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ABSTRACT

We propose a robust Bayesian deep learning algorithm to infer complex posteriors
with latent variables. Inspired by dropout, a popular tool for regularization and
model ensemble, we assign sparse priors to the weights in deep neural networks
(DNN) in order to achieve automatic “dropout” and avoid over-fitting. By alter-
natively sampling from posterior distribution through stochastic gradient Markov
Chain Monte Carlo (SG-MCMC) and optimizing latent variables via stochastic
approximation (SA), the trajectory of the target weights is proved to converge
to the true posterior distribution conditioned on optimal latent variables. This
ensures a stronger regularization on the over-fitted parameter space and more
accurate uncertainty quantification on the decisive variables. Simulations from
large-p-small-n regressions showcase the robustness of this method when applied to
models with latent variables. Additionally, its application on convolutional neural
networks (CNN) leads to state-of-the-art performance on MNIST and Fashion
MNIST datasets and improved resistance to adversarial attacks.

1 INTRODUCTION

Bayesian deep learning, which evolved from Bayesian neural networks (Neal, 1996; Denker and
leCun, 1990), provides an alternative to point estimation due to its close connection to both Bayesian
probability theory and cutting-edge deep learning models. It has been shown of the merit to quantify
uncertainty (Gal and Ghahramani, 2016b), which not only increases the predictive power of DNN,
but also further provides a more robust estimation to enhance AI safety. Particularly, Gal and Ghahra-
mani (2016a;b) described dropout (Srivastava et al., 2014) as a variational Bayesian approximation.
Through enabling dropout in the testing period, the randomly dropped neurons generate some amount
of uncertainty with almost no added cost. However, the dropout Bayesian approximation is variational
inference (VI) based thus it is vulnerable to underestimating uncertainty.

MCMC, known for its asymptotically accurate posterior inference, has not been fully investigated
in DNN due to its unscalability in dealing with big data and large models. Stochastic gradient
Langevin dynamics (SGLD) (Welling and Teh, 2011), the first SG-MCMC algorithm, tackled this
issue by adding noise to a standard stochastic gradient optimization, smoothing the transition between
optimization and sampling. Considering the pathological curvature that causes the SGLD methods
inefficient in DNN models, Li et al. (2016) proposed combining adaptive preconditioners with SGLD
(pSGLD) to adapt to the local geometry and obtained state-of-the-art performance on MNIST dataset.
To avoid SGLD’s random-walk behavior, Chen et al. (2014) proposed using stochastic gradient
Hamiltonian Monte Carlo (SGHMC), a second-order Langevin dynamics with a large friction term,
which was shown to have lower autocorrelation time and faster convergence (Chen et al., 2015).
Saatci and Wilson (2017) used SGHMC with GANs (Goodfellow et al., 2014a) to achieve a fully
probabilistic inference and showed the Bayesian GAN model with only 100 labeled images was able
to achieve 99.3% testing accuracy in MNIST dataset. Raginsky et al. (2017); Zhang et al. (2017);
Xu et al. (2018) provided theoretical interpretations of SGLD from the perspective of non-convex
optimization, echoing the empirical fact that SGLD works well in practice.

When the number of predictors exceeds the number of observations, applying the spike-and-slab
priors is particularly powerful and efficient to avoid over-fitting by assigning less probability mass on

1



Under review as a conference paper at ICLR 2019

the over-fitted parameter space (Song and Liang, 2017). However, the inclusion of latent variables
from the introduction of the spike-and-slab priors on Bayesian DNN is not handled appropriately
by the existing methods. It is useful to devise a class of SG-MCMC algorithms that can explore the
Bayesian posterior as well as optimize the hidden structures efficiently.

In this paper, we propose a robust Bayesian learning algorithm: SG-MCMC with a stochastic
approximation adaptation (SG-MCMC-SA) to infer complex posteriors with latent variables and
apply this method to supervised deep learning. This algorithm has four main contributions: 1. It
enables SG-MCMC method to efficiently sample from complex DNN posteriors with latent variables
and is proved to converge; 2. By automatically searching the over-fitted parameter space to add
more penalties, the proposed method quantifies the posterior distributions of the decisive variables
more accurately; 3. The proposed algorithm is robust to various hyperparameters; 4. This method
demonstrates more resistance to over-fitting in simulations, leads to state-of-the-art performance and
shows more robustness over the traditional SG-MCMC methods on the real data.

2 STOCHASTIC GRADIENT MCMC

We denote the decaying learning rate at time k by ε(k), the entire data by D = {di}Ni=1, where
di = (xi, yi), the log of posterior by L(β),∇ as the gradient of any function in terms of β. The mini-
batch of data B is of size n with indices S = {s1, s2, ..., sn}, where si ∈ {1, 2, ..., N}. Stochastic
gradient∇L̃(β) from a mini-batch of data B randomly sampled from D is used to approximate the
true gradient∇L(β):

∇L̃(β) = ∇ log P(β) +
N

n

∑
i∈S
∇ log P(di|β).

The stochastic gradient Langevin dynamics (no momentum) is formed as follows:

β(k+1) = β(k) + ε(k)G∇L̃(β(k)) +N (0, 2ε(k)Gτ−1), (1)

where τ > 0 denotes the temperature,G is a positive definite matrix to precondition the dynamics. It
has been shown that SGLD asymptotically converges to a stationary distribution π(β|D) ∝ eτL(β)
(Teh et al., 2015; Zhang et al., 2017). As τ increases, the algorithm tends towards optimization with
underestimated uncertainty. Another variant of SG-MCMC, SGHMC (Chen et al., 2014; Ma et al.,
2015), proposes to use second-order Langevin dynamics to generate samples: β(k+1) = β(k) + ε(k)M−1r(k)

r(k+1) = r(k) + ε(k)∇L̃(β(k))− ε(k)CM−1r +N (0, ε(k)(2C − ε(k)B̂(k))τ−1)
(2)

where r is the momentum item, M is the mass, B̂ is an estimate of the error variance from the
stochastic gradient, C is a user-specified friction term to counteracts the noisy gradient.

