuracy. Inspecting the
results, we can see that AL in the large MDP requires significantly more time to run as the number
of contexts grows, while the run time of PSGD (COIRL) is not affected by the number of contexts.
We can also see that both methods achieve roughly the same performance: COIRL performs slightly
better in terms of value while AL performs slightly better in terms of accuracy. To conclude, AL on
a large MDP does not scale to problems with large context spaces. In addition, this construction is

9

Under review as a conference paper at ICLR 2020

only possible when there is a finite number of context and does not provide generalization results. We
avoided all of these issues in the COIRL framework.

6 SUMMARY AND DISCUSSION

In this work, we formulated and studied the COIRL problem. We presented two types of algorithms
to solve it: (1) cutting plane methods (ellipsoid) and (2) iterative descent approaches (MDA and ES).
We summarize the theoretical guarantees of the different algorithms in Table 1.

We can see that the iterative descent approaches have better dependence in dk than the ellipsoid
method, i.e., they scale better with the dimensions of the problem. In particular, the EW algorithm
has a logarithmic dependence in dk, which makes it computationally comparable to standard IRL/AL
(on a single, noncontextual MDP). In addition, the iterative methods extend naturally to the more
general scenario where the mapping from contexts to rewards is not linear, and fW is modeled as a
DNN. As Sutton (2019) puts it: ”The biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are ultimately the most effective, and by a large
margin”.

The ellipsoid method has better sample complexity (as a function of ε) than the descent methods in
the deterministic setting. However, both methods attain the same complexity in the more realistic,
stochastic setting. Our empirical findings suggest that the iterative methods always outperform the
ellipsoid algorithm. Among these methods, we found the ES method to perform better than the MDA
method. Similar findings were reported in (Nesterov & Spokoiny, 2017) for other convex problems.

The iterative methods have another advantage over the ellipsoid method – they can learn from
previously collected demonstrations (i.e., offline learning). The ellipsoid framework, on the other
hand, requires expert supervision throughout the entire learning process.

Finally, an attractive property of the ellipsoid learning framework is its safety, i.e., an IRL algorithm
that is being supervised by an expert will never perform sub-optimally. In each step, either that the
agent performs ε-optimally or that the expert acts on its behalf (provides a demonstration). This
property is appealing in mission-critical domains where errors have a high cost; for instance, in
health-care, a failure may result in a loss of lives. In the experimental section, we have seen that we
can use this learning framework for the iterative methods as well while enjoying improved efficiency.

Scalability Sample Complexity Extension
to DNNs

Deterministic Stochastic Deterministic Stochastic

MDA PSGD O(dk)

O
(

1
ε2

)
O
(

1
ε2

) 3

EW O(log dk) 7

ES O(dk) O(d2k2) 3

Ellipsoid O(d2k2) O(d2k4) O
(

1
log(1/ε)

)
7

Table 1: Comparison between various approaches.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1. ACM, 2004.

Kareem Amin, Nan Jiang, and Satinder Singh. Repeated inverse reinforcement learning. In Advances
in Neural Information Processing Systems, pp. 1815–1824, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31:167–175, 2003.

S Clark Berngard, Jeremy R Beitler, and Atul Malhotra. Personalizing mechanical ventilation for
acute respiratory distress syndrome. Journal of thoracic disease, 8(3):E172, 2016.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Stephen P Boyd and Craig H Barratt. Linear controller design: limits of performance. Prentice Hall
Englewood Cliffs, NJ, 1991.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends R© in
Machine Learning, 8(3-4):231–357, 2015.

Bibhas Chakraborty and Susan A Murphy. Dynamic treatment regimes. Annual review of statistics
and its application, 1:447–464, 2014.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 854–863. JMLR. org, 2017.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals: Inverse
reinforcement learning for vision-based instruction following. arXiv preprint arXiv:1902.07742,
2019.

Omer Gottesman, Fredrik Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan,
Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, et al. Evaluating reinforcement learning
algorithms in observational health settings. arXiv preprint arXiv:1805.12298, 2018.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
medicine, 25(1):16–18, 2019.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends R© in Optimization,
2(3-4):157–325, 2016.

Theis Itenov, Daniel Murray, and Jens Jensen. Sepsis: Personalized medicine utilizing
‘omic’technologies—a paradigm shift? In Healthcare, pp. 111. Multidisciplinary Digital Publishing
Institute, 2018.

