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ABSTRACT

Domain adaptation addresses the common problem when the target distribution
generating our test data drifts from the source (training) distribution. While absent
assumptions, domain adaptation is impossible, strict conditions, e.g. covariate or
label shift, enable principled algorithms. Recently-proposed domain-adversarial
approaches consist of aligning source and target encodings, often motivating this
approach as minimizing two (of three) terms in a theoretical bound on target error.
Unfortunately, this minimization can cause arbitrary increases in the third term, e.g.
they can break down under shifting label distributions. We propose asymmetrically-
relaxed distribution alignment, a new approach that overcomes some limitations
of standard domain-adversarial algorithms. Moreover, we characterize precise
assumptions under which our algorithm is theoretically principled and demonstrate
empirical benefits on both synthetic and real datasets.

1 INTRODUCTION

Despite breakthroughs in supervised deep learning across a variety of challenging tasks, current
techniques depend precariously on the i.i.d. assumption. Unfortunately, real-world settings often
demand not just generalization to unseen examples but robustness under a variety of shocks to the
data distribution. Ideally, our models would leverage unlabeled test data, adapting in real time to
produce improved predictions. Unsupervised domain adaptation formalizes this problem as learning
a classifier from labeled source domain data and unlabeled data from a target domain, to maximize
performance on the target distribution.

Without further assumptions, guarantees of target-domain accuracy are impossible (Ben-David
et al., 2010b). However, well-chosen assumptions can make possible algorithms with non-vacuous
performance guarantees. For example, under the covariate shift assumption (Heckman, 1977;
Shimodaira, 2000), although the input marginals can vary between source and target (pS(x) 6=
pT (x)), the conditional distribution of the labels (given features) exhibits invariance across domains
(pS(y|x) = pT (y|x)). Traditional approaches to the covariate shift problem require the source
distributions’ support to cover the target support, estimating adapted classifiers via importance-
weighted risk minimization (Shimodaira, 2000; Huang et al., 2007; Gretton et al., 2009; Yu &
Szepesvári, 2012; Lipton et al., 2018).

Problematically, assumptions of contained support are violated in practice. A recent sequence of deep
learning papers have proposed empirically-justified adversarial training schemes aimed at practical
problems with non-overlapping supports (Ganin et al., 2016; Tzeng et al.). Example problems include
generalizing from gray-scale images to colored images or product images on white backgrounds to
photos of products in natural settings. While importance-weighting solutions are useless here (with
non-overlapping support, weights are unbounded), domain-adversarial networks (Ganin et al., 2016)
and subsequently-proposed variants report strong empirical results on a variety of image recognition
challenges.
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Figure 1: (a) In order to match the latent space distributions exactly, a model must map some
elements of positive class in the target domain to some elements of negative class in the source
domain. (b) A better mapping is achieved by requiring only that the source covers the target in the
latent space.

The key idea of domain-adversarial networks is to simultaneously minimize the source error and
align the two distributions in representation space. The scheme consists of an encoder, a label
classifier, and a domain classifier. During training, the domain classifier is optimized to predict each
image’s domain given its encoding. The label classifier is optimized to predict labels from encodings
(for source images). The encoder weights are optimized for the twin objectives of accurate label
classification (of source data) and fooling the domain classifier (for all data).

Although Ganin et al. (2016) motivate their idea via theoretical results due to Ben-David et al. (2010a),
the theory is insufficient to justify their method. Put simply, Ben-David et al. (2010a) bound the test
error by a sum of three terms. The domain-adversarial objective minimizes two among these, but
this minimization may cause the third term to increase. This is guaranteed to happen when the label
distribution shifts between source and target (Figure 1(a)).

In this paper, we propose asymmetrically-relaxed distribution alignment, a relaxed distance for
aligning data across domains that can be minimized without requiring latent-space distributions to
match exactly. The new distance is minimized whenever the density ratios in representation space
from target to source are upper bounded by a certain constant, such that the target representation
support is contained in the source representation’s. The relaxed distribution alignment need not lead to
a poor classifier on the target domain under label distribution mismatch (Figure 1(b)). We demonstrate
theoretically that the relaxed alignment is sufficient for a good target domain performance under a
concrete set of assumptions on the data distributions. Further, we propose several practical ways
to achieve the relaxed distribution alignment, translating the new distance into adversarial learning
objectives. Empirical results on synthetic and real datasets show that incorporating our relaxed
distribution alignment loss into adversarial domain adaptation gives better classification performance
on the target domain. Due to space constraints, we only briefly state our results in the main text
and append the full version of our paper after references.

