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ABSTRACT

In this paper, we propose a framework, called MaskConvNet, for ConvNets filter
pruning. MaskConvNet provides elegant support for training budget-aware pruned
networks from scratch, by adding a simple mask module to a ConvNet architec-
ture. MaskConvNet enjoys several advantages - (1) Flexible, the mask module
can be integrated with any ConvNets in a plug-and-play manner. (2) Simple, the
mask module is implemented by a hard Sigmoid function with small number of
trainable mask variables, adding negligible memory and computational overheads
to the networks during training. (3) Effective, it is able to achieve competitive
pruning rate while maintaining comparable accuracy with the baseline ConvNets
without pruning, regardless of the datasets and ConvNet architectures used. (4)
Fast, it is observed that the number of training epochs required by MaskCon-
vNet is close to training a baseline without pruning. (5) Budget-aware, with
a sparsity budget on target metric (e.g. model size and FLOP), MaskConvNet
is able to train in a way that the optimizer can adaptively sparsify the network
and automatically maintain sparsity level, till the pruned network produces good
accuracy and fulfill the budget constraint simultaneously. Results on CIFAR-
10 and ImageNet with several ConvNet architectures show that MaskConvNet
works competitively well compared to previous pruning methods, with budget-
constraint well respected. Code is available at https://www.dropbox.com/
s/c4zi3n7h1bexl12/maskconv-iclr-code.zip?dl=0. We hope
MaskConvNet, as a simple and general pruning framework, can address the gaps
in existing literate and advance future studies to push the boundaries of neural
network pruning.

1 INTRODUCTION

State-of-the-art Convolutional Neural Networks (ConvNets) achieve high accuracy in many applica-
tions using very deep and wide networks, e.g., VGG Simonyan & Zisserman (2015) and ResNet He
et al. (2016). Deep and wide networks are often over-parameterized, which significantly increase
the usage of memory (with tens of millions of weights) and compute (with tens of billions of MAC -
Multiplication and ACcumulation). It is particularly challenging to deploy, in a naive manner, such
large ConvNets on edge device that with limited memory and compute capacities.

To reduce the memory footprint and MAC of modern ConvNets, recent works propose either unstruc-
tured pruning (a.k.a. weight pruning) to prune redundant weights LeCun et al. (1990); Han et al.
(2015; 2016); Zhu & Gupta (2017); Guo et al. (2016); Louizos et al. (2017a;b); Frankle & Carbin
(2019); Lee et al. (2019); Gale et al. (2019) or structured pruning (e.g. filter-wise, channel-wise,
depth-wise, etc.) to prune filters/channels/layers Li et al. (2016); Wen et al. (2016); Liu et al. (2017);
Ye et al. (2018); Neklyudov et al. (2017); Gordon et al. (2018); He et al. (2018); Véniat & Denoyer
(2018); He et al. (2019); Lemaire et al. (2019); Li et al. (2019); Yang et al. (2019) from original
over-parameterized deep networks, without incurring significant loss in accuracy. Both unstructured
and structured pruning approaches support pruning from pre-trained models followed by fine-tuning
and pruning while training from scratch.
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Despite the impressive pruning rates achieved on target metrics such as weight variables and floating-
point operations (FLOP), existing neural network pruning methods still suffer one or both of the
weaknesses that (1) Additional (iterative) fine-tuning is often required to compensate the accuracy
degradation, leading to slower convergence and thus more training epochs and (2) Most of existing
pruning approaches are not capable of automatically and optimally allocating pruning rates across
layers given a sparsity budget on target metric. On the other hand, pruning with budget constraints tai-
lored for specific hardware platforms, as a promising direction for hardware-software co-optimization,
is becoming increasingly important especially for edge device.