Russell Jeter, Christopher Josef, Supreeth Shashikumar, and Shamim Nemati. Does the ”artificial
intelligence clinician” learn optimal treatment strategies for sepsis in intensive care?, 2019. URL
https://github.com/point85AI/Policy-Iteration-AI-Clinician.git.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. Mimic-iii, a
freely accessible critical care database. Scientific Data, 3:160035, May 2016. ISSN 2052-4463.
doi: 10.1038/sdata.2016.35. URL http://dx.doi.org/10.1038/sdata.2016.35.

11

Under review as a conference paper at ICLR 2020

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
International conference on Machine learning, pp. 267–274, 2002.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002.

Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. The
artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care.
Nature Medicine, 24(11):1716, 2018.

Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learning
with deep successor features. arXiv preprint arXiv:1903.10077, 2019.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq, Laurent
Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

James MacQueen et al. Some methods for classification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.
281–297. Oakland, CA, USA, 1967.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with
continuous side information. In Algorithmic Learning Theory, pp. 597–618, 2018.

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. In Problem complexity and method
efficiency in optimization. Wiley, New York, 1983.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Niranjani Prasad, Li-Fang Cheng, Corey Chivers, Michael Draugelis, and Barbara E Engelhardt. A
reinforcement learning approach to weaning of mechanical ventilation in intensive care units. UAI,
2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo Celi, Peter Szolovits, and Marzyeh
Ghassemi. Deep reinforcement learning for sepsis treatment. arXiv preprint arXiv:1711.09602,
2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Richard S Sutton. The bitter lesson, March 2019. URL http://www.incompleteideas.net/IncIdeas/
BitterLesson.html.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. In
Advances in neural information processing systems, pp. 1449–1456, 2008.

EM Wesselink, TH Kappen, HM Torn, AJC Slooter, and WA van Klei. Intraoperative hypotension
and the risk of postoperative adverse outcomes: a systematic review. British journal of anaesthesia,
2018.

Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over intent
via meta-inverse reinforcement learning. arXiv preprint arXiv:1805.12573, 2018.

Tom Zahavy, Alon Cohen, Haim Kaplan, and Yishay Mansour. Average reward reinforcement
learning with unknown mixing times. arXiv preprint arXiv:1905.09704, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 928–936,
2003.

12

Under review as a conference paper at ICLR 2020

Appendices
CONTENTS

A Complementary simulations 14

A.1 Autonomous driving simulation . 14

A.2 Dynamic treatment regime . 14

B Experimental details 15

B.1 Autonomous driving simulation . 15

B.2 Dynamic treatment regime . 16

C Proofs for Section 3 18

D Proofs & pseudo code for Section 3.3 20

D.1 Ellipsoid Algorithm for trajectories . 20

D.2 MVEE computation . 20

D.3 Proof of Theorem 3 . 20

D.4 Proof of Theorem 4 . 21

E Hardness of learning contextual policies 23

13

Under review as a conference paper at ICLR 2020

A COMPLEMENTARY SIMULATIONS

A.1 AUTONOMOUS DRIVING SIMULATION

Similar to Section 4.2, we compare the various methods in the offline framework. We can see that all
the algorithms manage to minimize the loss, and achieve near optimal value. We can also see that
they achieve high accuracy with the expert policy but not 100%.

(a) Loss (b) Value (c) Accuracy %

Figure 6: Offline framework, autonomous driving simulation, linear mapping

A.2 DYNAMIC TREATMENT REGIME

Similar to Section 4.1, we compare the various methods in the ellipsoid framework . We observe that
ES outperforms the ellipsoid method. Additionally, we compare the accuracy, i.e., how often does
the policy derived from W match the expert’s policy, which is derived from W ∗. As IRL is not a
supervised learning problem, we observe that while there is a correlation between the success in the
task and the ability to act similarly to the experts policy - this correlation is not strict, in the sense
that the agent is capable of finding near-optimal policies with a relatively high miss rate (accuracy of
approximately 80%). For more intuition, see the proof of Lemma 1.

(a) # demonstrations (b) Value and miss %

Figure 7: Ellipsoid framework, dynamic treatment regime, linear mapping

14

Under review as a conference paper at ICLR 2020

B EXPERIMENTAL DETAILS

In this section, we describe the technical details of our experiments, including the hyper-parameters
used. To solve MDPs, we use value iteration. Our implementation is based on a stopping condition
with a tolerance threshold, τ , such that the algorithm stops if |Vt−Vt−1| < τ. In the driving simulation
we used τ = 10−4 and in the sepsis treatment we use τ = 10−3.