3 STOCHASTIC GRADIENT MCMC WITH A STOCHASTIC APPROXIMATION
ADAPTATION

Dropout has been proven successful, as it alleviates over-fitting and provides an efficient way of
making bagging practical for ensembles of countless sub-networks. Dropout can be interpreted
as assigning the Gaussian mixture priors on the neurons (Gal and Ghahramani, 2016c). To mimic
Dropout in our Bayesian CNN models, we assign the spike-and-slab priors on the most fat-tailed
weights in FC1 (Fig. 1). From the Bayesian perspective, the proposed robust algorithm distin-
guishes itself from the dropout approach in treating the priors: our algorithm keeps updating
the priors during posterior inference, rather than fix it. The inclusion of scaled mixture priors in
deep learning models were also studied in Blundell et al. (2015); Li et al. (2016) with encouraging
results. However, to the best of our knowledge, none of the existing SG-MCMC methods could
deal with complex posterior with latent variables. Intuitively, the Bayesian formulation with model
averaging and the spike-and-slab priors is expected to obtain better predictive performance through
averages from a "selective" group of "good" submodels, rather than averaging exponentially many
posterior probabilities roughly. For the weight priors of the rest layers (dimension u), we just assume
they follow the standard Gaussian distribution, while the biases follow improper uniform priors.
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Figure 1: Model Structure

3.1 CONJUGATE SPIKE-AND-SLAB PRIOR FORMULATION FOR DNN

Similarly to the hierarchical prior in the EM approach to variable selection (EMVS) (Rořková and
George, 2014), we assume the weights β ∈ Rp in FC1 follow the spike-and-slab mixture prior

π(β|σ2,γ) = Np(0,Vσ,γ), (3)

where γ ∈ {0, 1}p, σ ∈ R, Vσ,γ = σ2 diag(a1, . . . , ap) with aj = (1− γj)v0 + γjv1 for each j and
0 < v0 < v1. By introducing the latent variable γj = 0 or 1, the mixture prior is represented as

βj |γj ∼ (1− γj)N (0, σ2v0) + γjN (0, σ2v1). (4)

The interpretation is: if γj = 0, then βj is close to 0; if γj = 1, the effect of βj on the model is
intuitively large. The likelihood of this model given a mini-batch of data {(xi, yi)}i∈S is

π(B|β, σ2) =


(2πσ2)−n/2 exp

{
− 1

2σ2

∑
i∈S(yi − ψ(xi;β))2

}
(regression)

∏
i∈S

exp{ψyi(xi;β)}∑K
t=1 exp{ψt(xi;β)}

(classification),

(5)

where ψ(xi;β) can be a mapping for logistic regression or linear regression, or a mapping based on
a series of nonlinearities and affine transformations in the deep neural network. In the classification
formulation, yi ∈ {1, . . . ,K} is the response value of the i-th example.

In addition, the variance σ2 follows an inverse gamma prior

π(σ2|γ) = IG(ν/2, νλ/2). (6)

The i.i.d. Bernoulli prior is used since there is no structural information in the same layer.

π(γ|δ) = δ|γ|(1− δ)p−|γ|, where π(δ) ∝ δa−1(1− δ)b−1 and δ ∈ R. (7)

Finally, our posterior density follows

π(β, σ2, δ,γ|B) ∝ π(B|β, σ2)
N
n π(β|σ2,γ)π(σ2|γ)π(γ|δ)π(δ). (8)

The EMVS approach is efficient in identifying potential sparse high posterior probability submodels
on high-dimensional regression (Rořková and George, 2014) and classification problem (McDermott
et al., 2016). These characteristics are helpful for large neural network computation, thus we refer the
stochastic version of the EMVS algorithm as Expectation Stochastic-Maximization (ESM).

3.2 EXPECTATION STOCHASTIC-MAXIMIZATION

Due to the existence of latent variables, optimizing π(β, σ2, δ|B) directly is difficult. We instead
iteratively optimize the “complete-data” posterior log π(β, σ2, δ,γ|B), where the latent indicator γ
is treated as “missing data”.

More precisely, the ESM algorithm is implemented by iteratively increasing the objective function

Q(β, σ, δ|β(k), σ(k), δ(k)) = Eγ|·
[
log π(β, σ, δ,γ|B)|β(k), σ(k), δ(k),B

]
, (9)
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where Eγ|· denotes the conditional expectation Eγ|β(k),σ(k),δ(k),B(·). Given (β(k), σ(k), δ(k)) at the
k-th iteration, we first compute the expectation of Q, then alter (β, σ, δ) to optimize it.

For the conjugate spike-slab hierarchical prior formulation, the objective function Q is of the form

Q(β, σ, δ|β(k), σ(k), δ(k)) = C +Q1(β, σ|β(k), σ(k), δ(k)) +Q2(δ|β(k), σ(k), δ(k)), (10)

where

Q1(β, σ|β(k), σ(k), δ(k)) =

log likelihood︷ ︸︸ ︷
N

n
log π(B|β, σ2)−

spike-and-slab priors in the "sparse" layer, e.g. FC1︷ ︸︸ ︷∑p
j=1 β

2
jEγ|·

[
1

v0(1− γj) + v1γj

]
2σ2

−
∑p+u
j=p+1 β

2
j

2︸ ︷︷ ︸
Gaussian priors in other layers

−p+ ν + 2

2
log(σ2)− νλ

2σ2

(11)

and

Q2(δ|β(k), σ(k), δ(k)) =

p∑
j=1

log

(
δ

1− δ

)
Eγ|·γj + (a− 1) log(δ) + (p+ b− 1) log(1− δ).

(12)

3.2.1 THE E-STEP

The physical meaning of Eγ|·γj in Q2 is the probability ρj , where ρ ∈ Rp, of βj having a large effect
on the model. Formally, we have

ρj = Eγ|·γj = P(γj = 1|β(k), σ(k), δ(k)) =
aj

aj + bj
, (13)

where aj = π(β
(k)
j |γj = 1)P(γj = 1|δ(k)) and bj = π(β

(k)
j |γj = 0)P(γj = 0|δ(k)). The choice of

Bernoulli prior enables us to use P(γj = 1|δ(k)) = δ(k).

The other conditional expectation comes from a weighted average κj , where κ ∈ Rp.

κj = Eγ|·
[

1

v0(1− γj) + v1γj

]
=

Eγ|·(1− γj)
v0

+
Eγ|·γj
v1

=
1− ρj
v0

+
ρj
v1
. (14)

3.2.2 THE STOCHASTIC M-STEP

Since there is no closed-form optimal solution for β here, to optimize Q1 with respect to β, we use
Adam (Kingma and Ba, 2014), a popular algorithm with adaptive learning rates, to train the model.

In order to optimize Q1 with respect to σ, by denoting diag{κi}pi=1 as V , following the formulation
in McDermott et al. (2016) and Rořková and George (2014) we have:

σ(k+1) =



√
N
n

∑
i∈S
(
yi − ψ(xi;β

(k+1))
)2

+ ||V1/2β(k+1)||2 + νλ

N + p+ ν
(regression),√√√√∥∥∥(V1/2β(k+1)

)∥∥∥2 + νλ

p+ ν + 2
(classification).

(15)

To optimize Q2, a closed-form solution can be derived from Eq.(12) and Eq.(13).