In this work, we propose a new pruning framework, called MaskConvNet, to address the above
mentioned issues simultaneously. MaskConvNet provides elegant support for training budget-aware
pruned networks from scratch, by adding a simple mask module to each bundled block of the target
ConvNets. Fig. 1 showcases an example of applying MaskConvNet to a typical bundled block
Conv/BN/ReLU for filter pruning. The mask module is composed of a hard Sigmoid activation
function with a vector of trainable variables as input and the output is regularized with a sparsification
loss, resulting in a sparse mask vector with many 0 elements and the rest are real values in (0, 1]. The
pruned ConvNets is generated by element-wise multiplication between the mask vector and filters/BN
parameters, in which filters/BN parameters with all zero are removed from the ConvNets.

We summarize the main contributions and advantages of MaskConvNet as follows.

• Flexible. The mask module can be integrated with any ConvNets in a plug-and-play manner.
• Simple. Instead of directly regularizing filters, the mask module is defined separately and differ-

entiable almost everywhere, and the number of mask variables equals to the number of filters in
the target ConvNets, implying that it adds negligible memory and computational overheads to the
networks during training.

• Effective. MaskConvNet is able to achieve competitive pruning rate while maintaining comparable
accuracy with the baseline ConvNets without pruning, regardless of the datasets and ConvNets
architectures used.

• Fast. Our empirical observations on both CIFAR10 and ImageNet show that the number of training
epochs required by MaskConvNet is close to training a baseline without pruning, mainly attributed
to the fact that the mask module (1) enables threshold-free pruning, thanks to the hard Sigmoid
activation function and (2) is shared within the bundled block structure (Fig. 1) which in turn
addresses the mismatch problem between CONV and BN layers.

• Budget-aware. With a sparsity budget on target metric (in percentage), MaskConvNet is able to
train in a way that the optimizer can adaptively sparsify the network and automatically maintain
sparsity level, till the pruned network produces good accuracy and fulfill the budget constraint si-
multaneously. In contrast, previous budget-aware pruning methods suffer the iterative optimization
process of alternating between training and evaluation of the target metric, which is tedious and
time-consuming.

In recent years, structured pruning attracts much more attention than its unstructured counterpart -
weight pruning, mainly because structured pruning doesn’t require specific circuit design and thus
is more friendly to existing hardware. Thus, in this work we apply MaskConvNet to one of most
popular structured pruning methods, filter-wise pruning. It’s worth noting that MaskConvNet, as a
general pruning framework, can be easily extended to other structured pruning categories as well as
weight pruning, by re-formatting the mask variables only. We would like to leave it for future work.

2 RELATED WORK

Both unstructured and structured pruning can be grouped into saliency-based LeCun et al. (1990);
Han et al. (2015; 2016); Zhu & Gupta (2017); Guo et al. (2016); Frankle & Carbin (2019); Lee et al.
(2019); Li et al. (2016); He et al. (2018; 2019) and sparsity learning Louizos et al. (2017a;b); Wen
et al. (2016); Liu et al. (2017); Ye et al. (2018); Neklyudov et al. (2017); Gordon et al. (2018); Lemaire
et al. (2019); Li et al. (2019) approaches, where the former shrinks network size by well-defined
thresholding criterion such as magnitude for weight variables Han et al. (2015; 2016); Zhu & Gupta
(2017); Frankle & Carbin (2019); Gale et al. (2019) or L1/L2 norm for filters Li et al. (2016); He et al.
(2018; 2019) and the latter prunes networks by either adding regularization functions into training
loss (e.g. L0/L1 Louizos et al. (2017a;b); Liu et al. (2017); Ye et al. (2018); Gordon et al. (2018);
Lemaire et al. (2019), Group Lasso Wen et al. (2016)) or learning dropout rates for weights/filters
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Figure 1: Overview framework of MaskConvNet for filter pruning on a typical bundled block structure
composed of Conv - BN - ReLU.

via variational dropout with the reparametrization trick Neklyudov et al. (2017). MaskConvNet falls
in the category of sparsity learning with a specially designed regularization function added to the
training loss.