B.1 AUTONOMOUS DRIVING SIMULATION

Figure 8: Driving simulator

The environment is modeled as a tabular MDP that consists of 1531 states. The speed is selected
once, at the initial state, and is kept constant afterward. The other 1530 states are generated by 17
X-axis positions for the agent’s car, 3 available speed values, 3 lanes and 10 Y-axis positions in which
car B may reside. During the simulation, the agent controls the steering direction of the car, moving
left or right, i.e., two actions.

In these experiments, we define our mappings in a way that induces different behaviours for different
contexts, making generalization a more challenging task. Specifically, for the linear setting we

use W ∗ =
(−1 0.75 0.75

0.5 −1 1
0.75 1 −0.75

)
, before normalization. For our nonlinear mapping, contexts with

||c||∞ > 0.55 are mapped to reward coefficients vector (1,−1,−0.05), otherwise they are mapped to
(−0.01, 1,−1), which induce the feature expectations (9.75, 3.655, 5), (5.25, 5, 2.343) respectively.
The decision regions for the nonlinear mapping are visualized in Appendix B.1. The contexts are
sampled uniformly in the 2-dimensional simplex. We evaluate all algorithms on the same sequences
of contexts, and average the results over 20 such sequences. The algorithms were modified to fit the
Ellipsoid framework; instead of iterating over the whole data, the algorithms iterate over the given
expert feature expectations, one at a time, until convergence, i.e. every timestep a new demonstration
is presented.

Figure 9: Visualization of nonlinear decision boundaries

Hyper-parameter selection and adjustments:

Ellipsoid Framework: For the linear model the algorithms maintained a 3× 3 matrix to estimate
W ∗. Ellipsoid: By definition, the ellipsoid algorithm is hyper-parameter free and does not require
tuning.

PSGD: The algorithm was executed with with the parameters: α0 = 0.3, αt = 0.9tαt−1, and iterated
for 40 epochs. An outer decay on the step size was added for faster convergence, the initial α0

15

Under review as a conference paper at ICLR 2020

becomes 0.94 · α0 every time a demonstration is presented. The gradient, gt is normalized to be
gt = gt

gt
||gt||∞ and the calculated step is taken if: cWt

(
µ(π̂tc)−µ(π∗c)

)
> cWt+1

(
µ(π̂t+1

c)−µ(π∗c)
)
,

where π̂tc denotes the optimal policy for a context c according to Wt.

ES: The algorithm was executed with the parameters: σ = 10−3,m = 250, α = 0.1 with decay rate
of 0.95, for 50 iterations which didn’t iterate randomly over one the contexts, but rather used the
entire training set (all of the observed contexts and expert demonstrations up to the current time-step)
for each step. The matrix was normalized according to || · ||2, and so was the step calculated by the
ES algorithm, before it was multiplied by α and applied.

For the nonlinear setting, the model used for the ES method was a fully connected DNN, with layers
of sizes 15, 10, 5, 3. The activation function used was the leaky ReLU function, with a parameter
of α = 0.1. Note that we can’t normalize the parameters here as in the linear case; therefore an
L2-normalization layer is added to the output. The same parameters were used as in the linear case,
except with 120 iterations over the entire training set. They were originally optimized for this model
and setting and worked as-is for the linear environment. As we aim to estimate the gradient, a small
σ = 10−3 was used and performed best. The number of points,m = 250, was selected as fewer points
produced noisy results. The step size, decay rate and the number of iterations were 0.1, 0.96, 120
respectively, and were selected in a way that produced fast yet accurate convergence of the loss. Note
that here the steps were also normalized before application, and the normalization was applied per
layer. For PSGD, a similar network was used. Specifically, it had layer sizes 14, 10, 6, 3, and the same
leaky ReLU activation function was used in this network. In parallel to the normalization used for
the ES model, here we used batch normalization and gradient clipping. The learning rate was set
to 0.1 · 0.98t and 120 iterations were performed. For this result, as with the ES method, the batch
consisted of all available training data.

Offline Framework: In the offline framework we compute the subgradients using expert trajectories
of length 40, instead of the feature expectations. In this framework at every iteration we sample a
mini batch of 10 contexts (from a finite set) and their corresponding trajectories (sampled from the
expert policy and dynamics) then taking one descent step according to them. The generalization
is measured over 80 holdout contexts that are referred as the test set, where the W that is used to
calculate the feature expectations of the agent is fitted to the EW algorithm requirement to be in the
dk− 1 simplex. The PSGD and the EW algorithms are configured as the theory specifies, where each
descent step is calculated from the whole batch. The ES algorithm is applied with the parameters
σ = 10−3,m = 500, α = 0.1 with decay rate 0.95, for every iteration.