δ(k+1) = arg max
δ∈R

Q2(δ|β(k), σ(k), δ(k)) =

∑p
j=1 ρj + a− 1

a+ b+ p− 2
. (16)
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Algorithm 1 SGLD-SA with spike and slab priors

Inputs: {ε(k)}Tk=1, {ω(k)}Tk=1, τ , a, b, ν, λ, v0, v1
Outputs: {β(k)}Tk=1

Initialize: β(1), ρ(1), κ(1), σ(1) and δ(1) from scratch
for k ← 1 : T do

Sample mini-batch B(k)
Sampling
β(k+1) ← β(k) + ε(k)∇Q(β, σ, δ|β(k), σ(k), δ(k)) +N (0, 2ε(k)τ−1)
Optimization
Compute ρ(k+1) in Eq.(13), perform SA: ρ(k+1) ← (1− ω(k+1))ρ(k) + ω(k+1)ρ(k+1)

Compute κ(k+1) in Eq.(14), perform SA: κ(k+1) ← (1− ω(k+1))κ(k) + ω(k+1)κ(k+1)

Compute σ(k+1) in Eq.(15), perform SA: σ(k+1) ← (1− ω(k+1))σ(k) + ω(k+1)σ(k+1)

Compute δ(k+1) in Eq.(16), perform SA: δ(k+1) ← (1− ω(k+1))δ(k) + ω(k+1)δ(k+1)

end for

3.3 SG-MCMC-SA

The EMVS algorithm is designed for linear regression models, although the idea can be extended to
nonlinear models. However, when extending to nonlinear models, such as DNNs, the M-step will
not have a closed-form update anymore. A trivial implementation of the M-step will likely cause a
local-trap problem. To tackle this issue, we replace the E-step and the M-step by SG-MCMC with
the prior hyperparameters tuned via stochastic approximation (Benveniste et al., 1990):

β(k+1) = β(k) + ε(k)∇L̃(β(k),θ(k)) +N (0, 2ε(k)τ−1),

θ(k+1) = θ(k) + ω(k+1)
(
gθ(k)(β(k+1))− θ(k)

)
,

(17)

where gθ(k)(β(k+1))− θ(k) is the gradient-like function in stochastic approximation (see details in
Appendix A.2), gθ(·) is the mapping detailed in Eq.(13), Eq.(14), Eq.(15) and Eq.(16) to derive the
optimal θ based on the current β, the step size ω(k) can be set as A(k+Z)−α with α ∈ (0.5, 1]. The
interpretation of this algorithm is that we sample β(k+1) from L̃(β(k),θ(k)) and adaptively optimize
θ(k+1) from the mapping gθ(k) . We expect to obtain an augmented sequence as follows:

β(1),θ(1);β(2),θ(2);β(3),θ(3); . . . (18)

We show the (local) L2 convergence rate of SGLD-SA below and present the details in Appendix B.
Theorem 1 (L2 convergence rate). For any α ∈ (0, 1] and any compact subset Ω ∈ R2p+2, under
assumptions in Appendix B.1, the algorithm satisfies: there exists a constant λ such that

E
[
‖θ(k) − θ∗‖2I(k ≤ t(Ω))

]
≤ λω(k),

where t(Ω) = inf{k : θ(k) /∈ Ω} and ω(k) = A(k + Z)−α ∼ O(k−α).
Corollary 1. For any α ∈ (0, 1] and any compact subset Ω ∈ R2p+2, under assumptions in Appendix
B.2, the distribution of β(k) in (18) converges weakly to the invariant distribution eL(β,θ

∗) as ε→ 0.

The key to guaranteeing the consistency of the latent variable estimators is from stochastic approx-
imation and the fact of

∑∞
i=1 ω

(i) = ∞. The non-convex optimization of SGLD (Raginsky et al.,
2017; Xu et al., 2018), in particular the ability to escape shallow local optima (Zhang et al., 2017),
ensures the robust optimization of the latent variables. Furthermore, the mappings of Eq.(13), Eq.(14),
Eq.(15) and Eq.(16) all satisfy the assumptions on g in a compact subset Ω (Appendix B), which
enable us to apply theorem 1 to SGLD-SA. Because SGHMC proposed by Chen et al. (2014) is
essentially a second-order Langevin dynamics and yields a stationary distribution given an accurate
estimation of the error variance from the stochastic gradient, the property of SGLD-SA also applies
to SGHMC-SA.
Corollary 2. For any α ∈ (0, 1] and any compact subset Ω ∈ R2p+2, under assumptions in Appendix
B.2, the distribution of β(k) from SG-MCMC-SA converges weakly to the invariant distribution
π(β,ρ∗,κ∗, σ∗, δ∗|D) as ε→ 0.
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Table 1: Predictive errors in linear regression based on a test set considering different v0 and σ

MAE / MSE v0=10−3, σ=0.4 v0=10−3, σ=0.5 v0=10−2, σ=0.4 v0=10−2, σ=0.5

SGLD-SA 1.32 / 2.85 1.34 / 2.90 1.34 / 2.92 1.37 / 2.93
EMVS 1.43 / 3.19 3.04 / 13.6 3.40 / 18.8 1.33 / 2.95
SGLD 4.98 / 42.6 4.98 / 42.6 4.98 / 42.6 4.98 / 42.6

3.4 POSTERIOR APPROXIMATION

The posterior average given decreasing learning rates can be approximated through the weighted

sample average E[ψ(β)] =
∑T

k=1 ε
(k)ψ(β(k))∑T

k=1 ε
(k) (Welling and Teh, 2011) to avoid over-emphasizing the

tail end of the sequence and reduce the variance of the estimator. Teh et al. (2015); Chen et al. (2015)
showed a theoretical optimal learning rate ε(k) ∝ k−1/3 for SGLD and k−1/5 for SGHMC to achieve
faster convergence for posterior average, which are used in Sec. 4.1 and Sec. 4.2 respectively.

4 EXPERIMENTS

4.1 SIMULATION OF LARGE-P-SMALL-N REGRESSION

SGLD-SA can be applied to the (logistic) linear regression cases, as long as u = 0 in Eq.(11).
We conduct the linear regression experiments with a dataset containing n = 100 observations
and p = 1000 predictors. Np(0,Σ) is chosen to simulate the predictor values X (training set)
where Σ = (Σ)pi,j=1 with Σi,j = 0.6|i−j|. Response values y are generated from Xβ + η, where
β = (β1, β2, β3, 0, 0, ..., 0)′ and η ∼ Nn(0, 3In). To make the simulation in Rořková and George
(2014) more challenging, we assume β1 ∼ N (3, σ2

c ), β2 ∼ N (2, σ2
c ), β3 ∼ N (1, σ2

c ), σc = 0.2.