Most of the existing pruning approaches, including pruning while training Zhu & Gupta (2017);
Li et al. (2016); Liu et al. (2017); Ye et al. (2018); Gordon et al. (2018); He et al. (2018; 2019);
Lemaire et al. (2019), require to perform additional (iterative) fine-tuning to compensate the accuracy
degradation, mainly due to hard pruning via thresholding and the mismatch between Batch Normal-
ization and its corresponded pruned CONV/FC layer. This leads to slower convergence and thus
more training epochs. For instance, with the method of gradual magnitude-based weight pruning
during training proposed by Zhu & Gupta (2017) and pre-defined pruning rate 80% on ResNet50,
Gale et al. (2019) reported that it increases the number of training epochs by 1.5× in order to achieve
comparable ImageNet validation accuracy with the baseline model trained without pruning.

On the other hand, there is few work studying pruning mechanism to automatically and optimally
allocate pruning rates across layers that fulfill a budget specified for target metric. Existing works
either only meet the budget by pruning using sub-optimal pruning rate pre-defined or empirically
calculated Han et al. (2015); Li et al. (2016); Liu et al. (2017) or can derive automatic pruning rate
through sparsity learning methods which fail to fulfill the budget explicitly Louizos et al. (2017a;b);
Wen et al. (2016); Neklyudov et al. (2017).

MorphNet Gordon et al. (2018) and BAR Lemaire et al. (2019) are the most related work to MaskCon-
vNet, while our work differs from them in several aspects. First, both MorphNet and BAR require
pre-defined threshold for hard pruning, while MaskConvNet is threshold-free. Second, MorphNet
and BAR apply mask on γ variables of BN and filters respectively, while MaskConvNet applies mask
on both. Third, to meet the sparsity budget, both MorphNet and BAR alternate between training and
evaluation of target metric with a multiplier derived by grid search. MaskConvNet automates the
process by adaptively shrinking or expanding the pruning ratio across layers in a data-driven manner
during training, avoiding the tedious iterative optimization process. Finally, BAR uses Knowledge
Distillation Hinton et al. (2015) to facilitate the training of pruned networks for better accuracy, while
MaskConvNet does not.

3 METHOD

3.1 FILTER PRUNING VIA THE MASK MODULE

Fig. 1 presents an overview of the design of the mask module and how the mask module is applied
for filter pruning. The mask module is simply defined as a hard Sigmoid activation function,

σ̃(m) = min(max((m) + 0.5, 0), 1), (1)
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where input (m) is trainable mask variables tied to Conv filters 1. For a Conv layer with w input
channels, h output channels (filters) and k × k sized kernels, the number of mask variables equals to
h. Each element of the mask activation σ̃(m) indicates the importance score of the associated filter.
The same mask is applied to bias parameters for the Conv layer.

Each filter is reparameterized as its weights multiplied by its mask activation via element-wise
multiplier. Concretely, given a filter W ∈ R and its mask activation σ̃(m) ∈ R, the masked filter Ŵ
is given by:

Ŵ(W,m) = W � σ̃(m), (2)

where � is element-wise multiplication between a mask element and a 3D tesor with size w × k × k.
It’s easy to know that mask element with importance score 0 means a filter with w × k × k weight
parameters is pruned from the network. The sparser the mask activation, the higher the pruning ratio.

It is worth noting that the zero-centered hard-Sigmoid σ̃(m) clamps mask to [0, 1], allowing mask to
span the whole range rather than binary. Thus, thresholding critiria is no longer required for hard
pruning. The mask module is similar in spirit to the diversity networks Zelda Mariet (2016) in the
sense that the pruned filters are ”fused” into the remaining filters via non-zero mask elements rather
than dropped completely, but our proposal is much simpler.

In our experiments, m is simply initialized with zeros, so that σ̃(m) = 0.5, which is median of
interval [0, 1]. One can initialize with random values, but such initialization could potentially give
unknown prior bias to sparsification, which may give different structure with different random seed.

In the end of training, the pruned ConvNets is generated by Equation 2, where filters/BN parameters
with all zero are removed from the ConvNets. One may note that the output feature maps of Conv
layer i serve as the input to Conv layer i+1. Thus, the input channels of layer i+1 that corresponded
to the pruned filters of layer i are also pruned.