2 BACKGROUND AND MOTIVATION

Unsupervised domain adaptation with representations For simplicity, we address the binary
classification scenario. Let X be the input space and f : X 7→ {0, 1} be the (domain-invariant)
ground truth labeling function. Let pS and pT be the input distributions over X for source and target
domain respectively. Let Z be a latent space and Φ denote a class of mappings from X to Z . Define
H to be a class of predictors over the latent space Z , i.e., each h ∈ H maps from Z to {0, 1}. Given
a representation mapping φ ∈ Φ, classifier h ∈ H, and input x ∈ X , our prediction is h(φ(x)). In
the unsupervised domain adaptation setting, we have access to labeled source data (x, f(x)) for
x ∼ pS and unlabeled target data x ∼ pT . We are interested in bounding the classification risk of a
(φ, h)-pair on the target domain:

ET (φ, h) = ES(φ, h) +

∫
dzpφT (z) (rT (z;φ, h)− rS(z;φ, h)) +

∫
dz
(
pφT (z)− pφS(z)

)
rS(z;φ, h) ,

(1)
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where r is the risk function in the latent space.

Domain-adversarial learning Domain-adversarial approaches focus on minimizing the first and
third term in (1) jointly. Informally, these approaches minimize the source domain classification risk
and the distance between the two distributions in the latent space:

min
φ,h
ES(φ, h) + λD(pφS , p

φ
T ) + Ω(φ, h) , (2)

where D is a distance metric between distributions and Ω is a regularization term. Standard choices
of D have the property that D(pφS , p

φ
T ) = 0 if pφS ≡ pφT and D(pφS , p

φ
T ) > 0 otherwise. This exact

distribution matching, however, can lead to undesirable performance. More specifically, the following
proposition says that the target error is lower bounded if label distribution shifts:

Proposition 2.1. Let ρS and ρT be the proportion of data with positive label. If D(pφS , p
φ
T ) = 0 if

and only if pφS ≡ p
φ
T , ES(φ, h) = D(pφS , p

φ
T ) = 0 indicates ET (φ, h) ≥ |ρS − ρT |.

This problem happens because although D(pφS , p
φ
T ) = 0 is a sufficient condition for the third

term of (1) to be zero, it is not a necessary condition. We now examine the third term of (1):∫
dz
(
pφT (z)− pφS(z)

)
rS(z;φ, h) ≤

(
supz∈Z

pφT (z)

pφS(z)
− 1
)
ES(φ, h). This expression shows that if

the source error ES(φ, h) is zero then it is sufficient to say the third term of (1) is zero when the
density ratio pφT (z)/pφS(z) is upper bounded by some constant for all z, as shown in Figure 1(b).

Given this motivation, we propose relaxing from exact distribution matching to bounding the density
ratio in the domain-adversarial learning objective (2). We call this asymmetrically-relaxed distribution
alignment. More specifically, our proposed approach is to replace the typical distribution distance
D in the domain-adversarial objective (2) with a β-admissible distance Dβ so that minimizing the
new objective does not necessarily lead to a failure under label distribution shift.

Definition 2.2 (β-admissible distances). Given a family of distributions defined on the same space
Z , a distance metric Dβ between distributions is called β-admissible if Dβ(p, q) = 0 when
supz∈Z p(z)/q(z) ≤ 1 + β and Dβ(p, q) > 0 otherwise.

3 THEORETICAL RESULTS

We bound the target domain error under our proposed asymmetrically-relaxed distribution alignment.
Our theoretical result makes distinct contribution to the domain adaptation literature: We provide
a risk bound that explains the behavior of domain-adversarial methods with model-independent
assumptions on data distributions. Existing theories without assumptions of contained support (Ben-
David et al., 2007; 2010a; Ben-David & Urner, 2014; Mansour et al., 2009; Cortes & Mohri, 2011)
do not exhibit this property.

Construction 3.1. The following statements hold simultaneously: (1) (Lipschitzness of representa-
tion mapping.) φ is L-Lipschitz: dZ(φ(x1), φ(x2)) ≤ LdX (x1, x2) for any x1, x2 ∈ X . (2) (Imper-
fect asymmetrically-relaxed distribution alignment.) For some β ≥ 0, there exist a set B ⊂ Z such

that p
φ
T (z)

pφS(z)
≤ 1 +β holds for all z ∈ B and pφT (B) ≥ 1− δ1. (3) (Separation of source domain in the

latent space.) There exist two setsC0, C1 ⊂ X that satisfy: (a)C0∩C1 = ∅ (b) pS(C0∪C1) ≥ 1−δ2.
(c) For i ∈ {0, 1}, f(x) = i for all x ∈ Ci. (d) infz0∈φ(C0),z1∈φ(C1) dZ(z0, z1) ≥ ∆ > 0.

Assumption 3.2. (Connectedness from target domain to source domain.) Given constants
(L, β,∆, δ1, δ2, δ3), assume that, for any BS , BT ⊂ X with pS(BS) ≥ 1 − δ2 and pT (BT ) ≥
1− δ1− (1 +β)δ2, there exists CT ⊂ BT that satisfies the following conditions: (1) For any x ∈ CT ,
there exists x′ ∈ CT ∩ BS such that one can find a sequence of points x0, x1, ..., xm ∈ CT with
x0 = x, xm = x′, f(x) = f(x′) and dX (xi−1, xi) <

∆
L for all i = 1, ...,m. (2) pT (CT ) ≥ 1− δ3.