B.2 DYNAMIC TREATMENT REGIME

The environment we describe in 4.2 simulates a decision-making process for treating sepsis. Sepsis is
a life-threatening severe infection, where the treatment applied to a sepsis patient is crucial for saving
his life. To create a sepsis treating simulator, we leverage the MIMIC-III data set (Johnson et al.,
2016). This data set includes data from hospital electronic databases, social security, and archives
from critical care information systems, that had been acquired during routine hospital care. We follow
the data processing steps that were taken in Jeter et al. (2019) to extract the relevant data in a form
of normalized measurements of sepsis patients during their hospital admission and the treatments
that were given to each patient. The measurements include dynamic measures, e.g., heart rate, blood
pressure, weight, body temperature, blood analysis standard measures (glucose, albumin, platelets
count, minerals, etc.), as well as static measures such as age, gender, re-admission (of the patient),
and more.

The processed data from Jeter et al. (2019) consists of 5366 trajectories, each representing the
sequential treatment provided by a clinician to a patient. At each time-step, the available information
for each patient consists of 8 static measurements and 41 dynamic measurements. In addition,
each trajectory contains the reported actions performed by the clinician (the number of fluids and
vasopressors given to a patient at each time-step and binned to 25 different values), and there is a
mortality signal which indicates whether the patient was alive 90 days after his hospital admission.

In order to create a tabular CMDP from the processed data, we separate the static measurements of
each patient and keep them as the context. We cluster the dynamic measurements using K-means
(MacQueen et al., 1967). Each cluster is considered a state and the coordinates of the cluster centroids
are taken as its features φ(s). We construct the transition kernel between the clusters using the

16

Under review as a conference paper at ICLR 2020

empirical transitions in the data given the state and the performed actions. Two states are added to the
MDP and the feature vector is extended by 1 element, corresponding to whether or not the patient
died within the 90 days following hospital release. This added feature receives a value of 0 on all
non-terminal states, a value of −0.5 for the state representing the patient’s death and 0.5 for the
one representing survival. In addition, as the data is limited, not all state-action pairs are available.
In order to ensure the agent does not attempt to perform such an action for which the outcome is
unknown, we add an additional terminal state. At this state, all features are set to−1 to make it clearly
distinguishable from all other states in the CMDP.

In our simulator, we used the same structure as the raw data, i.e., we used the same contexts prevalent
in the data and the same initial state distribution. Each context is projected onto the simplex and the
expert’s feature expectations for each context are attained by solving the CMDP. While we focus
on a simulator, as it allows us to analyze the performance of the algorithms, our goal is to have a
reward structure which is influenced by the data. Hence, we produce W ∗ by running the ellipsoid
algorithm on trajectories obtained from the data. As done in the Autonomous Driving Simulation, the
algorithms were modified to fit the Ellipsoid framework.

Hyper-parameter selection and adjustments:

Ellipsoid Framework: ES algorithm: the same method as in the autonomous driving is applied, with
the parameters σ = 10−4,m = 1000, α = 0.25 with decay rate 0.95, for 80 iterations over the entire
training set.

Offline Framework: In the offline framework for the linear setting, we compute the subgradients
using expert trajectories of length 40, instead of the exact feature expectations. At every iteration, we
sample a mini batch of 10 contexts (from a finite set) and their corresponding trajectories (sampled
from the expert policy and dynamics) and perform a single descent step. Generalization is measured
over a set of 300 holdout contexts, referred to as the test set, where W is fitted to be in the dk − 1
simplex. The PSGD and the EW algorithms are configured as specified by the theory, where each
descent step is calculated from the entire batch. The ES algorithm is applied with the parameters
σ = 10−4,m = 1000, α = 0.3 with decay rate 0.95, for every iteration.

For the nonlinear setting, the model used for the ES method was a fully connected DNN, with
layers of sizes 24, 42, 42 which include a bias term. The activation function used was the leaky ReLU
function, with a parameter of α = 0.1. In this setting we use trajectories of length 80, mini batch of 32
contexts. The PSGD algorithm uses the gradient computed by back-propagation of the loss function
value on the DNN, where each descent step is calculated from the entire batch. The algorithm is
applied with modified parameters; α = 0.1 with decay rate 0.98, for every iteration.

17

Under review as a conference paper at ICLR 2020

C PROOFS FOR SECTION 3

Definition 1 (Bregman distance). Let ψ :W → R be strongly convex and continuously differential
in the interior ofW . The Bregman distance is defined byDψ(x, y) = ψ(x)−ψ(y)−(x−y) ·∇ψ(y),
where ψ is strongly convex with parameter σ.
Definition 2 (Conjugate function). The conjugate of a function ψ(y), denoted by ψ∗(y) is
maxx∈W {x · y − ψ(x)}.