Mask Sharing. In modern ConvNets, a Conv layer is often followed by a batch-norm layer which
has ”scale” weight parameter γ and ”shift” bias parameter β with dimension length equals to number
of filters of its preceding Conv layer.

Previous pruning approaches often prune Conv filters with their successive Batch Normalization
layer unchanged. This causes mismatch problem between pruned Conv and BN layers, given that
by nature BN parameters highly depend on the output feature maps from preceding Conv. To avoid
the mismatch problem, we propose to share the mask module within the bundled block structure
Conv-BN-ReLU. More specifically, BN scale and shift parameters are masked with the same mask
activation for the corresponding Conv layer. Without mask sharing, we observed that the accuracy
degrades severely after pruning. We speculate that this is due to BN by default are unaware of pruned
filters, i.e. pruned filters give 0-valued output as input to BN, but BN considers 0-valued input as if
the filter is still alive (i.e not pruned).

Extending Mask to Residual Connections. In ConvNet architectures such as ResNet, residual
connections involve element-wise addition operation where two operands must have the same
dimensions. To extend the mask module to residual connections, one can share a single mask for all
layers involved in residual connections. This is achieved by taking the mask for the last Conv layer in
the last residual block as the base mask, and sharing the base mask with other Conv layers involved
in other residual connections. Partially, the base mask is sliced to fit Conv layers with less number of
filters.

3.2 SPARSITY REGULARIZATION ON THE MASK

With filters W reparameterized by the mask activation σ̃(m), the loss function for training budget-
aware pruned ConvNets from scratch is given as:

L(W,m) = LE(W � σ̃(m)) + LS(σ̃(m)), (3)

where LE is cross-entropy loss for classification (the ”error”), and LS is the sparsification loss defined
on the mask.

1We take Conv/FC as example here as they account for over 99% of total operations in modern ConvNets.
FC can be treated as a special case of Conv layer where the kernal size is 1× 1.
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Sparsification Loss. The sparsification loss is defined by sparsifying the mask:

LS(σ̃(m)) = λmµ(̃σ(m))− λv
σ2(σ̃(m))

µ(σ̃(m))
, (4)

where the goal is to minimize the mean µ(̃σ(m)), and maximize variance-to-mean
σ2(σ̃(m))/µ(σ̃(m)). In particular, the regularization multipliers λm and λv are introduced to
precisely control regularization strength towards budget-aware pruning (see details in the subsequent
subsection).

Minimizing mean is basically L1-regularization averaged over the total number of mask elements of
the network, and maximizing variance is soft-binarization by dispersing mask elements to the either
zero or one. Dividing variance by mean adaptively strengthen variance maximization when mean is
becoming smaller.

Extension to Multi-metrics. Equation 3 can be extended to support sparsity regularization of
the mask for multiple target metrics simultaneously, e.g. optimizing for parameter counts and
FLOPs given by budget constraints for both metrics. A simple heuristic is to average the mean
and variance-to-mean of the mask σ̃(m) that is applied to N target metrics. Accordingly, Equa-
tion 3 and Equation 4 are rewritten as L(W,m) = LE(W � σ̃(m)) +

∑N
i=1 LSi(σ̃(m)) and∑N

i=1 LSi(σ̃(m)) =
∑N
i=1 λmi · µ(̃σ(m))−

∑N
i=1 λvi ·

σ2(σ̃(m))
µ(σ̃(m)) , respectively.

Algorithm 1: Algorithm description of MaskConvNet for 1 epoch.
Input: input-label pairs (xi,yi) from N training mini-batches
Output: Weights W, mask m
Set target sparsity percentage s∗, base multipliers λbasem and λbasev , multiplier update interval n,

multiplier EMA exponent α;
for i in 1, 2, ... N do

(xi,yi)← load mini batch(i);
// For every n mini-batches, evaluate sparsity and update multipliers;
if (i % n == 0) then

st ← compute sparsity(W � σ̃(m)), according to Eqn. 2 ;
st ← sαt + s

(1−α)
t−1 ;