We introduce some hyperparameters, but most of them are uninformative, e.g. ν ∈ {10−3, 1, 103}
makes little difference in the test set performance. Sensitivity analysis shows that three hyperparame-
ters are important: v0, a and σ, which are used to identify and regularize the over-fitted space. We fix
τ = 1, λ = 1, ν = 1, v1 = 100, δ = 0.5, b = p and set a = 1. The learning rates for SGLD-SA and
SGLD are set to ε(k) = 0.001× k− 1

3 , and the step size ω(k) = 0.1× (k+ 1000)−
3
4 . We vary v0 and

σ to show the robustness of SGLD-SA with respect to different initializations.

To implement SGLD-SA, we perform stochastic gradient optimization by randomly selecting 50
observations and calculating the corresponding gradient in each iteration. We simulate 500, 000
samples from the posterior distribution and at the same time keep optimizing the latent variables.
EMVS is implemented with β directly optimized each time. We also simulate a group of the test
set with 1000 observations (display 50 in Fig. 2(e)) in the same way as generating the training set
to evaluate the generalizability of our algorithm. Tab.1 shows that EMVS frequently fails given
bad initializations, while SGLD-SA is fairly robust to the hyperparameters. In addition, from
Fig. 2(a), Fig. 2(b) and Fig.2(c), we can see SGLD-SA is the only algorithm among the three that
quantifies the uncertainties of β1, β2 and β3 reasonably and always gives more accurate posterior
average (Fig.2(f)); by contrast, the estimated response values y from SGLD is close to the true values
in the training set (Fig.2(d)), but are far away from them in the testing set (2(e)), indicating the
over-fitting problem of SGLD without proper regularization.

For the simulation of SGLD-SA in logistic regression to demonstrate the advantage of SGLD-SA
over SGLD and ESM, we leave the results in Appendix C.

4.2 CLASSIFICATION PROBLEM

We implement all the algorithms in Pytorch (Paszke et al., 2017) and run the experiments on GeForce
GTX 1080 GPUs. The first DNN we use is a standard 2-Conv-2-FC CNN model (Fig.1) of 670K
parameters (see details in Appendix D.1). The first set of experiments is to compare methods on the
same model without using other complication, such as data augmentation (DA) or batch normalization
(BN) (Ioffe and Szegedy, 2015). We refer to the general CNN without dropout as Vanilla, with 50%
dropout rate applied to the green neurons (Fig.1) as Dropout. Vanilla and Dropout models are trained

6



Under review as a conference paper at ICLR 2019

−1 0 1 2 3 4

SGLD−SA
SGLD
True value

(a) Posterior estimation of β1.
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(b) Posterior estimation of β2.

−1 0 1 2

SGLD−SA
SGLD
True value

(c) Posterior estimation of β3.
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(d) Performance on training set.
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(e) Performance on test set.
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(f) Posterior means vs true values.

Figure 2: Linear regression simulation when v0 = 10−3 and σ = 0.5.

with Adam (Kingma and Ba, 2014) with Pytorch default parameters (with learning rate 0.001). We
use SGHMC as a benchmark method as it is also sampling-based and has a close relationship with
the popular momentum based optimization approaches in DNN. SGHMC-SA differs from SGHMC
in that SGHMC-SA applies the spike-and-slab priors to the FC1 layer while SGHMC just uses the
standard normal priors. The hyperparameters v1 = 1, v0 = 1× 10−3 and σ = 0.1 in SGHMC-SA
are used to regularize the over-fitted space, and a, b are set to p to obtain a moderate "sparsity" to
resemble dropout, the step size is ω(k) = 0.1× (k + 1000)−

3
4 . We use training batch size 1000 and

a thinning factor 500 to avoid a cumbersome system, and the posterior average is applied to each
Bayesian model. Temperatures are tuned to achieve better results (Appendix D.2).

The four CNN models are tested on the classical MNIST and the newly introduced Fashion MNIST
(FMNIST) (Xiao et al., 2017) dataset. Performance of these models is shown in Tab.2. Compared
with SGHMC, our SGHMC-SA outperforms SGHMC on both datasets. We notice the posterior
averages from SGHMC-SA and SGHMC obtain much better performance than Vanilla and Dropout.
Without using either DA or BN, SGHMC-SA achieves 99.60% which even outperforms some
state-of-the-art models, such as stochastic pooling (99.53%) (Zeiler and Fergus, 2013), Maxout
Network (99.55%) (Goodfellow et al., 2013) and pSGLD (99.55%) (Li et al., 2016) . In F-MNIST,
SGHMC-SA obtains 93.01% accuracy, outperforming all other competing models.

To further test the maximum performance of SGHMC-SA, we apply DA and BN to the following
experiments (see details in Appendix D.3) and refer the datasets with DA as aMNIST and aFMNIST.
All the experiments are conducted using a 2-Conv-BN-3-FC CNN of 490K parameters. Using this
model, we obtain 99.75% on aMNIST (300 epochs) and 94.38% on aFMNIST (1000 epochs). The
results are noticeable because posterior model averaging is essentially conducted on a single Bayesian
neural network. We also conduct the experiments based on the ensemble of five networks and refer
them as aMNIST-5 and aFMNIST-5 in Tab. 2. We achieve 99.79% on aMNIST-5 using 5 small
Bayesian neural networks each with 2 thinning samples (4 thinning samples in aFMNIST-5), which
is comparable with the state-of-the-art performance (Wan et al., 2013).

4.3 DEFENSES AGAINST ADVERSARIAL ATTACKS

Continuing with the setup in Sec. 4.2, the third set of experiments focus on evaluating model
robustness. We expect less robust models perform considerably well on a certain dataset due to

7
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Table 2: Classification accuracy on MNIST and Fashion MNIST using small networks

DATASET MNIST aMNIST aMNIST-5 FMNIST aFMNIST aFMNIST-5

VANILLA 99.31 99.54 99.75 92.73 93.14 94.48
DROPOUT 99.38 99.56 99.74 92.81 93.35 94.53

SGHMC 99.55 99.71 99.77 92.93 94.29 94.64
SGHMC-SA 99.60 99.75 99.79 93.01 94.38 94.78

(a) ζ = ..., 0.3, ....

0.0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

SGHMC-SA

SGHMC

Dropout

Vanilla

(b) MNIST (c) ζ = ..., 0.3, ....

0.0 0.1 0.2 0.3 0.4 0.5
0%

20%

40%

60%

80%

100%

SGHMC-SA

SGHMC

Dropout

Vanilla

(d) F-MNIST

Figure 3: Adversarial test accuracies based on adversarial images of different levels

over-tuning; however, as the degree of adversarial attacks increases, the performance decreases
sharply. In contrast, more robust models should be less affected by these adversarial attacks.

We apply the Fast Gradient Sign method (Goodfellow et al., 2014b) to generate the adversarial
examples with one single gradient step as in Papernot et al. (2016)’s study:

xadv ← x− ζ · sign{δxmax
y

log P(y |x)},

where ζ ranges from 0.1, 0.2, . . . , 0.5 to control the different levels of adversarial attacks.