Example: let ‖ · ‖ be a norm on Rn. The associated dual norm, denoted ‖ · ‖∗, is defined as
‖z‖∗ = sup{zᵀx | ‖x‖ ≤ 1}. The dual norm of ‖ · ‖2 is ‖ · ‖2, and the dual norm of ‖ · ‖1 is ‖ · ‖∞.

Before we begin with the proof of Lemma 2, we make the following observation. By definition,
π̂c(W) is the optimal policy w.r.t. cTW ; i.e., for any policy π we have that

cTW · µ(π̂c(W)) ≥ cTW · µ(π). (2)

Proof of Lemma 1.
Fix W . For any context c, we have that µ(π̂c) is the optimal policy w.r.t. reward fW (c), thus,
fW (c) ·

(
µ(π̂c(W)) − µ(π∗c)

)
≥ 0. Therefore we get that Loss(W) ≥ 0. For W ∗, we have that

µ(π̂c(W)) = µ(π∗c), thus Loss(W ∗) = 0.

For the second statement, note that Loss(W) = 0 implies that ∀c, fW (c)·
(
µ(π̂c(W))−µ(π∗c)

)
= 0.

This can happen in one of two cases. (1) µ(π̂c(W)) = µ(π∗c), in this case π∗c , π̂c(W) have the same
feature expectations. Therefore, they are equivalent in terms of value. (2) µ(π̂c(W)) 6= µ(π∗c), but
fW (c) ·

(
µ(π̂c(W))− µ(π∗c)

)
= 0. In this case, π∗c , π̂c(W) have different feature expectations, but

still achieve the same value w.r.t. reward fW (c). Since π̂c(W) is an optimal policy w.r.t. this reward,
so is π∗c .

Proof of Lemma 2.

1. We need to show that ∀W1,W2 ∈ W,∀λ ∈ [0, 1], we have that

Llin(λW1 + (1− λ)W2) ≤ λLlin(W1) + (1− λ)Llin(W2)

Llin(λW1 + (1− λ)W2)

= Ec
[
cT (λW1 + (1− λ)W2) ·

(
µ
(
π̂c
(
λW1 + (1− λ)W2

))
− µ(π∗c)

)]
= λEc

[
cTW1 ·

(
µ
(
π̂c
(
λW1 + (1− λ)W2

))
− µ(π∗c)

)]
+ (1− λ)Ec

[
cTW2 ·

(
µ
(
π̂c
(
λW1 + (1− λ)W2

))
− µ(π∗c)

)]
≤ λEc

[
cTW1 ·

(
µ
(
π̂c
(
W1

))
− µ(π∗c)

)]
+ (1− λ)Ec

[
cTW2 ·

(
µ
(
π̂c
(
W2

))
− µ(π∗c)

)]
= λLlin(W1) + (1− λ)Llin(W2),

where the inequality follows from Eq. (2).

2. Fix z ∈ W. We have that

Llin(z) = Ec
[
cT z ·

(
µ(π̂c(z))− µ(π∗c)

)]
≥ Ec

[
cT z ·

(
µ(π̂c(W))− µ(π∗c)

)]
= Llin(W) + (z −W) · Ec

[
c�

(
µ(π̂c(W))− µ(π∗c)

)]
,

where the inequality follows from Eq. (2).

3. Recall that a bound on the dual norm of the subgradients implies Lipschitz conti-
nuity for convex functions. Thus it is enough to show that ∀W ∈ W, ‖g(W)‖p =

18

Under review as a conference paper at ICLR 2020

‖Ec
[
c�

(
µ(π̂c(W))− µ(π∗c)

)]
‖p ≤ L. Let p =∞, we have that

‖g(W)‖∞ =
∥∥∥Ecc� (µ(π̂c(W))− µ(π∗c)

)∥∥∥
∞

≤ Ec‖c�
(
µ(π̂c(W))− µ(π∗c)

)
‖∞ (Jensen inequality)

≤ Ec‖c‖∞ ‖µ(πi)− µ(πj)‖∞ ≤
2

1− γ
. (3)

where in Eq. (3) we used the fact that ∀π we have that ‖µ(π)‖∞ ≤
1

1−γ , thus, for any πi, πj ,
‖µ(πi)− µ(πj)‖∞ ≤

2
1−γ

Therefore, L = 2
1−γ w.r.t. ‖·‖∞. Since ‖·‖2 ≤

√
dk ‖·‖∞ we get that L = 2

√
dk

1−γ w.r.t. ‖·‖2 .