∆s← s∗ − st;
λm ← λbasem ×∆s;
λv ← λbasev ×∆s;

end
Train on (xi,yi) with cross-entropy and mask regularization as in Eqn. 3;

end

3.3 BUDGET-AWARE MASKCONVNET: THE ALGORITHM

In previous works on sparsity-regularization based pruning Gordon et al. (2018); Lemaire et al. (2019),
grid search on sparsity regularization multiplier is performed, the multiplier is then used to find a
sparse network structure that could meet the budget. These approaches alternate between network
training and sparsifying with the regularization multiplier until sparsification stops at arbitrary sparsity
level. If the model is undersparsed or oversparsed, the regularization multiplier value is adjusted and
training is repeated from scratch. This is very laborious and time-consuming.

In contrast to previous works, MaskConvNet avoids the tedious iterative optimization process. With
a target sparsity budget (in percentage), MaskConvNet is able to train in a way that the optimizer
adaptively sparsifies the network and automatically maintains sparsity level, till the pruned network
produces good accuracy and fulfills the budget constraint simultaneously.

The training procedure for one epoch is described in Algorithm 1. During training, the weight tensors
are reparameterized with masks according to Eqn. 2, both weight tensors and masks are jointly
updated and sparsified via standard optimizer (e.g. SGD with momentum) according to Eqn. 3.
Evaluating sparsity percentage at every mini-batch iteration can slow down training considerably,
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hence we evaluate and smooth the sparsity (with EMA) for every n interval. In our experiments, we
set n = 20 and EMA exponent α = 0.99.

As the regularization multipliers are periodically updated, sparsification is expanded stronger in early
training, and becomes gradually weaker when reaching the target due to ∆s approaches zero. On the
other hand, when the pruned model is oversparsed, ∆s becomes negative, and so do the multipliers
λm and λv. The optimizer will then shrink the mask sparsity (unsparsification) until ∆s is positive
again (See more detailed analysis in the next subsection).

3.4 HOW MASK UNSPARSIFICATION WORKS?

In case when λm and λv are too big, too many mask elements will be zeroed and the model becomes
oversparsified and misses the sparsity budget. If the masks elements are zeroed, how would the
optimizer continue update these zeroed elements? How would the gradients flow and update the
masks? We exploit three things to unsparse the masks: (1) Mask decay update; (2) Negative
regularization multiplier; and (3) Positive mask parameter when hard-Sigmoid output is zero.

The SGD update rule for the regularization term LS(m) is given as m← m− λmη ∂S∂m − λmηεm,
where η is the learning rate and ε is mask decay constant. Also recall the hard-Sigmoid function on
mask is σ̃(m) = min(max(m+ 0.5, 0), 1).

λm will be negative when sparsity difference ∆s is negative. Also, when m = −0.5, then σ̃(m) = 0
and ∂S

∂m = 0. However, m is still non-zero negative. Hence, the term −λmηεm is positive , and thus
the optimizer is able to increase m so that σ̃(m) becomes non-zero, unsparsifying the mask.

The catch here is that we cannot achieve exactly zero error to target sparsity budget due to zeroed
σ̃(m) will always be bounced back to non-zero (unless we deliberately turn off mask decay). The
model will always be undersparsfied and oversparsified continuously by small degree throughout
training. The sparsity deviation depends on the value of mask decay constant applied to the mask.
This will be discussed in experimental section.

Figure 2: Testing/Validation accuracy (Top-1) and sparsity pattern as the function of training epochs
for MaskConvNet with WideResNet-28-10 on CIFAR-10 (left) and ResNet-34 on ImageNet (right).
For reference, the baseline accuracy is included.