Similar to the setup in the adversarial experiments by Li and Gal (2017), we normalize the adversarial
images by clipping to the range [0, 1]. As shown in Fig. 3(b) and Fig.3(d), there is no significant
difference among all the four models in the early phase. As the degree of adversarial attacks arises,
the images become vaguer as shown in Fig.3(a) and Fig.3(c). In this scenario the performance of
Vanilla decreases rapidly, reflecting its poor defense against adversarial attacks, while Dropout
performs better than Vanilla. But Dropout is still significantly worse than the sampling based
methods SGHMC-SA and SGHMC. The advantage of SGHMC-SA over SGHMC becomes more
significant when ζ > 0.25.

In the case of ζ = 0.5 in MNIST where the images are hardly recognizable, both Vanilla and
Dropout models fail to identify the right images and their predictions are as worse as random guesses.
However, SGHMC-SA model achieves roughly 11% higher than these two models and 1% higher
than SGHMC, which demonstrates the strong robustness of our proposed SGHMC-SA. Overall,
SGHMC-SA always yields the most robust performance.

5 CONCLUSION AND FUTURE RESEARCH

We propose a mixed sampling-optimization method called SG-MCMC-SA to efficiently sample from
complex DNN posteriors with latent variables and prove its convergence. By adaptively searching and
penalizing the over-fitted parameter space, the proposed method improves the generalizability of deep
neural networks. This method is less affected by the hyperparameters, achieves higher prediction
accuracy over the traditional SG-MCMC methods in both simulated examples and real applications
and shows more robustness towards adversarial attacks.

Interesting future directions include applying SG-MCMC-SA towards popular large deep learning
models such as the residual network (He et al., 2015) on CIFAR-10 and CIFAR-100, combining active
learning and uncertainty quantification to learn from datasets of smaller size and proving posterior
consistency and the consistency of variable selection under various shrinkage priors concretely.
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A REVIEW

A.1 FOKKER-PLANCK EQUATION

The Fokker-Planck equation (FPE) can be formulated from the time evolution of the conditional
distribution for a stationary random process. Denoting the probability density function of the random
process at time t by q(t, β), where β is the parameter, the stochastic dynamics is given by

∂tq(t, β) = ∂β(∂β(−L(β))q(t, β)) + ∂2βq(t, β). (19)

Let q(β) = limt→∞ q(t, β). If limt→∞ ∂tq(t, β) = 0, then

lim
t→∞

∂β(∂β(−L(β))q(t, β)) + ∂2βq(t, β) = 0

⇒ ∂β (∂β (−L(β)q(β))) + ∂2βq(β) = 0

⇔ ∂β (∂β(−L(β))q(β) + ∂βq(β)) = 0

⇔ ∂β (q(β) (∂β(−L(β) + ∂β log q(β))) = 0.

(20)

Therefore, ∂β(−L(β)) + ∂β log(q(β)) = 0, which implies q(β) ∝ eL(β). In other words,
limt→∞ q(t, β) ∝ eL(β), i.e. q(t, β) gradually converges to the Bayesian posterior eL(β).

A.2 STOCHASTIC APPROXIMATION

A.2.1 SPECIAL CASE: ROBBINS–MONRO ALGORITHM

Robbins–Monro algorithm is the first stochastic approximation algorithm to deal with the root finding
problem. Given the random output of H(θ,β) with respect to β, our goal is to find θ∗ such that

h(θ∗) = Eθ∗ [H(θ∗,β)] = 0, (21)

where Eθ∗ denotes the expectation with respect to the distribution of β given parameter θ∗. To
implement the Robbins–Monro Algorithm, we can generate iterates of the form as follows :

θ(k+1) = θ(k) + ω(k+1)H(θ(k),β(k+1)).

Note that in this algorithm, H(θ,β) is the unbiased estimator of h(θ), that is

Eθ(k) [H(θ(k),β(k+1))− h(θ(k))|Fk] = 0. (22)

If there exists an antiderivativeQ(θ,β) that satisfiesH(θ,β) = ∂Q(θ,β)
∂θ andEθ[Q(θ,β)] is concave,

it is equivalent to solving the stochastic optimization problem maxθ∈ΘEθ[Q(θ,β)].

A.2.2 GENERAL STOCHASTIC APPROXIMATION

In contrast to Eq.(21) and Eq.(22), the general stochastic approximation algorithm is intent on solving
the root of the integration equation

h(θ) = lim
k→∞

Eθ[H(θ,β(k+1))|Fk]

= lim
k→∞

∫
H(θ,β)Πθ(β(k), dβ)

=

∫
H(θ,β)fθ(dβ) = 0,

(23)

where θ ∈ Θ, β ∈ B, for a subset B ∈ B, the transition kernel Πθ(β(k),B), which converges to
the invariant distribution fθ(β), satisfies that P[β(k+1) ∈ B|Fk] = Πθ(β(k),B). The stochastic
approximation algorithm is an iterative recursive algorithm consisting of two steps:

(1) Generate β(k+1) from the transition kernel Πθ(k)(β(k), ·), which admits fθ(k)(β) as the
invariant distribution,

11
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(2) Update θ(k+1) = θ(k) + ω(k+1)H(θ(k),β(k+1)).

Then we have Eθ(k) [H(θ(k),β(k+1))|Fk] =
∫
H(θ(k),β)Πθ(β(k), dβ). Compared with Eq.(22),

h(θ(k))− Eθ(k) [H(θ(k),β(k+1))|Fk] is not equal to 0 but decays to 0 as k →∞.

To summarise, H(θ,β) is a biased estimator of h(θ) in finite steps, but as k → ∞, the
bias decreases to 0. In the SG-MCMC-SA algorithm (17), H(θ(k),β(k+1)) is defined by
gθ(k)(β(k+1))− θ(k).

B CONVERGENCE ANALYSIS

B.1 CONVERGENCE OF HIDDEN VARIABLES

The stochastic gradient Langevin Dynamics with a stochastic approximation adaptation (SGLD-SA)
is a mixed half-optimization-half-sampling algorithm to handle complex Bayesian posterior with
latent variables, e.g. the conjugate spike-slab hierarchical prior formulation. Each iteration of the
algorithm consists of the following steps:

(1) Sample β(k+1) using SGLD based on the current θ(k), i.e.

β(k+1) = β(k) + ε
∂

∂β
L̃(β(k),θ(k)) +N (0, 2ετ−1); (24)

(2) Optimize θ(k+1) from the following recursion

θ(k+1) = θ(k) + ω(k+1)
(
gθ(k)(β(k+1))− θ(k)

)
= (1− ω(k+1))θ(k) + ω(k+1)gθ(k)(β(k+1)),

(25)

where gθ(k)(·) is some mapping to derive the optimal θ based on the current β.