19

Under review as a conference paper at ICLR 2020

D PROOFS & PSEUDO CODE FOR SECTION 3.3

D.1 ELLIPSOID ALGORITHM FOR TRAJECTORIES

Algorithm 4 Batch ellipsoid algorithm for COIRL

Initialize: Θ0 ← B∞(0, 1) = {x ∈ Rd·k : ||x||∞ ≤ 1}
Θ1 ← MVEE(Θ0)
i← 0, Z̄ ← 0, Z̄∗ ← 0
for t = 1, 2, 3, ... do

ct is revealed, Let W t be the center of Θt

Play episode using π̂t = arg maxπ V
π
cTt Wt

Θt+1 ← Θt

if a sub-optimal action a is played at state s then
Expert provides H-step trajectory (sE0 = s, sE1 , ..., s

E
H). Let x̂∗,Hi be the H-step sample of

the expert’s feature expectations for ξ′i = 1s: x̂
∗,H
i =

∑H
h=0 γ

hφ(sEh)
Let xi be the agent’s feature expectations for ξ′i : Eξ′i,P,πt [

∑∞
h=0 γ

hφ(sh)]

Denote zi = ct � xi, ẑ∗,Hi = ct � x̂∗,Hi
i← i+ 1, Z̄ ← Z̄ + zi, Z̄

∗ ← Z̄∗ + ẑ∗,Hi
if i = n then

Θt+1← MVEE
({

θ ∈ Θt :
(
θ −W t

)T
· (Z̄

∗

n −
Z̄
n) ≥ 0

})
i← 0, Z̄ ← 0, Z̄∗ ← 0

D.2 MVEE COMPUTATION

This computation is commonly found in optimization lecture notes and textbooks. First, we define
an ellipsoid by {x : (x − c)Q−1(x − c) ≤ 1} for a vector c, the center of the ellipsoid, and an
invertible matrix Q. Our first task is computing Θ1- the MVEE for the initial feasibility set Θ0 =
B∞(0, 1) = {x ∈ Rd·k : ||x||∞ ≤ 1}. The result is of course a sphere around 0: c1 = 0, Q1 = dkI .

For the update Θt+1 ← MVEE
({

θ ∈ Θt :
(
θ −W t

)T
· at ≥ 0

})
, we define ãt = −1√

aTt Qtat
at

and calculate the new ellipsoid by ct+1 = ct − 1
dk+1Qãt , Qt+1 = d2k2

d2k2−1 (Qt − 2
dk+1Qtãtã

T
t Qt).

D.3 PROOF OF THEOREM 3

For simpler analysis, we define a ”flattening” operator, converting a matrix to a vector: Rd×k → Rd·k
by W = [w1,1, . . . , w1,k, . . . , wd,1, . . . , wd,k]. We also define the operator � to be the composition
of the flattening operator and the outer product: u � v = [u1v1, . . . , u1vk, . . . , udv1, . . . , udvk].
Therefore, the value of policy π for context c is given by V πcTW∗ = cTW ∗µ(π) = W ∗T (c� µ(π)),

where ||W ∗||∞ ≤ 1, ||c� µ(π)||1 ≤ k
1−γ .

Lemma 3 (Boyd & Barratt (1991)). If B ⊆ RD is an ellipsoid with center w, and x ∈ RD\{0}, we
define B+ = MVEE({θ ∈ B : (θ − w)Tx ≥ 0}), then: V ol(B

+)
V ol(B) ≤ e

− 1
2(D+1) .

Proof of Theorem 3. We prove the theorem by showing that the volume of the ellipsoids Θt for
t = 1, 2, ... is bounded from below. In conjunction with Lemma 3, which claims there is a minimal
rate of decay in the ellipsoid volume, this shows that the number of times the ellipsoid is updated is
polynomially bounded.
We begin by showing that W ∗ always remains in the ellipsoid. We note that in rounds where
V π
∗

cTt W
∗ − V π̂tcTt W∗ > ε, we have W ∗T

(
ct �

(
µ(π∗ct) − µ(π̂t)

))
> ε. In addition, as the agent acts

optimally w.r.t. the reward rt = cTt Wt, we have that WT
t

(
ct�

(
µ(π∗ct)−µ(π̂t)

))
≤ 0 . Combining

20

Under review as a conference paper at ICLR 2020

these observations yield:

(W ∗ −W t)
T ·
(
ct �

(
µ(π∗ct)− µ(π̂t)

))
> ε > 0 . (4)

This shows that W ∗ is never disqualified when updating Θt . Since W ∗ ∈ Θ0 this implies that
∀t : W ∗ ∈ Θt. Now we show that not only W ∗ remains in the ellipsoid, but also a small ball
surrounding it. If θ is disqualified by the algorithm: (θ −W t)

T ·
(
ct �

(
µ(π∗ct) − µ(π̂t)

))
< 0 .