4 EXPERIMENTS

We evaluate MaskConvNet on both CIFAR-10 and ImageNet ILSVRC 2012 et al. (2009), with differ-
ent ConvNets architectures including Simonyan & Zisserman (2015); He et al. (2016); Zagoruyko &
Komodakis (2016) as baseline architectures. For all CIFAR-10 experiments, we modified source code
from Liu et al. (2018), and followed the same training setup and data augmentation. We used SGD
with momentum of 0.9 as optimizer. Initial learning rate is set to 0.1 and divided by 10 at epoch 40
and epoch 80. All models are trained for 160 epochs. λm and λv are updated every 20 mini-batches
with EMA exponent α = 0.99. Details on the settings of λm and λv are left in appendix section. For
all ImageNet experiments, we implemented the training code and hyper-parameter settings derived
from source code for work by Banner et al. (2018).
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Figure 3: Results of MaskConvNet-P (parameter counts as target metric) and MaskConvNet-F (FLOP
as target metric) with various sparsity budgets on CIFAR-10, using VGG-19 and WideResNet-28-10
as baseline architectures. Text labels on plot points denote ”Accuracy% (Actual / Budget Sparsity%)

Figure 4: Layer-wise parameter sparsities throughout training for VGG-19 (left) and WideResnet-28-
10 (right) on CIFAR-10, with warmup training till epoch 10. The brigher the color, the higher the
sparsity.

4.1 MASKCONVNET: IN-DEPTH ANALYSIS

In this section, we perform various experiments on CIFAR-10 and ImageNet to explore the behaviors
of MaskConvNet in-depth.

The convergence speed and sparsity pattern of MaskConvNet during training. Figure 2 shows
the testing/validation accuracy (Top-1) and sparsity pattern as the function of training epochs for
MaskConvNet with WideResNet-28-10 on CIFAR-10 and ResNet-34 on ImageNet. The baseline
accuracy is included for reference. We observe that the convergence speed of MaskConvNet is highly
similar to the baseline architecture, indicating the effective training capability of MaskConvNet. In
addition, the sparsity pattern emerges at early training epochs and becomes stable as training going
on, which is consistent with the observation from the single-shot pruning work Lee et al. (2019)
that redundant neurons can be identified in a single step even before training. One may note that
the sparsity curve for ResNet-34 has small fluctuations. As shown in the next subsection as well as
appendix, this issue can be solved by proper choice of mask decay.

Can MaskConvNet meet the Budget?. Figure 3 presents the results of MaskConvNet-P (parameter
counts as target metric) and MaskConvNet-F (FLOP as target metric) with various sparsity budgets
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on CIFAR-10, using VGG-19 and WideResNet-28-10 as baseline architectures. Accuracy almost
linearly decreases with increasing sparsity for both target metrics. More importantly, it is worth
noting that the actual sparsities produced by both MaskConvNet-P and MaskConvNet-F are close to
the budget, i.e. the error between actual and budget sparsity is within 1% (absolute value) for most of
the operating points.

Looking into layer-wise parameter sparsities. We also investigate layer-wise parameter sparsity
patterns throughout training on CIFAR-10, for VGG-19 trained with 50% FLOP sparsity budget
and WideResnet-28-10 trained with 93.75% parameter sparsity budget. Figure 4 shows VGG-19
and WideResnet-28-10 training results respectively. We observe that early layers are less likely
to be sparsified, which matches the intuition in previous works such as Gordon et al. (2018). The
hyper-thesis is that early layers carry more information and can incur bigger accuracy loss if sparsified
too much. In addition, we noted more uniform overall sparsity on WideResNet-28-10 than VGG-19.
We speculate this to be related to role of residual connections during sparsification process. This
phenomenon is left for future investigation.

More results and analysis are introduced in the appendix section, including the sensititity analysis
of base regularization multipliers λm and λv, visualization of mask histogram output by the hard-
Sigmoid, inference speedup by measuring wall-clock latency of the baseline and pruned models on
a CPU core, and the effect of mask decay and warmup on training accuracy as well as layer-wise
sparsity pattern.

Table 1: Comparison of MaskConvNet-F or MaskConvNet-P with state-of-the-art pruning approaches
Network Slimming Liu et al. (2017), L1-Pruning Li et al. (2016) and BAR Lemaire et al. (2019), on
CIFAR-10 with various ConvNet architectures.