Remark: Define H(θ(k),β(k+1)) = gθ(k)(β(k+1))− θ(k). In this formulation, our target is to find
θ∗ such that h(θ∗) = 0, where h(θ) :=

∫
H(θ,β)fθ(dβ). Eθ(k) [H(θ(k),β(k+1))|Fk] converges to

h(θ(k)) as k →∞ , this algorithm falls to the category of the general stochastic approximation.

GENERAL ASSUMPTIONS

To provide the local L2 upper bound for SGLD-SA, we first lay out the following assumptions:

Assumption 1 (Step size and Convexity). {ω(k)}k∈N is a positive decreasing sequence of real
numbers such that

ω(k) → 0,

∞∑
k=1

ω(k) = +∞. (26)

There exist constant δ > 0 and θ∗ such that for all θ ∈ Θ

〈θ − θ∗, h(θ)〉 ≤ −δ‖θ − θ∗‖2, (27)

with additionally

lim
k→∞

inf 2δ
ω(k)

ω(k+1)
+
ω(k+1) − ω(k)

ω(k+1)2
> 0. (28)

Then for any α ∈ (0, 1] and suitable A and B, a practical ω(k) can be set as

ω(k) = A(k +B)−α (29)

Assumption 2 (Existence of Markov transition kernel). For any θ ∈ Θ, in the mini-batch sampling,
there exists a family of noisy Kolmogorov operators {Πθ} approximating the operator (infinitesimal)
of the Ito diffusion, such that every Kolmogorov operator Πθ corresponds to a single stationary
distribution fθ, and for any Borel subsetA of β, we have

P[β(k+1) ∈ A|Fk] = Πθ(k)(β(k),A).

12
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Assumption 3 (Compactness). For any compact subset Ω of Θ, we only consider θ ∈ Ω such that

‖θ‖ ≤ C0(Ω) (30)

Note that the compactness assumption of the latent variable θ is not essential, the assumption that
the variable is in the compact domain is not only reasonable, but also simplifies our proof.

In addition, there exists constants C1(Ω) and C2(Ω) so that

Eθ(k) [‖H(θ(k),β(k+1))‖2|Fk] ≤ C1(Ω)(1 + ‖θ(k)‖2)

≤ C2(Ω)(1 + ‖θ(k) − θ∗ + θ∗‖2)

≤ C2(Ω)(1 + ‖θ(k) − θ∗‖2)

(31)

Assumption 4 (Solution of Poisson equation). For all θ ∈ Θ, there exists a function µθ on β that
solves the Poisson equation µθ(β)−Πθµθ(β) = H(θ,β)− h(θ), which follows that

H(θ(k),β(k+1)) = h(θ(k)) + µθ(k)(β(k+1))−Πθ(k)µθ(k)(β(k+1)). (32)

For any compact subset Ω of Θ, there exist constants C3(β,Ω) and C4(β,Ω) such that for all
θ,θ′ ∈ Ω,

(1) ‖Πθµθ‖ ≤ C3(Ω),

(2) ‖Πθµθ −Πθ′µθ′‖ ≤ C4(Ω)‖θ − θ′‖,
(33)

Remark: For notation simplicity, we write C1(Ω) as C1, C2(Ω) as C2, . . . in the following context.

Lemma 1 is a restatement of Lemma 25 (page 447) from Benveniste et al. (1990).
Lemma 1. Suppose k0 is an integer which satisfies with

inf
k≥k0

ω(k+1) − ω(k)

ω(k)ω(k+1)
+ 2δ − ω(k+1)C2 > 0.

Then for any k > k0, the sequence {ΛKk }k=k0,...,K defined below is increasing and bounded by
2ω(K)

ΛKk =

 2ω(k)
∏K−1
j=k (1− 2ωj+1δ + ω2

j+1C2) if k < K,

2ω(K) if k = K.

(34)

Lemma 2 is an extension of Lemma 23 (page 245) from Benveniste et al. (1990)

Lemma 2. There exist λ0 and k0 such that for all λ ≥ λ0 and k ≥ k0, the sequence u(k) = λω(k)

satisfies

u(k+1) ≥ (1− 2ω(k+1)δ + ω(k+1)2C2)u(k) + ω(k+1)2C2 + ω(k+1)C1. (35)

Proof. Replace u(k) = λω(k) in (35), we have

λω(k+1) ≥ (1− 2ω(k+1)δ + ω(k+1)2C2)λω(k) + ω(k+1)2C2 + ω(k+1)C1. (36)

From (28), we can denote a positive constant ∆+ as limk→∞ inf 2δω(k+1)ω(k) + ω(k+1) − ω(k).
Then (36) can be simplified as

λ(∆+ − ω(k+1)2ω(k)C2) ≥ ω(k+1)2C2 + ω(k+1)C1. (37)

There exist λ0 and k0 such that for all λ > λ0 and k > k0, (37) holds. Note that in practical case
when C1 is small, finding a suitable λ0 will not be a problem.

13
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Theorem 1 (L2 convergence rate). Suppose that Assumptions 1-4 hold, for any compact subset
Ω ∈ Θ, the algorithm satisfies: there exists a constant λ such that

E
[
‖θ(k) − θ∗‖2I(k ≤ t(Ω))

]
≤ λω(k),

where t(Ω) = inf{k : θ(k) /∈ Ω}.

Proof. Denote T (k) = θ(k) − θ∗, with the help of (25) and Poisson equation (32), we deduce that

‖T (k+1)‖2 = ‖T (k)‖2 + ω(k+1)2‖H(θ(k),β(k+1))‖2 + 2ω(k+1)〈T (k), H(θ(k),β(k+1))〉

= ‖T (k)‖2 + ω(k+1)2‖H(θ(k),β(k+1))‖2

+ 2ω(k+1)〈T (k), h(θ(k))〉+ 2ω(k+1)〈T (k), µθ(k)(β(k+1))−Πθ(k)µθ(k)(β(k+1))〉
= ‖T (k)‖2 + D1 + D2 + D3.

First of all, according to (31) and (27), we have

ω(k+1)2‖H(θ(k),β(k+1))‖2 ≤ ω(k+1)2C2(1 + ‖T (k)‖2), (D1)

2ω(k+1)〈T (k), h(θ(k))〉 ≤ −2ω(k+1)δ‖T (k)‖2, (D2)

Conduct the decomposition of D3 similar to Theorem 24 (p.g. 246) from Benveniste et al. (1990) and
Lemma A.5 (Liang, 2010).

µθ(k)(β(k+1))−Πθ(k)µθ(k)(β(k+1))

=
(
µθ(k)(β(k+1))−Πθ(k)µθ(k)(θ(k))

)
+
(

Πθ(k)µθ(k)(θ(k))−Πθ(k−1)µθ(k−1)(θ(k))
)

+
(

Πθ(k−1)µθ(k−1)(θ(k))−Πθ(k)µθ(k)(β(k+1))
)
,

= D3-1 + D3-2 + D3-3.