Multiplying this inequality by -1 and adding it to (4) yields: (W ∗−θ)T ·
(
ct�

(
µ(π∗ct)−µ(π̂t)

))
> ε.

We apply Hölder inequality to LHS: ε < LHS ≤ ||W ∗ − θ||∞ · ||
(
ct �

(
µ(π∗ct) − µ(π̂t)

))
||1 ≤

2k
1−γ ||W

∗ − θ||∞. Therefore for any disqualified θ: ||W ∗ − θ||∞ > (1−γ)ε
2k , thus B∞(W ∗, (1−γ)ε

2k)

is never disqualified. This implies that ∀t : vol(Θt) ≥ vol(Θ0 ∩ B∞(W ∗, (1−γ)ε
2k)) ≥

vol(B∞(W ∗, (1−γ)ε
4k)). Finally, let MT be the number of rounds by T in which V π

∗

cTt W
∗ −

V π̂t
cTt W

∗ > ε. Using Lemma 3 we get that: MT

2(dk+1) ≤ log
(
vol(Θ1)

)
− log

(
vol(ΘT+1)

)
≤

log
(
vol
(
MVEE(B∞(0, 1))

))
− log

(
vol(B∞(0, (1−γ)ε

4k))
)
≤ log

(
vol
(
MVEE(B2(0,

√
dk))

))
−

log
(
vol(B2(0, (1−γ)ε

4k))
)
≤ log

(
(4k
√
dk

(1−γ)ε)
dk
)
≤ dk log 4k

√
dk

(1−γ)ε . Therefore MT ≤ 2dk(dk +

1) log 4k
√
dk

(1−γ)ε = O(d2k2 log(dk
(1−γ)ε)) .

D.4 PROOF OF THEOREM 4

Lemma 4 (Azuma’s inequality). For a martingale {Si}ni=0, if |Si − Si−1| ≤ b a.s. for i = 1, ..., n:

P

(
|Sn − S0| > b

√
2n log(2

δ)

)
< δ

Proof of Theorem 4. We first note that we may assume that for any t: ||W ∗−Wt||∞ ≤ 2. If Wt 6∈ Θ0,

we update the ellipsoid by Θt ← MVEE
({

θ ∈ Θt :
(
θ −W t

)T
· ej ≶ 0

})
where ej is the

indicator vector of coordinate j in which Wt exceeds 1, and the inequality direction depends on
the sign of (Wt)j . If Wt 6∈ Θ0 still, this process can be repeated for a finite number of steps until
Wt ∈ Θ0, as the volume of the ellipsoid is bounded from below and each update reduces the
volume (Lemma 3). Now we have Wt ∈ Θ0, implying ||W ∗ −Wt||∞ ≤ 2. As no points of Θ0

are removed this way, this does not affect the correctness of the proof. Similarly, we may assume
||W ∗t −Wt||∞ ≤ 2 as W ∗t ∈ Θ0.

We denote Wt which remains constant for each update in the batch by W . We define t(i) the time-
steps corresponding to the demonstrations in the batch for i = 1, ..., n. We define z∗,Hi to be the
expected value of ẑ∗,Hi , and z∗i to be the outer product of ct(i) and the feature expectations of the
expert policy for W ∗t(i), ct(i), ξ

′
t(i) . We also denote W ∗t(i) by W ∗i . We bound the following term from

below, as in Theorem 3:

(W ∗ −W)T · (Z̄
∗

n
− Z̄

n
) =

1

n

n∑
i=1

(W ∗ −W)T · (ẑ∗,Hi − zi) =

1

n

n∑
i=1

(W ∗ −W)T · (z∗i − zi) +
1

n

n∑
i=1

(W ∗ −W)T · (z∗,Hi − z∗i)+

1

n

n∑
i=1

(W ∗ −W)T · (ẑ∗,Hi − z∗,Hi) =

21

Under review as a conference paper at ICLR 2020

1

n

n∑
i=1

(W ∗i −W)T · (z∗i − zi)︸ ︷︷ ︸
(1)

+
1

n

n∑
i=1

(W ∗ −W ∗i)T · (z∗i − zi)︸ ︷︷ ︸
(2)

+

1

n

n∑
i=1

(W ∗ −W)T · (z∗,Hi − z∗i)︸ ︷︷ ︸
(3)

+
1

n

n∑
i=1

(W ∗ −W)T · (ẑ∗,Hi − z∗,Hi)︸ ︷︷ ︸
(4)

(1): Since the sub-optimality criterion implies a difference in value of at least ε for the initial
distribution which assigns 1 to the state where the agent errs, we may use identical arguments to the
previous proof. Therefore, the term is bounded from below by ε.