Model Accuracy (%) FLOPs Sparsity (%) Parameters (M) Sparsity (%)

VGG-16
Baseline 93.63 3.15× 108 0.00 14.99 0.00
L1-Pruning 93.40 2.06× 108 34.20 5.40 64.00
MaskConvNet-F 93.40 1.88× 108 40.19 1.72 88.53

VGG-19
Baseline 93.67 7.97× 108 0.00 20.04 0.00
Network Slimming 93.80 3.91× 108 51.00 2.30 88.5
MaskConvNet-F 93.03 3.66× 108 54.08 1.51 92.47

ResNet-56
Baseline 93.40 2.52× 108 0.00 0.85 0.00
L1-Pruning 93.06 9.09× 107 27.60 0.73 13.7
MaskConvNet-F 92.25 1.88× 108 25.27 0.58 31.87

ResNet-164
Baseline 94.70 5.02× 108 0.00 1.71 0.00
Network Slimming 94.92 3.81× 108 23.70 1.44 14.9
MaskConvNet-F 94.28 3.46× 108 30.96 0.79 53.59

WideResNet-28-10
Baseline 95.30 1.19× 1010 0.00 36.48 0.00
BAR (16× V reduction) 91.62 1.74× 108 98.54 2.31 93.67
MaskConvNet-P 94.28 3.50× 109 70.63 2.46 93.25

Table 2: Comparison of MaskConvNet-FP with both parameter counts and FLOP as target metrics
with Li et al. (2016) on ImageNet ILSVRC 2012 with ResNet-34 as baseline architecture.

Model Accuracy (%) FLOPs Sparsity (%) Parameters (M) Sparsity(%)

Resnet-34
Baseline 73.27 3.69× 109 0.00 21.8 0.00
L1-Pruning 72.56 3.08× 109 15.50 19.9 7.60
MaskConvNet-PF 72.56 3.29× 109 10.75 17.7 19.00
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4.2 COMPARISON WITH PREVIOUS WORKS

CIFAR-10. Table 1 compares MaskConvNet-F or MaskConvNet-P with state-of-the-art pruning
approaches Network Slimming Liu et al. (2017), Pruning Filters for Efficient ConvNets Li et al.
(2016) denoted as L1-Pruning and Budget-Aware Regularization (BAR) Lemaire et al. (2019), on
CIFAR-10 with various ConvNet architectures including VGG-16, VGG-19, ResNet-56, ResNet-164
and WideResNet-28-10. One can see that for almost all of the operating points, MaskConvNet-F
performs comparably in terms of accuracy with Network Slimming and L1-Pruning, and achieves
much higher sparsity on both FLOP and parameter counts. Compared to BAR, MaskConvNet-P
achieves comparable parameter sparsity with better accuracy, but the FLOP sparsity is much lower
probably because the usage of Knowledge Distillation Hinton et al. (2015) in BAR as prior guiding
the training process while our method does not use it.

ImageNet. Table 2 compares MaskConvNet-FP with both parameter counts and FLOP as target
metrics with L1-Pruning Li et al. (2016), with ResNet-34 as the baseline architecture. In L1-Pruning
paper, Resnet-34 is pre-trained, pruned, and fine-tuned for 20 epochs. Standard ResNet training
takes 90 epochs. Compared to L1-Pruning, we managed to train ResNet-34 with fewer epochs (<90)
that achieves the same accuracy and much higher parameter sparsity, but with slightly lower FLOP
sparsity.

5 CONCLUSION AND FUTURE WORK

In this work, we proposed MaskConvNet, a general pruning framework where a model is trained and
sparsified end-to-end with sparsity budget constraint on various target metrics. Promising results are
reported on CIFAR-10 and ImageNet for the problem of filter pruning. We hope MaskConvNet can
inspire future research including extension of the pruning framework (1) to other structured pruning
categories as well as unstructured pruning and (2) to other model structures beyond ConvNets, such
as recurrent networks and self-attention networks.
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A APPENDIX

A.1 HYPER-PARAMETERS FOR SINGLE-METRIC AND MULTI-METRIC EXPERIMENTS
(TABLE 3, 4)