(i) µθ(k)(β(k+1))−Πθ(k)µθ(k)(θ(k)) forms a martingale difference sequence since

E
[
µθ(k)(β(k+1))−Πθ(k)µθ(k)(θ(k))|Fk

]
= 0. (D3-1)

(ii) From (33) and (30) respectively, we deduce that

‖Πθ(k)µθ(k)(θ(k))−Πθ(k−1)µθ(k−1)(θ(k))‖ ≤ C4‖θ(k) − θ(k−1)‖ ≤ 2C4C0

Thus there exists C4 = 2C4C0 such that

2ω(k+1)〈T (k),Πθ(k)µθ(k)(θ(k))−Πθ(k−1)µθ(k−1)(θ(k))〉 ≤ ω(k+1)C4. (D3-2)

(iii) D3-3 can be further decomposed to D3-3a and D3-3b

〈T (k),Πθ(k−1)µθ(k−1)(θ(k))−Πθ(k)µθ(k)(β(k+1))〉

=
(
〈T (k),Πθ(k−1)µθ(k−1)(θ(k))〉 − 〈T (k+1),Πθ(k)µθ(k)(β(k+1))〉

)
+
(
〈T (k+1),Πθ(k)µθ(k)(β(k+1))〉 − 〈Tk,Πθ(k)µθ(k)(β(k+1))〉

)
= (z(k) − z(k+1)) + 〈T (k+1) − T (k),Πθ(k)µθ(k)(β(k+1))〉
= D3-3a + D3-3b,

14
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where z(k) = 〈T (k),Πθ(k−1)µθ(k−1)(θ(k))〉 with a constant C3 = 4C0C3 which satisfies that

2ω(k+1)〈T (k+1) − T (k),Πθ(k)µθ(k)(β(k+1))〉
= 2ω(k+1)〈θ(k+1) − θ(k),Πθ(k)µθ(k)(β(k+1))〉 (D3-3b)

≤ 2ω(k+1)‖θ(k+1) − θ(k)‖ · ‖Πθ(k)µθ(k)(β(k+1))‖
≤ 4ω(k+1)C0C3 = C3ω

(k+1)

Finally, add all the items D1, D2 and D3 together, for some C1 = C3 + C4, we have

E
[
‖T (k+1)‖2

]
≤ (1− 2ω(k+1)δ + ω(k+1)2C2)E

[
‖Tk‖2

]
+ ω(k+1)2C2 + ω(k+1)C1 + 2ω(k+1)E[z(k) − z(k+1)].

Moreover, from (33) and (30), there exists a constant C5 such that

E[|z(k)|] ≤ C5. (38)

Lemma 3 is an extension of Lemma 26 (page 248) from Benveniste et al. (1990).

Lemma 3. Let {u(k)}k≥k0 as a sequence of real numbers such that for all k ≥ k0, some suitable
constants C1 and C2

u(k+1) ≥ u(k)
(

1− 2ω(k+1)δ + ω(k+1)2C2

)
+ ω(k+1)2C2 + ω(k+1)C1, (39)

and assume there exists such k0 that

E
[
‖T (k0)‖2

]
≤ u(k0). (40)

Then for all k > k0, we have

E
[
‖T (k)‖2

]
≤ u(k) +

k∑
j=k0+1

Λkj (z(j−1) − z(j)).

Proof of Theorem 1 (Continued). From Lemma 2, we can choose λ0 and k0 which satisfy the
conditions (39) and (40)

E[‖T (k0)‖2] ≤ u(k0) = λ0ω
(k0).

From Lemma 3, it follows that for all k > k0

E
[
‖Tk‖2

]
≤ u(k) + E

 k∑
j=k0+1

Λkj

(
z(j−1) − z(j)

) . (41)

From (38) and the increasing property of Λkj in Lemma 1, we have

E

∣∣∣∣∣∣
k∑

j=k0+1

Λkj

(
z(j−1) − z(j)

)∣∣∣∣∣∣
 = E

∣∣∣∣∣∣
k−1∑

j=k0+1

(Λkj+1 − Λkj )z(j) − 2ω(k)z(k) + Λkk0+1z
(k0)

∣∣∣∣∣∣


≤
k−1∑

j=k0+1

(Λkj+1 − Λkj )C5 + E[|2ω(k)z(k)|] + ΛkkC5

≤ (Λkk − Λkk0)C5 + ΛkkC5 + ΛkkC5

≤ 3ΛkkC5 = 6C5ω
(k).

(42)

Therefore, given the sequence u(k) = λ0ω
(k) that satisfies conditions (39), (40) and Lemma 3, for

any k > k0, from (41) and (42), we have

E[‖T (k)‖2] ≤ u(k) + 3C5Λkk = (λ0 + 6C5)ω(k) = λω(k),

where λ = λ0 + 6C5.
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B.2 CONVERGENCE OF SAMPLES

In addition to the previous assumptions, we make one more assumption on the stochastic gradients to
guarantee that the samples converge to the posterior conditioned on the optimal latent variables:
Assumption 5 (Gradient Unbiasedness and Smoothness). For all β ∈ B and θ ∈ Θ, the mini-batch
of data B, the stochastic noise ξ, which comes from ∇̃L(β,θ) − ∇L(β,θ), is a white noise and
independent with each other. In addition, there exists a constant l ≥ 2 such that the following
conditions hold:

EB[ξ] = 0 and EB[ξl] <∞. (43)

For all θ,θ′ ∈ Θ, there exists a constant M > 0 such that the gradient is M-smooth:

∇L(β,θ)−∇L(β,θ′) ≤M‖θ − θ′‖ (44)

Corollary 1. For all α ∈ (0, 1], under assumptions 1-5, the distribution of β(k) converges weakly to
the invariant distribution eL(β,θ

∗) as ε→ 0.

Proof. The proof framework follows from section 4 of Sato and Nakagawa (2014). In the context of
stochastic noise ξ(k), we ignore the subscript of ε and only consider the case of τ = 1. Since θ(k)
converges to θ∗ in SGLD-SA and the gradient is M-smooth (44), we transform the stochastic gradient
from ∇L̃(β(k),θ(k)) to ∇L(β(k),θ∗) + ξ(k) +O(εα), therefore Eq.(24) can be written as

β(k+1) = β(k) + ε
(
∇L(β(k),θ∗) + ξ(k) +O(εα)

)
+
√

2εη(k), where η(k) ∼ N (0, I). (45)

Using Eq.(43), the characteristic function of εξ(k) +O(εα+1) is

E
[
exp

(
is(εξ(k) +O(εα+1)

)]
= E

[ ∞∑
l=0

1

l!