(2): By assumption ||W ∗ −W ∗i ||∞ ≤
(1−γ)ε

8k thus since ||(z∗i − zi)||1 ≤ 2k
1−γ by Hölder’s inequality

the term is bounded by ε
4 .

(3): We have ||x∗,Hi − x∗i ||1 ≤
kγH

1−γ from definitions, thus ||z∗,Hi − z∗i ||1 ≤
kγH

1−γ since c ∈ ∆d−1. As
mentioned previously we may assume ||W ∗ −Wt||∞ ≤ 2, therefore by Hölder’s inequality the term
is bounded by ε

4 due to our choice of H: γH = (1 − (1 − γ))H ≤
(
(1 − (1 − γ))

1
1−γ
)(1−γ)H

=(
(1− (1− γ))

1
1−γ
)log(8k

(1−γ)ε) ≤ e− log(8k
(1−γ)ε) = (1−γ)ε

8k .

(4): The partial sums
∑N
i=1(W ∗−W)T · (z∗,Hi − ẑ∗,Hi) for N = 0, ..., n form a martingale sequence.

Note that ||z∗,Hi ||1 ≤ k
1−γ , and ||ẑ∗,Hi ||1 ≤ k

1−γ . Also, we have that ||W ∗ − Wt||∞ ≤ 2, thus,
we can apply Azuma’s inequality (Lemma 4) with b = 4k

(1−γ) and with our chosen n this yields:∑n
i=1(W ∗ −W)T · (z∗,Hi − ẑ∗,Hi) ≤ nε

4 with probability of at least 1− δ

2dk(dk+1) log(16k
√
dk

(1−γ)ε)
.

Thus (W ∗ − W)T · (Z̄
∗

n −
Z̄
n) > ε

4 and as in Theorem 3 this shows B∞(W ∗, (1−γ)ε
8k) is never

disqualified, and the number of updates is bounded by 2dk(dk + 1) log(16k
√
dk

(1−γ)ε), and multiplied
by n this yields the upper bound on the number of rounds in which a sub-optimal action is chosen.
By union-bound, the required bound for term (4) holds in all updates with probability of at least
1− δ.

22

Under review as a conference paper at ICLR 2020

E CONTEXTUAL POLICIES

Consider the following problem. Given a complete specification of an MDP, and a hypothesis class
H , for each state s assign a hypothesis ha : C → A such that the return is maximized.

The following theorem shows that it is NP-complete to find such a policy. We will use the class of
linear separators. We define the following contextual MDP training problem. We are given an MDP
with only transitions and a sample of m contexts and their reward (namely for each context ci we
specify the rewards for each state and action).
Theorem 5. There is a reduction from training problem of the union of k hyperplanes to the contextual
MDP training problem of k + 1 states.

Proof. Consider the following MDP, which has two parameters r0 and r1 which will define the
rewards for each context. The MDP composed from a line of k internal states i, and one sink state.
Each internal state i ∈ [1, k − 1] has two actions: action 1 leads to the sink state with reward r1 and
the action 0 lead to the next internal state i+ 1 with reward 0. In internal state k action 1 leads to the
sink state with reward r1 and action 0 leads to the sink state with reward r0. In the sink state there is
a singe action that stays in the sink state and has reward 0.

The context isC = Rd. The hypotheses class includes all hyperplanes, each hyperplane is characterize
by a weight vector w ∈ Rd, and if w>c ≥ 0 then the action is 1 and otherwise it is 0.

Given a sample of size m to the training problem (ci, yi), we generate rewards for the contextual
MDP training problem by having the context ci and specifying the parameters r0 and r1. Specifically,
we will set r0 = 1− yi and r1 = yi.

Given k hyperplanes w1, . . . , wk, and m example, assume that they make e errors. By using those
k hyperplanes in the k internal nodes for each context ci we have a reward 1 iff the union of the k
hyperplanes classify it correctly. This implies that we have reward m− e. This is since each example
that is labeled correctly will get a reward of 1 and each incorrect example will get a reward of 0.

Given an assignment of k hyperplanes to the internal nodes, which gets a return of m− e, we output
as a hypothesis the union of the k hyperplanes. Again, the number of errors on the sample is exactly
e errors.

23