Table 3: Hyper-parameters for Single-metric experiments

Model VGG-19 WideResnet-28-10
Target P Target F Target P Target F

λbase
m 1 5 3, 5 λbase

v 5
6 1, 2* 5

Table 4: Hyper-parameters for Multi-metric experiments

MaskConvNet-P MaskConvNet-F MaskConvNet-PF
(λbase

m , λbase
v , warmup) (λbase

m , λbase
v , warmup) (λbase

m1 ,λbase
v1 , λbase

m2 ,λbase
m2 , warmup)

VGG-16 3,4, 20 5, 6, 20 3, 4, 5, 6, 20
VGG-19 3,4,20 3,4,20 3, 4, 3, 4, 20
Resnet-56 2, 3, 50 1, 2, 50 2, 3, 1, 2, 50
Resnet-164 1, 5, 10 1, 5, 10 1, 5, 1, 5, 10
Resnet-34 – – 5, 20, 5, 20, 3

A.2 MASK HISTOGRAM

As shown in Figure 5, the mask values accumulate mostly at 0, then at 1. This observation is different
compared to findings by Gordon et al. (2018), where the batch-norm scale parameter histogram
resembles Gaussian distribution.

Figure 5: Mask Histogram after training.

A.3 SENSITIVITY ANALYSIS FOR BASE REGULARIZATION MULTIPLIERS

We train VGG-19 with target FLOP sparsity budget of 50%, with base regularization multipliers
λbasem and λbasev sampled from integers in interval [0, 10]. We perform 10 trials. All models are
trained for 160 epochs, and used late sparsity regularization (i.e. warmup) start at epoch 10. Results
are shown in Table 5, one can see that the accuracy is quite stable regardless of the base regularization
multipliers used.tt

A.4 LATENCY REDUCTION

We measure wall-clock latency for forward pass of one mini-batch on Intel Xeon E5-2680 V4
Processor (Broadwell-EP, 14 core, 2.4GHz) for CIFAR-10 models. We select checkpoint files for
three models with different target FLOP sparsity budgets. Measurements are noisy, but overall we
found latencies are reduced compared to the baseline models (Table 6).
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Table 5: Sensitivity analysis for base regularization multipliers λbasem and λbasev with VGG-19 trained
on CIFAR-10 with target FLOP sparsity 50%

λbase
m λbase

v Accuracy (%) FLOPs sparsity (%) Parameter sparsity (%)

1 3 92.43 49.10 91.12
3 9 92.10 53.48 92.93
7 4 91.96 50.13 91.28
2 2 92.02 46.93 89.22
5 9 91.75 50.03 91.36
4 6 92.01 52.30 92.50
1 10 92.33 44.72 87.56
5 7 92.50 52.66 92.77
9 10 92.15 49.63 90.90

10 2 92.43 51.73 92.15

mean ± std 92.17± 0.25 50.07± 2.70 91.18± 1.68

Table 6: Latency Measurements on CIFAR-10

Model Target FLOP sparsity (%) Actual FLOP sparsity (%) Latency (ms)

VGG-19 0 (Baseline) 0.00 22.45± 1.17
50 51.91± 2.46 12.94± 0.42
60 62.35± 2.92 11.42± 0.28
70 69.52± 0.01 10.81± 0.06

WideResnet-28-10 0 (Baseline) 0.00 64.15± 0.21
50 54.59± 1.5 25.43± 1.09
60 58.54± 2.5 22.79± 0.94
70 72.58± 4.2 19.92± 0.93

A.5 EFFECT OF MASK DECAY AND WARMUP

Figure 6 shows different mask decays give different rate of unsparsification. Also with warmup
training (late sparsification), accuracy is improved and the pruned structure becomes different
compared to the one without warmup - High contrast is visible between sparsity level between last
layers and early layers. Last layers are sparsified more.
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Figure 6: Layer-wise parameter sparsities throughout training for VGG-19 on CIFAR-10, with
different mask decay and warmup training. The brigher the color, the higher the sparsity.
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