Theorem 3.3. Given a L-Lipschitz mapping φ ∈ Φ and a binary classifier h ∈ H, if φ satisfies the
properties in Construction 3.1 with constants (L, β,∆, δ1, δ2), and Assumption 3.2 holds with the
same set of constants plus δ3, then the target domain error can be bounded as

ET (φ, h) ≤ (1 + β)ES(φ, h) + 3δ1 + 2(1 + β)δ2 + δ3 .
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4 ASYMMETRICALLY-RELAXED DISTANCES

In this section, we derive several β-admissible distance metrics that can be practically minimized
with adversarial training.

f -divergence We propose a general approach to make any f -divergence β-admissible by partially
linearizing the function f . Plugging in the corresponding f for JS-divergence gives

Df̄β (p, q) = sup
g:Z7→(0,1]

Ez∼q
[
log

g(z)

2 + β

]
+ Ez∼p

[
log

(
1− g(z)

2 + β

)]
. (3)

Wasserstein distance The idea behind modifying the Wasserstein distance is to model the optimal
transport from p to the region where distributions have 1 + β maximal density ratio with respect to q.
Following the dual-form derivation for the original Wasserstein distance gives

Wβ(p, q) = sup
g

Ez∼p [g(z)]− (1 + β)Ez∼q [g(z)] (4)

s.t. ∀z ∈ Z , g(z) ≥ 0 ,∀z1, z2 ∈ Z , g(z1)− g(z2) ≤ ‖z1 − z2‖ ,

Reweighting distance Given any distance metric D, a generic way to make it β-admissible is
to allow reweighting for one of the distances within a β-dependent range: Given a distribution q
over Z and a reweighting function w : Z 7→ [0,∞). The reweighted distribution qw is defined
as qw(z) = q(z)w(z)∫

dzq(z)w(z)
. Define Wβ,q to be a set of β-qualified reweighting with respect to q:

Wβ,q =
{
w : Z 7→ [0, 1],

∫
dzq(z)w(z) = 1

1+β

}
. Then the relaxed distance can be defined as

Dβ(p, q) = minw∈Wβ,q
D(p, qw).

5 EXPERIMENTS

To evaluate our approach, we implement Domain Adversarial Neural Networks (DANN), (Ganin
et al., 2016) replacing the JS-divergence with several β-admissible distances. Table 5-2 summarize
our experimental results. Compared to the original DANN, our approaches fare significantly better
under label distribution shift while achieving comparable performance absent label distribution shift.

METHOD ACCURACY%

SOURCE 89.4±1.1
DANN 59.1±5.1 WDANN 50.8±32.1

β 0.5 2.0 4.0

FDANN-β 66.0± 41.6 99.9± 0.0 99.8±0.0
SDANN-β 99.9± 0.1 99.9± 0.0 99.9±0.0
WDANN1-β 45.7± 41.5 66.4± 41.1 99.9±0.0
WDANN2-β 97.6± 1.2 99.7± 0.2 99.5±0.3
SWDANN-β 79.0± 5.9 99.9± 0.0 99.9±0.0

Table 1: Classification accuracy on target domain with label distribution shift on a synthetic dataset.
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TARGET [0-4] [5-9] [0-9]
LABELS SHIFT SHIFT NO-SHIFT

SOURCE 74.3±1.0 59.5±3.0 66.7±2.1
DANN 50.0±1.9 28.2±2.8 78.5±1.6

FDANN-1 71.6±4.0 67.5±2.3 73.7±1.5
FDANN-2 74.3±2.5 61.9±2.9 72.6±0.9
FDANN-4 75.9±1.6 64.4±3.6 72.3±1.2
SDANN-1 71.6±3.7 49.1±6.3 81.0±1.3
SDANN-2 76.4±3.1 48.7±9.0 81.7±1.4
SDANN-4 81.0±1.6 60.8±7.5 82.0±0.4

Table 2: Classification accuracy on target domain
with/without label distribution shift on MNIST-
USPS.

TARGET [0-4] [5-9] [0-9]
LABELS SHIFT SHIFT NO-SHIFT

SOURCE 69.4±2.3 30.3±2.8 49.4±2.1
DANN 57.6±1.1 37.1±3.5 81.9±6.7

FDANN-1 80.4±2.0 40.1±3.2 75.4±4.5
FDANN-2 86.6±4.9 41.7±6.6 70.0±3.3
FDANN-4 77.6±6.8 34.7±7.1 58.5±2.2
SDANN-1 68.2±2.7 45.4±7.1 78.8±5.3
SDANN-2 78.6±3.6 36.1±5.2 77.4±5.7
SDANN-4 83.5±2.7 41.1±6.6 75.6±6.9

Table 3: Classification accuracy on target domain
with/without label distribution shift on USPS-
MNIST.
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Yaoliang Yu and Csaba Szepesvári. Analysis of kernel mean matching under covariate shift. arXiv
preprint arXiv:1206.4650, 2012.

5


	Introduction
	Background and Motivation
	Theoretical Results
	Asymmetrically-relaxed distances 
	Experiments