(
is(εξ(k) +O(εα+1)

)l]
= 1 +O(εα+1). (46)

Then the characteristic function of
√

2εη(k) is exp(−εs2).

Rewrite β(k+1) as β(k+ε), the characteristic function of β(t+ε) is the characteristic function of
β(k) + ε

(
∂βL(β(k),θ∗) + ξ(k) +O(εα)

)
+
√

2εη(k), which is

φt+ε(s) =

∫
exp(isβ + isε∇L(β,θ∗)− εs2)

(
1 +O(εα+1)

)
q(k,β)dβ

=

∫
exp(isβ + isε∇L(β,θ∗)− εs2)q(k,β)dβ +O(εα+1).

(47)

With the fact exp(x) = 1 + x+O(x2), we can get

φ(k+ε)(s)− φ(k)(s)

=

∫
exp(isβ)

(
exp(isε∇L(β,θ∗)− εs2)− 1

)
q(k,β)dβ +O(εα+1)

=

∫
exp(isβ)

(
isε∇L(β,θ∗)− εs2 +O(ε2)

)
q(k,β)dβ +O(εα+1)

=

∫
exp(isβ)

(
isε∇L(β,θ∗)− εs2

)
q(k,β)dβ +O(εα+1).

(48)

Therefore,
φ(k+ε)(s)− φ(k)(s)

ε
=− is

∫
exp(isβ)∇(−L(β,θ∗))q(k,β)dβ

+ (−is)2
∫

exp(isβ)q(k,β)dβ +O(εα).

(49)
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Table 3: Predictive errors in logistic regression based on a test set considering different v0 and σ

MAE / MSE v0=10−2, σ=0.6 v0=10−1, σ=0.6 v0=10−2, σ=2 v0=10−3, σ=2

SGLD-SA 0.182 / 0.0949 0.195 / 0.1039 0.146 / 0.1049 0.165 / 0.0890
SGLD 0.311 / 0.2786 0.304 / 0.2645 0.333 / 0.2977 0.331 / 0.3037
ESM 0.240 / 0.0982 0.454 / 0.2080 0.182 / 0.0882 0.172 / 0.1102

For any integrable function f , set F as the Fourier transform defined by

F[f(x)](s) =
1√
2π

∫
f(x) exp(isx)dx. (50)

The inverse Fourier transform of F[f(x)] and the l-th order derivatives of f (l)(x) is

F−1[f(x)](s) = f(x) =
1√
2π

∫
F[f(x)](s) exp(−isx)dx,

F(f (l))(s) = (−is)l(F(f))(s).

(51)

Combine Eq.(49), Eq.(50) and Eq.(51), we arrive at the following simplified equation:

φ(t+ε)(s)− φ(k)(s)√
2πε

=− isF∂β(−L(β,θ∗))q(k,β) + (−is)2Fq(k,β) +O(εα)

=F∂β (∂β(−L(β,θ∗))q(k,β)) + F∂2βq(k,β) +O(εα).

(52)

Since F−1[φ(k)(s)] =
√

2πq(k,β) and α ∈ (0, 1],

lim
ε→0

q(k + ε,β)− q(k,β)

ε

= lim
ε→0

F−1
[
φ(k+ε)(s)− φ(k)(s)√

2πε

]
= lim
ε→0

∂β(∂β(−L(β,θ∗))q(k,β)) + ∂2βq(k,β) +O(εα)

=∂β(∂β(−L(β,θ∗))q(k,β)) + ∂2βq(k,β).

(53)

Finally, we have proved that the distribution of β(k) converges weakly to the invariant distribution
eL(β,θ

∗) as ε→ 0.

C SIMULATION OF LOGISTIC REGRESSION

Now we conduct the experiments on binary logistic regression. The setup is similar as before, except
n is set to 500, Σi,j = 0.3|i−j| and η ∼ N (0, I/2). We set the learning rates in SGLD-SA and SGLD
to 0.01× k− 1

3 and step size ω(k) to 0.1× (k + 1000)−
3
4 . The binary response values are simulated

from Bernoulli(p) where p = 1/(1 + e−Xβ−η). Fig.4(a), Fig.4(b) and Fig.4(c) demonstrate the
posterior distribution of SGLD-SA is significantly better than that of SGLD. As shown in Fig.4(f),
SGLD-SA is the best method to regulate the over-fitting space and provides the most reasonable
posterior mean. Table.3 illustrates the predictive power of SGLD-SA is overall better than the other
methods and robust to different initializations. Fig.4(d) and Fig.4(e) show that the over-fitting problem
of SGLD when p > n in logistic regression and the algorithm fails to regulate the over-fitting space;
We observe SGLD-SA is able to resist over-fitting and always yields reproducible results.
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(a) Posterior estimation of β1.
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(b) Posterior estimation of β2.
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(c) Posterior estimation of β3.
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(d) Performance on training set.
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(e) Performance on test set.
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(f) Posterior means vs true values.

Figure 4: Logistic regression simulation when v0 = 0.1 and σ = 0.6

D EXPERIMENTAL SETUP

D.1 NETWORK ARCHITECTURE

The first DNN we use is a standard 2-Conv-2-FC CNN: it has two convolutional layers with a 2 ×
2 max pooling after each layer and two fully-connected layers. The filter size in the convolutional
layers is 5 × 5 and the feature maps are set to be 32 and 64, respectively (Jarrett et al., 2009). The
fully-connected layers (FC) have 200 hidden nodes and 10 outputs. We use the rectified linear unit
(ReLU) as activation function between layers and employ a cross-entropy loss.

The second DNN is a 2-Conv-BN-3-FC CNN: it has two convolutional layers with a 2 × 2 max
pooling after each layer and three fully-connected layers with batch normalization applied to the first
FC layer. The filter size in the convolutional layers is 4× 4 and the feature maps are both set to 64.
We use 256× 64× 10 fully-connected layers.

D.2 TEMPERATURE STRATEGY

In practice, we observe a suitable temperature setting is helpful to improve the classification accuracy.
For example, by setting τ = 100 in the second DNN (see Appendix D.1) we obtain 99.70% on
aMNIST. To account for the scale difference of weights in different layers, we apply different
temperatures to different layers based on different standard deviations of the gradients in each layer
and obtain the results in Tab. 2.

D.3 DATA AUGMENTATION

The MNIST dataset is augmented by (1) randomCrop: randomly crop each image with size 28
and padding 4, (2) random rotation: randomly rotate each image by a degree in [−15◦,+15◦], (3)
normalization: normalize each image with empirical mean 0.1307 and standard deviation 0.3081.

The FMNIST dataset is augmented by (1) randomCrop: same as MNIST, (2) randomHorizontalFlip:
randomly flip each image horizontally, (3) normalization: same as MNIST.
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